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Hepatocellular carcinoma (HCC) exhibits high recurrence rates post-resection, yet 
predictive biomarkers remain elusive. Emerging evidence implicates intratumoral 
microbiota in cancer progression, but its role in HCC recurrence is unexplored. 
Here, we  characterized microbial and metabolic profiles in 90 HCC patients 
[49 with early recurrence (RFS ≤ 2 years), 41 non-recurrent controls] using 
16S rRNA sequencing and LC–MS metabolomics. Recurrent tumors showed 
reduced microbial diversity (Shannon index, p < 0.05) and distinct compositional 
shifts, including enrichment of Proteobacteria (LEfSe LDA > 4) and depletion 
of commensals like Akkermansia. A 20-microbial-genus signature predicted 
recurrence (AUC = 0.81, 95% CI: 0.72–0.91), while a 20-metabolite panel (e.g., 
resolvin D5, γ-glutamylthreonine) achieved superior accuracy (AUC = 0.958, CI: 
0.950–0.966). Functional analyses linked recurrence-associated microbiota with 
disrupted lipid/amino acid metabolism and pro-inflammatory pathways (KEGG, 
p < 0.01). Microbial-metabolite correlation networks revealed strong associations 
between dysbiotic taxa (e.g., Cyanobacteria) and immunomodulatory metabolites 
(*r > 0.6, p < 0.05). This study identifies intra-tumoral microbiome-metabolome 
signatures as novel biomarkers for HCC recurrence, offering mechanistic insights 
into microbial regulation of the tumor microenvironment and clinical tools for 
post-surgical risk stratification.
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1 Introduction

As the predominant form of primary liver malignancy, hepatocellular carcinoma (HCC) 
represents a primary cause of global cancer mortality, accounting for the vast majority of 
hepatic neoplasms with invasive potential. Clinically, hepatocellular carcinoma manifests with 
subtle early symptoms, rapid advancement, and frequent recurrence. Delayed diagnosis and 
therapeutic resistance contribute to its unfavorable outcomes. Despite improvements in 
clinical trials and diagnoses, HCC still has a high mortality rate, due to 70% recurrence and 
lung metastasis after surgical resection.
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Surgical treatment, including hepatic resection and liver 
transplantation, is a potentially curative therapeutic option for 
HCC. Indications for partial resection include unilobar tumors 
lacking vascular involvement and liver metastases without cirrhosis. 
The Child-Pugh score guides patient selection for resection by 
assessing hepatic function through biochemical markers (bilirubin, 
albumin), coagulation status (prothrombin time), and the detection 
of ascites or encephalopathy. However, the 5-year recurrence rate 
following liver resection for HCC approaches 75% (Sugawara and 
Hibi, 2021; Rajendran et al., 2022), representing a persistent clinical 
dilemma that extends to patients presenting with single tumors ≤2 cm 
in diameter (Roayaie et al., 2013).

Numerous studies claim that intratumoral bacteria reside not only 
within malignant cells but also in immune cells, with their microbial 
profiles exhibiting tumor-specific variations (Nejman et al., 2020). 
Polymorphic microbiomes are a new hallmarks of cancer (Hanahan, 
2022). Due to the physiological and anatomical bidirectional 
association between the liver and the intestine, recent studies mostly 
explore the important contribution of gut microbiota in hepatic 
inflammation, fibrosis and tumor development through the “gut-liver 
axis” (Bourzac, 2014; Tilg et al., 2022; Hov and Karlsen, 2023), while 
the characteristics and metabolic differences of intra-tumoral 
microbiota of HCC patients were rarely reported. In our initial 
investigation, preliminary characterization of PLC-associated 
microbiota across histopathological variants and clinical prognoses 
uncovered microbiome disparities that distinguished: ① tumor from 
adjacent non-tumor tissue, ② different histological subtypes, and ③ 
patients with divergent clinical outcomes (Qu et al., 2022). However, 
unlike the well-established causal effect of H. pylori on the progression 
of gastric cancer, no specific intra-tumoral bacterial community 
(genus) has been identified to cause HCC recurrence. The precise role 
of intratumoral microbiome components in modulating HCC 
progression, whether beneficial or detrimental, has yet to 
be fully elucidated.

