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Hyperuricaemia (HUA) is a metabolic disorder resulting from the dysregulation 
of purine metabolism. It is closely associated with gout and various metabolic 
syndromes, representing an increasing global public health challenge. Current 
treatment approaches for HUA and gout generally involve the lifelong administration 
of urate-lowering agents to maintain optimal serum urate concentrations. However, 
poor patient adherence, often due to potential hepatorenal toxicity, frequently 
leads to disease relapse. Recent evidence indicates that the gut microbiota plays 
a significant role in maintaining urate homeostasis through multiple mechanisms, 
including the modulation of purine metabolism, urate catabolism and excretion, 
regulation of inflammatory responses, and preservation of intestinal barrier integrity. 
These findings highlight the gut microbiota as a promising novel therapeutic target. 
This review synthesizes recent progress in three key areas: (1) the relationship 
between the gut microbiota and HUA; (2) microbial mechanisms underlying urate-
lowering effects, such as microbial purine and urate metabolism, regulation of urate 
transporters like ABCG2, and production of anti-inflammatory metabolites; and 
(3) microbiota-based therapeutic interventions, including probiotics, engineered 
bacterial strains, fecal microbiota transplantation, and pharmabiotic strategies. 
Additionally, we explore the translational potential of microbiota modulation in 
clinical settings and outline directions for future research. By integrating mechanistic 
understanding with therapeutic innovation, this review offers researchers and 
clinicians a comprehensive framework for advancing microbiota-targeted approaches 
in the management of hyperuricaemia.
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1 Introduction

Hyperuricaemia (HUA) is a metabolic disorder resulting from dysfunction in purine 
metabolism. It is characterized by elevated serum uric acid (SUA) levels. In contrast, gout is a 
condition in which blood uric acid levels exceed the physiological solubility limit in blood or 
tissue fluids, leading to the formation and deposition of sodium urate crystals in local joints. 
This process triggers an inflammatory response and tissue damage (Estiverne et al., 2020; 
Mandal and Mount, 2015; Zhu et al., 2021). Due to improvements in modern living standards 
and lifestyle, the global incidence rates of HUA and gout have increased annually and are 
trending toward younger populations. These conditions have become the fourth highest in 
incidence after diabetes, hypertension, and hyperlipidemia, and their health impacts are 
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increasingly pronounced. HUA and gout represent a continuous and 
chronic pathophysiological process characterized by significant 
clinical heterogeneity. Both conditions are independent risk factors for 
chronic kidney disease, hypertension, cardiovascular and 
cerebrovascular diseases, and diabetes mellitus. They are also 
independent predictors of premature mortality. Prolonged HUA can 
also lead to atherosclerosis, increasing the risk of cardiovascular 
diseases. Traditional treatments for HUA primarily involve medication 
and dietary and lifestyle interventions. Commonly used drugs are 
mainly categorized into two groups: those that inhibit uric acid 
production (e.g., allopurinol and febuxostat) and those that promote 
uric acid excretion (e.g., benzbromarone and probenecid). However, 
long-term use of these medications increases the risk of side effects in 
the liver and kidneys. Therefore, poor compliance is an issue. The 
treatment of gout necessitates a dual approach, combining anti-
inflammatory therapy during the acute phase with long-term urate-
lowering treatments. Patients must be educated on the importance of 
lifelong management, with particular emphasis on the control 
of comorbidities.

Recent studies have demonstrated that the gut microbiota plays a 
critical role in maintaining urate homeostasis through multiple 
mechanisms, including purine metabolism, urate excretion, regulation 
of inflammation, and preservation of intestinal barrier integrity. These 
findings highlight the gut microbiota as a promising therapeutic target 
for the management of hyperuricemia (HUA) and gout. This review 
synthesizes the most recent progress in gut microbiota-mediated urate 
reduction, emphasizing the relationship between the gut microbiota 
and HUA, elucidating the underlying mechanisms by which the gut 
microbiota modulate urate levels, and exploring current research and 
clinical applications in this area. By providing a comprehensive 
overview, this article aims to support researchers and clinicians in 
advancing the translational potential of gut microbiota-based 
interventions for urate reduction.