Hence, based on previous findings, this study intends to expand 
the cohort and conduct multi-omics sequencing to map the 
characteristics of intra-tumoral microbiota and metabolic differences 
in HCC patients, and to develop a microbiome-derived predictive 
classifier for postoperative HCC recurrence. This study may enable us 
to reveal the complex relationship between intra-tumoral microbiota 
dysbiosis and HCC recurrence and provide a novel microbiome-based 
intervention strategy to enhance survival outcomes in 
HCC management.

2 Materials and methods

2.1 Participants information and FFPE 
samples collection

The study commenced with an initial discovery cohort comprising 
HCC patients without recurrence after surgery (>2 years RFS, n = 41), 
contrasted with stage-comparable HCC cases with PFS < 2 years 
(n = 49) at the Affiliated Tumor Hospital of Zhengzhou University 
(Henan Province, China) from 2017 to 2018. Table 1 displays the 
patients in detail along with their pathological and clinical data. 
Postoperative staging of specimens was conducted by a specialized 
pathologist, following the TNM staging system and the stage 

groupings (I-IV) established by the American Joint Committee on 
Cancer. All clinical covariates in Table 1 were included as adjustment 
variables in multivariate Cox models. FFPE specimens were procured 
following our established protocol (Qu et  al., 2022). For each 
specimen, the initial sections from the FFPE blocks were excluded, 
followed by the collection of 2 mm tumor tissue cores using a sterile 
drill. These samples were then transferred into pre-sterilized 2 mL 
microcentrifuge tubes. The research protocol obtained formal ethical 
approval from the Institutional Review Board of the Affiliated Cancer 
Hospital of Zhengzhou University and conformed to the principles of 
the Declaration of Helsinki and Good Clinical Practice guidelines. 
Prior to enrollment, all participants provided written informed 
consent after a detailed explanation of the study. Additionally, they 
authorized the use of their anonymized data for future research.

2.2 DNA extraction and bacterial 16S rRNA 
sequencing

Total microbial DNA was isolated from FFPE tissues using the 
QIAamp DNA FFPE tissue kit (QIAGEN, CA, United States), with all 
samples were immediately frozen and stored at −20°C prior to 
processing. The DNA concentration and purity were assessed 
spectrophotometrically (NanoDrop 2000, Thermo Fisher Scientific, 
Wilmington, United  States) according to the manufacturer’s 
instructions, where samples with A260/280 ratios of 1.8–2.0 were 
retained for downstream analysis.

DNA samples were amplified, libraries were constructed, and 
sequencing was performed on an Illumina MiSeq platform by 
Shanghai Majorbio Bio-Pharm Technology Co., Ltd., China. The 16S 
rDNA hypervariable V4 region was amplified using barcoded primers 
(341F: 5′-CCTAYGGGRBGCASCAG-3′; 806R: 5′-GGACTACNNG 
GGTATCTAAT-3′) incorporating Illumina adapter sequences. PCR 
products were purified and normalized before pooled library 
preparation. The amplification primers incorporated MiSeq 
sequencing adapters and unique single-index barcodes, enabling 
direct pooling and sequencing of PCR amplicons (Caporaso et al., 
2012), with a minimum sequencing depth of 10,000 reads per sample. 
The 16S rRNA gene (variable region 4 [v4]) pipeline data incorporated 
phylogenetic and alignment methods to enhance taxonomic 
resolution. Following demultiplexing using sample-specific barcodes 
introduced during PCR amplification, paired-end reads were 
assembled with USEARCH (v7.0.1090) (Edgar, 2010).

2.3 Microbiome profiling analysis workflow

Paired-end V4 reads were assembled into contigs using FLASH 
(v1.2.11), followed by quality filtration (error rate < 0.5%; length ≥ 
200 bp) through Trimmomatic and QIIME (Bolger et al., 2014). PhiX 
control sequences were identified by BLASTN alignment (E-value ≤ 
1e-5). Primer sequences were trimmed, followed by chimera detection 
using UCLUST de novo mode (v11.0.667), and screened for human-
associated contaminants using Bowtie 2 (Langmead and Salzberg, 
2012). Chloroplast/mitochondrial contaminants excluded using an 
RDP classifier (confidence threshold 50%). Taxonomic assignment 
was performed using Resphera Insight (v1.0) against SILVA Database 
v138 at 99% OTU similarity (Daquigan et al., 2017; Drewes et al., 

https://doi.org/10.3389/fmicb.2025.1653249
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al.� 10.3389/fmicb.2025.1653249

Frontiers in Microbiology 03 frontiersin.org

2017). Diversity analyses (α/β) and principal coordinates analysis were 
conducted in QIIME and R. Differential abundance assessed via 
nonparametric statistical methods. Differential abundance analysis of 
taxonomic abundance was performed using the negative binomial test 
(DESeq: FDR-adjusted p < 0.05) (Anders and Huber, 2010). 
Non-metric multidimensional scaling (NMDS) and principal 
coordinate analysis (PCoA) were performed. Nonparametric Kruskal-
Wallis rank-sum test and Wilcoxon matched-pairs signed rank test 
were used to perform linear discriminant analysis (LDA) effect size 
(LEfSe) analysis (LDA score >3.0, Kruskal-Wallis p < 0.01) to detect 
discriminative taxa with significant differences between HCC 
recurrence and Non-recurrence cases (Lozupone et al., 2011).

2.4 Metabolite extraction and LC–MS 
untargeted metabolomics and analysis

Tissues samples were homogenized in liquid nitrogen and 
extracted using prechilled 80% methanol and 0.1% formic acid. After 
vortexing, the samples were kept on ice for 5 min and centrifuged at 
15,000  rpm (4°C) for 5 min. The supernatant was diluted to 53% 
methanol by LC–MS-grade water, followed by another centrifugation 
step at 13,000 × g (4°C) for 15 min. Finally, the clarified supernatant 
was then collected to sample vials for LC–MS/MS analysis.

An UHPLC-Q Exactive HF-X system (Thermo Fisher Scientific) 
coupled with an electrospray ionization (ESI) source was employed 
for untargeted metabolomics profiling, operating in both positive and 
negative ion modes. Data were acquired in data-dependent acquisition 
(DDA) mode, covering a mass range of 70–1,050 m/z. Principal 
component analysis (PCA) was conducted using the ropls R package 
(Version 1.6.2), and used 7-cycle cross-validation to access model 
robustness. Significantly altered metabolites were identified based on 
variable importance in projection (VIP > 1) from OPLS-DA and 
statistical significance (p < 0.05, Student’s t-test). Pathway enrichment 

analysis was performed using KEGG database (KEGG),1 and 
significantly perturbed metabolic pathways were determined via 
Fisher’s exact test (Scipy.stats, Python packages).2

2.5 Statistical analysis

Statistical analyses were conducted using SPSS 27.0 (SPSS Inc., 
United States) and GraphPad Prism 8.0. Multivariate Cox proportional 
hazards regression was applied to adjust for confounding factors such as 
capsular and microvascular invasion. Group comparisons for continuous 
variables were performed using the Student’s t-test (normally distributed 
data) or the Wilcoxon rank-sum test (non-parametric data), while 
categorical variables were assessed via Fisher’s exact test. A two-sided *p-
value <0.05 was considered statistically significant. Differences in alpha-
diversity indices and metabolite concentrations between groups were 
evaluated using the Student’s t-test. Microbiome–metabolome 
associations were examined using Spearman’s correlation and displayed 
using the R software (version 3.6.1).

3 Results

3.1 Elevated tumor microbial diversity 
correlates with improved prognosis in 
resected HCC patients

To elucidate the role of intra-tumoral microbiota in HCC 
prognosis, we analyzed a discovery cohort comprising stage-matched 

1  http://www.Genome.jp/kegg/

2  https://docs.scipy.org/doc/scipy/

TABLE 1  Clinicopathological characteristics of all participants.