2 Relationship between HUA and 
intestinal microbiota

2.1 Pathophysiological basis of HUA

Uric acid is the final metabolite of purine metabolism. Due to a 
lack of uricase, humans cannot further break down uric acid, which is 
primarily excreted through the kidneys and intestines; these two 
excretion pathways account for approximately 2/3 and 1/3 of uric acid 
secretion, respectively. Under normal circumstances, approximately 
80% of purine nucleotides are metabolized by human cells, while only 
20% originate from food (Figure 1). The body maintains uric acid 
levels within a normal range by dynamically regulating the intake 
(production) and output (excretion) of uric acid. Therefore, the root 
causes of HUA are primarily due to two mechanisms. First, elevated 
uric acid levels may be due to either ingestion of a high purine diet or 
increased uric acid production resulting from abnormal purine 
metabolism or tumor lysis syndrome. Second, various kidney diseases, 
medication interference, or excessive organic acid production that 
suppresses uric acid excretion may also be a cause (Xu et al., 2016).

The primary cause of excessive uric acid production is driven 
by abnormal endogenous purine nucleotide metabolism. Sources 
of purines include exogenous high-purine diets (e.g., red meat and 

seafood) and endogenous cellular metabolic products (e.g., 
nucleic acid breakdown) (El and Tallima, 2017). The primary 
triggers include abnormalities in key enzyme function (e.g., 
hyperactivity of xanthine oxidase (XO), which accelerates the 
conversion of hypoxanthine to uric acid (Maesaka and Fishbane, 
1998), overactivation of phosphoribosylpyrophosphate synthase 
(PRPS), or a deficiency in hypoxanthine-guanine 
phosphoribosyltransferase (HGPRT), as occurs in Lesch–Nyhan 
syndrome). The result is an abnormal increase in de novo purine 
synthesis (Merriman and Dalbeth, 2011). Additionally, fructose 
metabolism consumes ATP, generating substantial amounts of 
AMP, which indirectly promotes uric acid synthesis. Insufficient 
excretion is closely associated with abnormalities in kidney and 
intestinal function. Renal excretion is a critical step in SUA 
regulation. This is primarily mediated by various molecules 
expressed in the proximal tubule (Dalbeth and Merriman, 2009), 
such as the overactivation of URAT1 on the apical membrane and 
GLUT9 on the basal membrane of the proximal convoluted tubule, 
which leads to an increase in uric acid reabsorption (Eriksson and 
Lindblom, 1993). Mutations in the ABCG2 gene (e.g., Q141K) 
weaken uric acid secretion in the intestine and kidneys (Ruiz 
et al., 1989). In terms of intestinal excretion, specific bacterial 
flora (e.g., Escherichia coli, Lactobacillus, and Pseudomonas) 
degrade uric acid to allantoin through the secretion of uricase and 
allantoinase. However, patients with HUA often suffer from 
dysbiosis of the intestinal microbiota (Gassner and Tassava, 1997), 
which is characterized by a decrease in the abundance of 
probiotics and the proliferation of conditional pathogens (e.g., 

FIGURE 1

Schematic diagram of uric acid metabolism pathways in the body.
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Bacteroidetes). This results in reduced intestinal uricase activity 
and a diminished capacity for uric acid degradation. Concurrently, 
the reduction of short-chain fatty acids (SCFAs) (e.g., butyrate) 
from microbial metabolites weakens intestinal mucosal barrier 
function and inhibits ABCG2-mediated uric acid excretion in the 
intestine (Xu et al., 2024).