Clinical and pathological indexes Recurrence (n = 49) Non-recurrence (n = 41) P-value

Age, years, median (range) 56.3 (33–74) 50.7 (30–70) 0.501

Gender (male/female) 42/7 33/8 0.508

Surgery date Feb2017-Nov2018 Jan2017-Dec2018

Hepatitis B, number 48 38 0.327

Liver cirrhosis, number 34 32 0.355

Capsular invasion, number 34 15 0.002

Microvascular invasion, number 24 5 <0.001

Differentiation

  Moderately 37 34
0.391

  Poorly 12 7

AJCC stage

  IA 3 1

0.001  IB 24 35

  ssswII 22 5

Nerve invasion, number / /

Lymphatic metastasis, number / /

p-values were calculated by Fisher’s exact test.
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patients who underwent curative resection. Participants were stratified 
into two groups: (1) non-recurrence cases (RFS ≥ 2 years) and (2) 
early recurrence cases (RFS ≤ 2 years). The cohorts were well-matched 
in terms of age, sex, Barcelona Clinic Liver Cancer (BCLC) stage, and 
treatment history (Table  1; Figure  1C). We  found that microbial 
diversity, as estimated by the Shannon, Ace, Sobs, and Chao indices, 
was significantly decreased in the recurrence groups (Figure 1A). A 
Venn diagram of the composition of the microbiota in the tumor 
tissues showed that tumor tissues from HCC recurrence patients had 
lower microbial diversity (Figure 1B).

To investigate the prognostic value of intra-tumoral microbial 
diversity in HCC, we stratified patients into high- and low-diversity 
groups based on median Shannon index values. Univariate Cox 
regression analysis indicated that the high-diversity group had a 
substantially longer recurrence-free survival (RFS) (median: 
47 months) compared to the low-diversity group (median: 7 months; 
Figure 1C), underscoring the clinical relevance of microbial alpha 
diversity. To further characterize microbiome-host interactions, 
we  examined phylogenetic patterns distinguishing recurrence-
associated microbial communities. Beta-diversity analysis via 
principal coordinate analysis (PCoA) based on unweighted UniFrac 
distances demonstrated: (1) distinct clustering patterns between 
recurrence and non-recurrence groups, and (2) greater phylogenetic 
homogeneity within each group (Figure 1D).

3.2 Phylogenetic profiling of 
tumor-resident microbiota in HCC patients

Building upon the established association between intratumoral 
microbiome diversity and postoperative outcomes, we  conducted 

phylogenetic characterization to identify recurrence-specific microbial 
signatures in HCC. Initial comparative analysis revealed conserved 
microbial architectures across recurrence/non-recurrence cohorts. 
We first identified operational taxonomic units (OTUs) with median 
relative abundance >0.01%, then conducted differential abundance 
analysis using Wilcoxon rank-sum with Benjamini-Hochberg false 
discovery rate (FDR) adjustment (Figure  2A). Dominant bacterial 
genera maintained consistent distribution patterns between groups, as 
evidenced by genus-level compositional profiling is shown in 
Figure 2B. Enterotype analysis was performed to assess the community 
composition of the dominant phyla within HCC recurrence patients 
using a clustering approach. These results suggested that the HCC 
recurrence group was mainly clustered in Proteobacteria (Figure 2C). 
In addition, high-dimensional comparative analysis using LEfSe (Linear 
Discriminant Analysis Effect Size) revealed significant disparities in 
bacterial community predominance between HCC non-recurrence and 
recurrence cohorts (Figure 2D). The HCC recurrence cases exhibited a 
predominance of Cyanobacteria and Proteobacteria at the phylum level 
and marked decreases in the other commensal microbiota.

3.3 HCC recurrence patients exhibit a 
distinct intra-tumoral microbial 
communities

Considering the significant difference in predominant bacterial 
communities between the HCC Non-recurrence and recurrence 
groups by LEfSe analysis, we further characterized the differentially 
abundant taxa at both phylum and genus levels. At the phylum level, 
the Wilcoxon rank-sum test revealed significant differences in 
bacterial communities between the two groups, including Firmicutes, 

FIGURE 1

Intra-tumoral microbial diversity between HCC recurrence and non-recurrence patients. (A) Alpha diversity estimated by the Sobs index, Shannon 
index, Chao index and ACE index in samples of each group of patients. (B) Venn diagram displaying the degree of overlap of bacterial OTUs between 
the HCC recurrence and non-recurrence groups. (C) Kaplan–Meier plot of cohort HCC recurrence patients defined by alpha diversity. (D) Principal 
coordinates analysis (PCoA) of bacterial beta diversity based on the unweighted UniFrac distances. Values were expressed as mean ± SEM (*p < 0.05, 
paired t-test).