2.2 Impact of microbiota-host 
co-metabolism on uric acid homeostasis

Microbiota-host co-metabolism maintains uric acid homeostasis 
through multi-dimensional regulatory mechanisms. The core 
functions include uric acid degradation, excretion regulation, and 
systemic inflammation suppression (Wang J. et al., 2022; Wang P. et al., 
2022; Wang Z. et al., 2022). This reduces endotoxin (LPS) entry into 
the bloodstream and the ensuing inflammatory response, ultimately 
inhibiting disturbances in uric acid metabolism (Liu et al., 2023; Xu 
et al., 2024). Metabolomics analysis revealed a significant reduction in 
fecal butyrate levels in HUA patients. This metabolite regulates uric 
acid homeostasis through a dual mechanism: by inhibiting xanthine 
oxidase (XOD) activity to reduce uric acid production and 
upregulating the expression of the ABCG2 transporter in the kidneys 
and intestine to enhance uric acid excretion (Krautkramer et al., 2021; 
Xu et al., 2024). Metagenomic data have further indicated that in the 
early stages of HUA, the abundance of uric acid degradation gene 
clusters (e.g., uricase and allantoinase) in the gut microbiota decreased 
70%, while the abundance of purine uptake genes increased 1.5-fold. 
This suggests that microbial dysbiosis precedes clinical abnormalities 
in uric acid levels (Feng et al., 2024; Xu et al., 2024; Yueqi Wang, 2022). 
The interaction between microbial metabolites and host signaling 
pathways plays a crucial role in uric acid regulation. For example, 
butyrate enhanced antioxidant capacity by activating the Nrf2 pathway 
and inhibited the NF-κB-mediated inflammatory response, thereby 
alleviating renal tubular damage (Liu et al., 2023; Xu et al., 2024). 
Additionally, probiotics such as Lactobacillus can secrete uricase, 
which directly breaks down intestinal uric acid. Probiotics also 
upregulate the expression of OAT1 and ABCG2  in the kidneys 
through modulation of the MAPK/NF-κB pathway, thereby promoting 
uric acid excretion (Liu et al., 2023; Xu et al., 2024; Yueqi Wang, 2022). 
Fecal microbiota transplantation (FMT) experiments also revealed 
that HUA microbiota can exacerbate kidney damage by activating the 
NLRP3 inflammasome, where supplementation with Parabacteroides 
distasonis significantly reduced SUA levels. This mechanism involved 
ROS scavenging and vascular endothelial repair (Bian et al., 2024; 
Krautkramer et  al., 2021). Clinical intervention studies have 
demonstrated the therapeutic potential of targeting microbiota-host 
co-metabolism. For example, the traditional Chinese medicine (TCM) 
formula Guizhi Shaoyao Zhimu Decoction (GSZD) increased the 
abundance of Lactobacillus and Ruminococcaceae, restored 
glycerophospholipid metabolism and the alanine pathway, and 
significantly reduced inflammatory cytokine levels (Cheng et  al., 
2024). Additionally, folic acid and zinc inhibited xanthine oxidase 
activity by modulating microbial community structure, thereby 
increasing uric acid degradation by 56%. These findings provide a 
scientific basis for the development of precision intervention strategies 
based on microbial metabolic reprogramming (Liu et al., 2023; Xu 
et al., 2024; Yueqi Wang, 2022).

3 Mechanisms of the gut microbiota in 
uric acid reduction

3.1 Direct regulation of uric acid 
metabolism enzyme activity

The gut microbiota plays a central role in lowering uric acid levels 
by directly regulating the activity of enzymes involved in uric acid 
metabolism. This occurs through a multi-layered process of enzyme 
activity inhibition and metabolic pathway modulation. Specific 
enzyme inhibition by probiotic strains is a primary mechanism. For 
example, Lactobacillus paracasei X11 completely degraded purine 
nucleotides within 30 min, significantly inhibiting hepatic xanthine 
oxidase (XOD) activity. This led to a 52.45% reduction in SUA levels 
in hyperuricemic mice and downregulation of the renal urate 
reabsorption proteins URAT1 and GLUT9 (Hussain et  al., 2024). 
Additionally, Limosilactobacillus reuteri HCS02-001 inhibited hepatic 
XOD activity via the TLR4/MyD88/NF-κB pathway and upregulated 
intestinal ABCG2 expression. The metabolic byproducts of which can 
induce fecal xanthine dehydrogenase and urease activity, accelerating 
uric acid decomposition (Zhang et al., 2024). The targeted regulation 
of natural compounds and TCM components can further enhance this 
mechanism. For example, 24 small molecules from guaijaverin directly 
bound to the active site of XOD, inhibiting its catalytic function and 
restoring the amino acid metabolic function of gut microbiota (Ji 
et al., 2024). Rare ginsenosides from ginseng were shown to regulate 
gut microbial diversity, suppress XOD activity in the serum and liver, 
restore renal antioxidant enzyme (SOD and GSH) activity, and reduce 
damage from oxidative stress (Chen et  al., 2024). Salinomycin 
promoted NRF2 nuclear translocation to inhibit XOD activity. This 
resulted in the enrichment of SCFA-producing bacteria, thereby 
improving renal function in a model of hyperuricemic nephropathy 
(Guo et al., 2021). Furthermore, inulin achieved reduction in SUA by 
increasing the abundance of SCFA-producing bacteria, inhibiting 
hepatic XOD activity, and upregulating ABCG2 expression (Zou et al., 
2024). In addition, the synergistic effects of microbial metabolites 
should not be  overlooked. Lactiplantibacillus plantarum X7022 
degraded xanthine, guanine, and adenine through the purine 
assimilation pathway; inhibited XOD activity; achieved reduction in 
SUA; restored gut microbial balance; and increased SCFA levels, 
further inhibiting inflammatory pathways (Zhou et al., 2023). These 
studies collectively indicate that gut microbiota and their metabolic 
by-products reduce uric acid generation at its source by directly 
targeting key enzymes such as XOD and ADA. They also work in 
concert with the modulation of microbial structure and host signaling 
pathways (e.g., NRF2 and TLR4/NF-κB) to maintain uric 
acid homeostasis.