https://doi.org/10.3389/fmicb.2025.1653249
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al.� 10.3389/fmicb.2025.1653249

Frontiers in Microbiology 05 frontiersin.org

Proteobacteria, Cyanobacteria, Chloroflexi, Verrucomicrobia, and 
Gemmatimonadetes (Figure 3A). The genus levels of the bacterial 
communities differentially expressed between the two groups are 
shown in Figure  3B. To identify the differential bacterial taxa 
associated with HCC recurrence, we constructed a random forest 
classifier model that could specifically distinguish HCC recurrence 
samples from non-recurrence samples (Figure 3C). To evaluate the 
predictive performance of recurrence-associated microbial signatures, 
we  implemented a 10-fold cross-validated random forest model. 
Twenty genera demonstrating elevated abundance in recurrence cases 
were subsequently subjected to receiver operator characteristic (ROC) 
curve analysis, with the probability of disease (POD) index serving as 
the classification metric. The POD index demonstrated strong 
discriminative capacity (AUC = 0.81; 95% CI: 0.72–0.91) for 
identifying post-operative recurrence (Figure  3C). This microbial 
signature-based approach demonstrated clinically relevant predictive 
potential for HCC recurrence.

3.4 Potential biological functions of 
bacterial communities within HCC 
recurrence patients

To predict potential metabolic functions of HCC intra-tumoral 
microbiota, we performed PICRUSt2 analysis, which phylogenetically 
infers uncharacterized community functions. And then integrated 16S 

rRNA amplicon sequencing data with both EggNOG orthology and 
KEGG pathway annotations (Figure 4A). The functions of bacterial 
communities within HCC recurrence patients were predicted to 
be mainly involved in metabolism, among which amino acid- and 
carbohydrate-related transport/metabolic pathways demonstrated 
significantly higher abundance compared to other functional 
categories (p < 0.01). Similarly, the 16S rRNA sequencing data 
combined with KEGG functional predictions revealed that bacterial 
functions were primarily related to carbohydrate and amino acid 
metabolism pathways (Figures 4B,C). Furthermore, KEGG level-3 
functional profiling revealed HCC microbiome’s enriched involvement 
in secondary metabolite production and adaptive metabolic pathways 
across ecological niches (Figure  4C). Via the BugBase potential 
prediction of phenotypic functions of intra-tumoral microbiota, 
several potential microbial phenotypes were found to be different in 
HCC recurrence patients, encompassing: (i) Gram-negative/positive 
bacteria, (ii) biofilm-producing strains, (iii) virulence factor-
containing species, and (iv) anaerobic microorganisms (Figure 4D).

3.5 The microbiome-associated metabolic 
profiles in HCC recurrence 
microenvironments

To extend understand the role of microbiota in HCC recurrence, 
we  applied an untargeted metabolomics approach to explore the 

FIGURE 2

Intra-tumoral microbial profile differs in HCC recurrence and non-recurrence patients. Composition of microbiota at the phylum level (A) and genus 
level (B) between the two groups, respectively. (C) Enterotype analysis at the phylum level between HCC recurrence and non-recurrence groups. The 
data are most naturally separated into two clusters, as determined by the Calinski-Harabasz (CH) index and represented using principal coordinate 
analysis (PCoA). The shapes and colors of the points indicate samples from each individual from various months. The colored ellipses indicate the 0.95 
confidence interval (CI) ranges within each enterotype group. (D) LEfSe analysis used to display the marked differences in the predominance of 
bacterial communities between HCC Non-recurrence and recurrence groups. Only taxa with an LDA value > 4 are presented. Circles indicate 
phylogenetic levels; diameter and color of each circle represent its abundance and enterotype, respectively.
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ability of microbial metabolites to regulate the tumor 
microenvironment. Univariate statistical analysis showed that a total 
of 77 metabolites were significantly different (p < 0.05, fold change > 
2) in HCC recurrence patients, with 51 downregulated and 26 
upregulated metabolites (Figure  5A). KEGG pathway enrichment 
analysis suggested that the significantly enriched metabolites were 
metabolism-related pathways, including lipid, amino acid, nucleotide, 
and carbohydrate metabolisms (Figure 5B). The Multivariate analysis 
via PLS-DA (Partial Least Squares Discriminant Analysis) revealed 
clear clustering segregation, indicating the existence of different 
biological characteristics between the two groups (Figure 5C). Each 
sample was represented as one spot in the score plots, and the HCC 
non-recurrence and recurrence groups were separated in ESI− and 
ESI + modes.