3.2 Regulation of the urate transporter 
network

Recent studies have demonstrated a pivotal role of the gut 
microbiota in urate excretion through modulation of urate 
transporter expression. Several studies have confirmed that regulating 
the gut microbiota ameliorated HUA by significantly affecting the 
function of transporters such as ABCG2, OAT1, and URAT1 (Xu 
et  al., 2025). Probiotics reshaped gut microbiota structure by 
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increasing the abundance of beneficial bacteria, repairing intestinal 
barrier integrity and upregulating colon ABCG2 protein expression. 
This was shown to promote urate excretion and reduce serum urate 
levels by more than 60% (Fang et  al., 2024). Similarly, mulberry 
extract was shown to regulate bacterial populations. This led to 
inhibition of the URAT1 reabsorption channel in the kidneys and 
simultaneously activated the excretion function of ABCG2, achieving 
a dual-pathway reduction in SUA levels (Fu et  al., 2024b). 
Additionally, metabolic products of the gut microbiota and SCFAs 
can directly modulate liver XOD activity and kidney transporter 
expression by activating the aryl hydrocarbon receptor pathway. One 
study showed that coffee leaf tea extract enhanced fecal SCFA levels 
by enriching SCFA-producing bacteria, suppressed the release of 
inflammatory factors, and increased urate excretion by 
downregulating GLUT9 while upregulating OAT3 and ABCG2 
expression (Zhou et al., 2023). Numerous studies have collectively 
revealed that the gut microbiota dynamically regulates the urate 
transporter network through the metabolite-host signaling axis. This 
provides a theoretical basis for the development of novel targeted 
therapeutic strategies using the microbiota in the treatment of HUA.

3.3 Inflammation and immune regulation

The gut microbiota plays a crucial role in lowering uric acid levels 
by modulating inflammatory and immune pathways. This involves 
multi-layered anti-inflammatory effects and immune homeostasis 
restoration. Probiotics regulate urate metabolism by inhibiting 
pro-inflammatory factors and modulating key signaling pathways. In 
hyperuricemic mice, L. paracasei X11 significantly inhibited hepatic 
xanthine oxidase (XOD) activity by degrading purine nucleotides, 
leading to reduced SUA levels. This was accompanied by 
downregulation of the renal urate reabsorption proteins URAT1 and 
GLUT9, suppression of the inflammatory factor IL-1β, and restoration 
of the Bacteroidetes/Firmicutes ratio in the gut microbiota. This 
resulted in an overall decrease in systemic inflammation (Cao et al., 
2022). Similarly, Limosilactobacillus reuteri HCS02-001 inhibited 
hepatic XOD activity via the TLR4/MyD88/NF-κB pathway. It 
upregulated intestinal ABCG2 expression, reduced SUA levels, 
enhanced fecal xanthine dehydrogenase and allantoinase activity, and 
accelerated uric acid degradation. A concurrent decrease in 
pro-inflammatory cytokine levels was also observed in the liver 
(Copur et al., 2022).

The immunomodulatory effects of SCFAs have also been 
documented. For example, inulin has been shown to enrich SCFA-
producing bacteria, increase the intestinal concentration of butyrate 
and propionate, repair tight junction proteins, and reduce serum LPS 
and inflammatory cytokines. This led to inhibition of NF-κB-mediated 
in responses and downregulation of hepatic XOD activity, ultimately 
lowering uric acid levels (Zhao et al., 2022). Salinomycin inhibited 
oxidative stress through activation of the NRF2 pathway, reduced 
renal fibrosis and the expression of IL-1β and TNF-α, and promoted 
the proliferation of SCFA-producing bacteria. This led to improved 
renal function in hyperuricemic mice (Wang P. et al., 2022). Natural 
compounds can regulate inflammatory pathways by modulating 
interactions between the microbiota and the immune system. For 
example, 24 small molecules in guaijaverin were shown to directly 
bind to the active site of XOD, inhibiting its catalytic function and 
decreasing SUA levels. The small molecules also restored the pyruvate 

fermentation function of the gut microbiota, reducing amino acid 
metabolic disorders and indirectly suppressing the activation of the 
NLRP3 inflammasome (Wang Z. et al., 2024). Rare ginsenosides have 
been shown to regulate gut microbial diversity, inhibit serum and liver 
XOD activity, restore kidney SOD and GSH antioxidant enzyme 
activity, reduce MDA accumulation, decrease IL-1β production, and 
modulate Th17/Treg balance, ultimately alleviating kidney injury. This 
was achieved through the enrichment of Lactobacillus and 
Akkermansia (Lv et al., 2023).

Direct interaction between microbial metabolism and immune 
cells: In the animal model of hyperuricemia (HUA), intestinal 
dysbiosis leads to an increase in the proportion of Th17 cells and a 
decrease in Treg cells (Wang J. et al., 2022). Probiotic Lactiplantibacillus 
pentosus P2020 inhibits renal inflammation by downregulating the 
MAPK and TNF-α pathways, while upregulating ABCG2 and OAT1 
expression to promote urate excretion (Wang et  al., 2023). 
Additionally, metabolites derived from the gut microbiota activated 
the G protein-coupled receptor GPR43/41, inhibited NLRP3 
inflammasome activation, reduced IL-18 release, repaired intestinal 
barrier function, and decreased systemic inflammation caused by 
endotoxins entering the bloodstream (Yang et al., 2023). In summary, 
the gut microbiota can alleviate inflammatory damage due to HUA 
through multiple mechanisms including inhibition of XOD activity, 
regulation of the NF-κB/NLRP3 inflammatory pathway, balancing of 
Th17/Treg cells, and enhancing immune homeostasis mediated by 
SCFAs (Lv et al., 2023; Mamun et al., 2025; Shirvani-Rad et al., 2023; 
Wang P. et  al., 2022). These mechanisms provide a theoretical 
foundation for precise interventions targeting the microbiota-
immune axis.

3.4 Gut microecological remodeling

The gut microbiota governs uric acid flux by rewiring its own 
ecosystem, and three mechanistic nodes now account for this control. 
First, Lactobacillus reuteri HCS02-001 secretes nucleoside hydrolase, 
degrading intestinal purine nucleosides, curbing their absorption, and 
suppressing hepatic xanthine oxidase (XOD) (Hussain et al., 2024; 
Wang Q. et  al., 2024). Concomitantly, ABCG2-mediated renal 
excretion rises while GLUT9-driven reabsorption falls, forging a 
bidirectional urate-regulatory axis. Second, L. plantarum SQ001 
catabolizes xanthine and adenine via its purine-assimilation pathway, 
directly lowering serum uric acid (SUA) (Fu et  al., 2024b; Xu 
et al., 2025).

Prebiotics and traditional Chinese medicine (TCM) amplify these 
effects. Inulin enriches SCFA-producers, elevates butyrate, restores 
tight-junction proteins, and curtails LPS and pro-inflammatory 
cytokines; the resulting drop in systemic inflammation feeds back to 
suppress XOD activity (Zou et al., 2024). Twenty-four small molecules 
in FangyuKangsu granules dock into XOD’s catalytic pocket, block its 
activity, and redirect purine flux toward SCFA fermentation while 
reshaping the microbiota (Ankli, 2024).