Further, hierarchical clustering analysis (HCA) was subsequently 
employed to compare metabolite abundance patterns between the two 
groups. The results showed that the metabolites, including 20-Hydroxy-
leukotriene B4, Resolvin D5, Gamma-Glutamylthreonine, 
L-Glutamine, Ceanothine E, Ponasteroside A showed a downregulation 
trend (Figure 5D). Guided by HCA clustering patterns, we established 
a diagnostic metabolite signature comprising the top 20 differentially 
abundant metabolites (VIP > 1.5, FDR < 0.01). ROC curve analysis 
showed the probability of disease (POD) index had excellent 

exceptional discriminative capacity (AUC = 0.958, 95%CI: 0.950–
0.966) for distinguishing post-operative recurrence (Figure  5E). 
Mechanistically, Spearman rank correlation (FDR < 0.05) identified 
robust associations between recurrence-enriched microbes (LDA > 3) 
and dysregulated metabolites (p < 0.01), suggesting microbial 
modulation of tumor metabolic pathways. As shown in Figure 6, the 
top  20 differential metabolites strongly correlated with the top  25 
altered microbial phyla, indicating that the aberrantly enriched 
metabolites in HCC recurrence cases may result from dysbiosis of 
tumor microflora or their interactions. To better illustrate these 
relationships, we  generated a heatmap (Supplementary Figure S1) 
displaying the Spearman correlation coefficients, revealing statistically 
significant positive and negative associations (p < 0.05) between 
specific metabolites and distinct microbial phyla. These findings 
suggest that intra-tumoral microbiota may influence HCC recurrence 
through metabolic reprogramming, providing potential insights into 
the microbial-metabolite interplay in tumor progression.

4 Discussion

HCC remains a leading cause of cancer-related mortality and 
requires extensive effort for early detection to mitigate its adverse 

FIGURE 3

The significant microbial difference and the identification of the differential bacterial taxa associated with HCC recurrence. The differentially expressed 
bacterium between HCC recurrence and non-recurrence patients on phylum (A) and genus level (B) respectively. Multiple testing correction using 
two-tailed Wilcoxon test and FDR; *p < 0.05; CI calculated by the bootstrap method using 95% CI. (C) Twenty genera enriched in recurrence cases 
were selected as the optimal marker set by random forest models, and The POD index achieved an AUC value of 0.81 with 95% CI of 0.72–0.91 
between HCC recurrence and non-recurrence groups.
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effects. Despite the numerous liver resections reported in the studies, 
very little data are available for effectively preventing HCC recurrence. 
Despite decades of translational research, clinically actionable 
biomarkers for hepatocellular carcinoma (HCC) remain limited. Since 
the 1960s, serum alpha-fetoprotein (AFP) quantification combined 
with radiographic imaging has constituted the diagnostic cornerstone, 
with this paradigm remaining essentially unchanged for over six 
decades; however, AFP’s role as a “gold standard” predictor, the role of 
AFP continues to be  highly controversial because of its limited 
specificity and the ambiguous biology behind the connection between 
AFP and HCC. The treatment and prevention of HCC remains 
challenging and is largely predicated on early diagnosis and 
recurrence. Therefore, the persistent limitations of current recurrence 
prediction paradigms underscore the critical need for novel biomarker 
discovery and innovative prognostic strategies in HCC management.