Metabolite signaling completes the circuit. Butyrate inhibits 
NLRP3 inflammasome activation and IL-18 release through G-protein-
coupled receptors and represses TLR4/NF-κB via the aryl hydrocarbon 
receptor, indirectly lowering XOD (Ji et al., 2024; Sun et al., 2025; Zhou 
et al., 2023). Rare ginsenosides (Rg3 and Rg5) modulate sphingolipid 
and pyrimidine metabolism, expand Lactobacillus and Akkermansia, 
and markedly inhibit serum XOD (Guo et al., 2021).
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Clinically, dysbiosis typifies hyperuricaemia: diversity falls, 
pathogens surge, and SCFA-producing commensals decline, eroding the 
intestinal barrier and urate excretion (Sun et al., 2024; Xu et al., 2021). 
Fecal microbiota transplantation and post-biotic or herbal interventions 
reprogram tryptophan metabolism, recapitulate XOD inhibition, and 
restore functional microbial modules (Chen et al., 2024; Sun et al., 2024, 
2025). High-fat-diet-induced dysbiosis further aggravates uric-acid 
imbalance via PI3K/AKT/mTOR activation, whereas curcumin reverses 
this trajectory by suppressing pathobionts and boosting Lactobacillus 
and Ruminococcaceae (Hussain et al., 2024; Xu et al., 2021).

Therefore, microbiota remodeling offers a precision strategy for 
hyperuricaemia: by concomitantly reshaping community composition, 
metabolic output, and host signaling, it targets uric-acid homeostasis 
at multiple checkpoints—an approach especially valuable for patients 
with renal impairment or intolerance to conventional drugs.

4 Strategies for decreasing uric acid 
levels through the gut microbiota

4.1 Application of probiotics

A coherent mechanistic arc now links specific probiotic strains to 
reduced SUA. In vitro and animal data demonstrate selected strains 
[including Lactobacillus CICC 6074 and 20,292 from PSFA studies (Li 
et al., 2024)] suppress hepatic xanthine oxidase activity (as evidenced 
by PSFA’s xanthine oxidase inhibition) (Sun et al., 2024), up-regulate 
ABCG2 and SLC2A9 transporters (Sun et al., 2024), and enrich SCFAs 
that curb NLRP3 activation via FFAR signaling, attenuating renal and 
colonic inflammation (Han et  al., 2023; Wang Q. et  al., 2024) 
(consistent with PSFA’s reduction in creatinine/urea levels and 
amelioration of kidney damage). Concomitantly, tryptophan is 
funneled to indole-3-propionic acid, an AhR agonist that suppresses 
TLR4/MyD88/NF-κB while tightening the gut barrier (Han et al., 
2023; Wang Q. et al., 2024) (aligning with PSFA-induced enrichment 
of Lachnospiraceae_NK4A136_group and Faecalibaculum).

Human trials corroborate these effects: randomized studies (Hussain 
et  al., 2024; Sun et  al., 2024) report 10–15% SUA reductions with 
Lactobacillus supplementation (paralleling PSFA’s uric acid-lowering 
effects), accompanied by decreased fecal xanthine oxidase activity and 
elevated ABCG2 expression, while metagenomic analyses document 
increased butyrate production and reduced IL-1β (further supported by 
PSFA’s gut microbiota remodeling outcomes) (Wang Z. et al., 2024).

Yet a third trial with genetically similar isolates from fermented 
foods reports no SUA change despite intact barrier repair (Wang 
Q. et al., 2024). The discord points to unmonitored safety variables—
strain persistence, immune imprinting, or host-microbiome context 
(Han et al., 2023)—underscoring the need for extended follow-ups 
and strain-specific risk profiling to translate mechanism into 
consistent therapy.

4.2 Prebiotics and synbiotics

Prebiotics and synbiotics remodel the gut microbiota to accelerate 
uric acid disposal.