A novel potential cancer hallmark based on intra-tumoral 
microbiota is emerging. Owing to the physiological and anatomical 
bidirectional association between the liver and intestine, gut 
microbiota potentially influences hepatic pathologies, particularly 
hepatocellular carcinoma, through vascular and portal venous 

translocation of microbial components and metabolic products 
(Albillos et al., 2020; Pabst et al., 2023). Accumulating evidence has 
elucidated the mechanistic contributions of the gut-liver axis to 
hepatic pathophysiology, particularly in driving inflammatory 
cascades, fibrogenic progression, and hepatocarcinogenesis. Other 
studies have reported the connections between digestive tract 
diseases and oral (Irfan et al., 2020; Herremans et al., 2022) or gut 
microbiome (Sung et  al., 2020; Liu et  al., 2022) with taxonomic 
resolution based on 16S rRNA gene sequencing, including early HCC 
with cirrhosis (Ren et al., 2019; Zhang et al., 2021). Importantly, the 
gut microbiota has also been identified as a promising noninvasive 
biomarker for the early HCC detection, highlighting its clinical utility 
in disease classification (Ren et  al., 2019; Huang et  al., 2020). 
However, the compositional dynamics and functional implications of 
tumor-resident microbiota during HCC malignant progression 
remain poorly characterized. Emerging studies indicate that the 
intra-tumoral microbiome is a component of the tumor 
microenvironment and has become one of the new hallmarks of 
cancer, which can induce inflammation and immune response to 
affect tumorigenesis and development (Cullin et al., 2021; Matson 

FIGURE 4

The functional prediction analysis of intra-tumoral microbial communities. (A) The difference of relative abundance of PICRUSt inferred function 
between HCC recurrence and non-recurrence patients. (B) PICRUST1 combined with the EggNOG database to predict the function of intra-tumoral 
microbiota in HCC patients. (C) PICRUSt2 combined with the KEGG database to predict the function of bacterial microbiota in tissues, showing the 
results of the KEGG pathway in Level 1, 2, and 3. (D) Microbial phenotypic functional prediction based on BugBase database (*p < 0.05; **p < 0.01; 
***p < 0.001).
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et al., 2021; Sepich-Poore et al., 2021; Hanahan, 2022). Since intra-
tumoral microbiota are supposed to be closer to the tumor tissues, 
shaping a microenvironment that may be relevant to the pathological 
process of HCC, it is necessary to determine whether the 
metataxonomic characteristics and metabolic differences of intra-
tumoral microbiota can be used as a new potential biomarker for 
HCC recurrence prediction. Our initial investigations delineated 
microbiome signatures across histopathological subtypes of primary 
liver cancer (PLC), revealing bacterial taxa whose abundance 
correlated with clinical prognosis. The intra-tumoral microbial 
communities and compositional differences associated with HCC 
progression and early recurrence were emphasized and highlighted 
in this study.

Intra-tumoral microbiota dysbiosis may contribute to HCC 
progression. Our previous study has characterized for the first time 
the intra-tumoral microbial community profiling of FFPE samples 
from PLC patients with different prognoses and different 
histopathological subtypes using 16S rRNA MiSeq sequencing, 
revealing a significant microbial population difference in PLC patients. 
Recent studies have shown that the intra-tumoral microbiota may 
contribute to the promotion of the initiation and progression of 
cancers by DNA mutations, activating carcinogenic pathways, 
promoting chronic inflammation, the complement system, and 
initiating metastasis, and regulating cancer cell physiology and the 
immune response through different signaling pathways, including 
ROS, β-catenin, TLR, ERK, NF-κB, and STING, among others (Fu 
et al., 2023; Xue et al., 2023; Yang et al., 2023). Similar to the gut 
microbiota regulating host immune responses, the intra-tumoral 
microbiota can also shape the local immune responses of the tumor 
microenvironment, which further affects tumor progression by either 

enhancing or decreasing antitumor immune responses and inducing 
different immunotherapy efficacies and outcomes (Nejman et  al., 
2020; Siegel et al., 2020). Combined with the previous results on the 
intra-tumoral microbiome of PLC patients, this study aimed to enroll 
HCC patients without lymph node metastasis and capsule invasion, 
who were grouped by relapse after liver surgical resection in 2 years; 
and conduct multi-omics sequencing to comprehensively characterize 
the microbial landscape and their metabolic differences in patients 
with early HCC recurrence. Clinically, cohort studies have revealed 
that patients with HCC recurrence exhibit distinct intra-tumoral 
microbial communities and composition and lower microbial 
diversity. Consistent with its known immunometabolic roles- 
promoting anti-tumor CD8+ T-cell infiltration via butyrate production 
(Bae et  al., 2022; Cani et  al., 2022), Akkermansia abundance was 
markedly reduced in HCC recurrence group. Although beyond this 
biomarker discovery study, future work should integrate spatial 
transcriptomics/multiplex IHC to map microbial niches, metabolite 
gradients, and immune infiltrates (e.g., PD-1+ TILs, IL-17 levels) in 
resection specimens-this may elucidate how microbial metabolites 
locally modulate anti-tumor immunity. For clinical prediction of early 
HCC recurrence, we established a 20-genera classifier via random 
forest model with remarkable classification accuracy in predicting 
early HCC recurrence. As expected, unique intra-tumoral microbial 
communities and composition caused significant metabolic 
differences, also exhibiting a powerful classification with high POD 
indices. These results indicate that distinct intra-tumoral microbiota-
targeted biomarkers may be  potential predictive tools for early 
HCC recurrence.