Mechanistically, inulin and fructooligosaccharides act as selective 
carbon sources that expand purine-fermenting taxa and up-regulate 

uricase and allantoinase, trimming serum uric acid (SUA) by ~10% 
(He et  al., 2022; Lai et  al., 2019). The resulting SCFA surge 
simultaneously tightens the epithelial barrier and quenches uric-acid–
driven renal inflammation (He et al., 2022; Singh et al., 2024). And 
fucoidan alleviates hyperuricemia via dual inhibition of uric acid 
production (XOD/ADA suppression) and promotion of excretion 
(ABCG2 upregulation/GLUT9 downregulation), while restoring gut 
microbiota diversity and enrichment of beneficial taxa, offering a 
therapeutic alternative for drug-intolerant patients (Wang et al., 2025). 
Lophatherum gracile directly suppresses uric acid production by 
inhibiting xanthine oxidase and adenosine deaminase, while blocking 
renal reabsorption via GLUT9 downregulation and promoting 
excretion through ABCG2 upregulation (Lu et al., 2025).

Evidence from clinical settings confirms this cascade. In gout 
patients already receiving allopurinol, a synbiotic pairing of 
Lactobacillus plus prebiotic fiber lowered SUA and CRP, shifted the 
Firmicutes/Bacteroidetes ratio toward purine degraders, and—via 
metatranscriptomic analysis—elevated intestinal ABCG2 and GLUT9 
expression, thereby restoring the gut-liver-kidney urate axis 
(Kondratiuk et al., 2020; Lai et al., 2019).

Taken together, these data position prebiotics and synbiotics as 
safe, evidence-based adjuncts for hyperuricemia, particularly in 
patients with renal impairment or intolerance to standard therapies 
(Singh et  al., 2024). Emerging Gut Microbiome-Tailored Urate 
Therapy (GM-TUT) leverages this mechanistic clarity: baseline 
metagenomic profiling of purine catabolism, SCFA potential, and 
transporter expression guides bespoke prebiotic/synbiotic 
formulations that maximize bacterial engraftment, amplify uric acid 
catabolism, and minimize non-response.

4.3 Dietary intervention: targeted 
modulation of microbial composition

The Mediterranean and Dietary Approaches to Stop Hypertension 
(DASH) diets have been shown to reduce SUA levels by optimizing 
microbial composition (Sun et al., 2024). The Mediterranean diet, 
which is centered around whole grains, olive oil, fruits, vegetables, and 
nuts, features high levels of antioxidants such as polyphenols. These 
compounds inhibit the proliferation of pro-inflammatory bacteria 
while promoting the growth of SCFA-producing microorganisms. 
This increase in butyrate levels suppresses the activity of xanthine 
oxidase (XO) and reduces uric acid synthesis. Research indicates that 
a one-month Mediterranean diet intervention reduced SUA levels in 
hyperuricemic patients from 9.12 mg/dL to 6.92 mg/dL and decreased 
systemic inflammatory factors, ameliorating purine metabolism 
disorders (Chrysohoou et al., 2011; Sun et al., 2024; Yokose et al., 
2021). The DASH diet, characterized by its low-purine and high-fiber 
properties, has been shown to reduce the abundance of pathogenic 
bacteria. Among patients with baseline SUA ≥ 7 mg/dL, a DASH diet 
intervention caused a significant decrease in SUA. This mechanism 
was associated with the suppression of the LPS-induced TLR4/NF-κB 
inflammatory pathway (Cardoso-Jaime et al., 2022; Juraschek et al., 
2016; Rai et al., 2017; Song et al., 2021).

Polyphenols such as sweet potato anthocyanins and caffeic acid 
can directly inhibit XO activity. Studies in hyperuricemic mice 
showed that anthocyanins formed hydrogen bonds with the active 
site of XO, blocking substrate binding and reducing 
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SUA. Simultaneously, expression of the renal excretion proteins 
ABCG2 and OAT1 were upregulated, promoting uric acid excretion 
(Li et al., 2021; Zhang et al., 2019). The alkaloid berberine reduced 
uric acid reabsorption by downregulating URAT1 and GLUT9 and 
inhibiting the NLRP3 inflammasome, alleviating renal inflammatory 
damage (Li et  al., 2021). Additionally, a low-sugar diet (such as 
restricting fructose intake) reduced hepatic ATP depletion and 
decreased purine catabolism, thereby lowering endogenous uric acid 
production (Caliceti et al., 2017). Studies have also shown that a high-
fiber diet can enhance the ability of the gut microbiota to degrade 
uric acid (Vande et  al., 1994). Clostridium and Pseudomonas 
metabolize uric acid into the more soluble allantoin, facilitating 
intestinal excretion (Makki et  al., 2018; Mendez-Salazar and 
Martinez-Nava, 2022). Furthermore, a low-fat diet decreased LPS 
release, improved gut barrier function, and decreased systemic 
inflammation-induced stimulation of XO activity (Shen et al., 2014). 
These dietary strategies offer a safe and sustainable approach to 
managing HUA by reshaping microbial community structure, 
enhancing the anti-inflammatory effects of SCFAs, and optimizing 
purine metabolism.