To our knowledge, this is the first cohort study focusing on the 
intra-tumoral microbial community characteristics and their 

FIGURE 5

Differential metabolites analysis between HCC recurrence and non-recurrence patients. (A) Volcano plot of differential metabolites. (B) KEGG pathway 
enrichment analysis displays the significantly enriched items of metabolites. (C) PLS-DA (Partial Least Squares Discriminant Analysis) of metabolomics 
data. Each sample was represented as one spot in the score plots, and the HCC non-recurrence and recurrence groups were separated in ESI- (left) 
and ESI + (right) modes. (D) Expression abundance of differential metabolites. The colors from blue to red indicate the metabolite expression 
abundance from low to high. (E) The 20 differential metabolites with higher abundance were selected as the optimal marker set by random forest 
models, and The POD index achieved an AUC value of 0.9585 with 95% CI of 0.9503–0.9668 between HCC recurrence and non-recurrence groups.
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metabolic differences in HCC recurrence patients with 
adjustments for clinical confounders and attempts to filter the 
crucial bacterial candidates and their differential metabolites that 
may contribute to HCC development. While this study provides 
novel insights into the intra-tumoral microbiome-metabolome 
axis in HCC recurrence using 16S rRNA sequencing, it has 
limitations. The taxonomic resolution of 16S data restricts detailed 
characterization of microbial functions and non-bacterial 
components (e.g., viruses, archaea). Future studies utilizing 
shotgun metagenomic sequencing on fresh-frozen tissues are 
warranted to validate our biomarker signatures at the strain level, 
investigate the functional potential of the tumor microbiome, and 
explore the roles of viral/phage and archaeal communities in 
recurrence mechanisms. Integrating microbial biomarkers with 
conventional diagnostic modalities could enhance postoperative 
HCC management, enabling precise recurrence prediction 
through minimally invasive analysis of both fresh and FFPE 
specimens. In addition, while our study identified distinct intra-
tumoral microbial signatures in HCC recurrence, we recognize 
that clinical-pathological factors such as capsular invasion and 
microvascular invasion, which are more prevalent in the 
recurrence group, may independently influence outcomes. 

Although these variables were statistically adjusted in our 
multivariate analysis, their confounding effects cannot be entirely 
ruled out. Future studies with stricter cohort matching or 
stratification by these factors are warranted to validate the 
microbial biomarkers independently. Unavoidably, the cross-
sectional nature of the present study prevented us from elucidating 
the mechanisms and longitudinal view of relevance; in future 
studies, a validation cohort and independent diagnosis cohorts 
need to be  carried out to further evaluate the potential of the 
intra-tumoral microbiome as a novel prognosis-predictive value 
of the HCC recurrence risk signature. Although our data reveal 
significant correlations between microbial taxa/metabolites and 
HCC recurrence, causality must be  established via functional 
models. Future studies using germ-free mice colonized with 
recurrence-associated microbiota, fecal microbiota transplantation 
(FMT) in HCC models, and in vitro metabolite assays are planned.

Data availability statement

The microbiome (16S rRNA sequencing) and metabolome (LC–
MS) raw data have been deposited into the Mendeley Data repository 

FIGURE 6

Correlation analysis of microbes and metabolites. Each lattice represents a coefficient by Pearson’s correlation analysis, each column represents a 
phylum, each row represents a metabolite. Red represents a positive correlation and blue represents a negative correlation (*p < 0.05; **p < 0.01).
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