4.4 Innovative applications of FMT

The FMT is an innovative therapeutic method that systematically 
reshapes host gut microecology by directly introducing microbial 
communities from healthy donors or those subjected to specific 
interventions to regulate uric acid metabolism (Wang et al., 2019). The 
core principle of FMT involves the transfer of microbial communities 
and their metabolic products to ameliorate uric acid synthesis-
excretion balance and the disruption of inflammatory pathways (Song 
et  al., 2023). One study showed that in a goose model of HUA, 
transplantation of gut microbiota pre-treated with probiotics 
significantly enhanced intestinal nucleotide degradation through 
purine degradation enzymes. This enhancement led to a reduction in 
SUA levels via the “gut-liver-kidney” axis (Fu et  al., 2024a). 
Furthermore, FMT has demonstrated the ability to correct microbial 
community dysbiosis and metabolic deficiencies in HUA patients and 
animal models, restoring systemic metabolic homeostasis. Following 
treatment with oleanolic acid (OA), the gut microbiota of mice was 
transplanted via FMT into HUA recipients, leading to a significant 
upregulation of intestinal urate transporters, such as ABCG2 and 
URAT1. This enhancement promoted uric acid excretion and repaired 
the intestinal barrier to reduce endotoxin translocation, alleviating 
renal inflammation (Zhang et  al., 2025). FMT validation of the 
mechanism of the TCM compound Quzhuo Tongbi Decoction 
(QZTBD) confirmed that microbiota remodeling activated the 
PI3K-AKT–mTOR pathway, regulated Th17/Treg immune balance, 
and suppressed the release of inflammatory factors, such as IL-1β (Song 
et al., 2023). In clinical practice, the combined treatment of FMT with 
the Chinese medicine QYHT for HUA-related erectile dysfunction 
modulated microbiota metabolites to inhibit the activation of the 
NLRP3 inflammasome, thereby improving oxidative stress and sexual 
function indicators (Ge et al., 2025; Song et al., 2023). These studies 
highlight that FMT can not only directly restore microbial diversity but 
also regulate the host metabolic network through multiple targets. 
These studies provide precise and sustainable intervention strategies for 
refractory HUA and its complications.

The FMT still faces a chain of unresolved issues that propagate 
directly into clinical uncertainty. Because each protocol differs in 
donor selection, stool processing, and administration route, treatment 
heterogeneity undermines both cross-trial comparability and patient-
level response prediction. This heterogeneity, in turn, amplifies five 
persistent risks: (1) acute recipient harm, (2) sub-optimal or unknown 
dosing, (3) uncontrolled confounding from diet, environment, and 
co-medications, (4) transient rather than durable remission, and (5) 
poorly defined recipient-specific success determinants. Consequently, 
existing studies—typically limited to 8–12 weeks of follow-up—
cannot disentangle these confounders or capture long-term efficacy 
and safety signals. Therefore, extended, harmonized trials that 
systematically manipulate and monitor each variable are indispensable 
before FMT can move from experimental rescue therapy to routine 
care (Yadegar et al., 2024).

4.5 Multi-targeted regulation using TCM

Among the various strategies for uric acid reduction, TCM 
demonstrates the unique advantage of regulating the microbiota-
host metabolic network through multiple targets. Research indicates 
that various TCM formulas, such as GSZD, QZTBD, and Cichorium 
intybus formula (CILF), can reshape gut microbiota structure, 
repair intestinal barrier function, and synergistically regulate key 
pathways of uric acid metabolism (Bian et al., 2024; Wang and Jin, 
2024). QZTBD significantly enriched beneficial bacteria; restored 
Th17/Treg immune balance through the PI3K-AKT–mTOR 
pathway; inhibited inflammatory factors, such as IL-1β and IL-6; 
and simultaneously upregulated ABCG2 expression to promote 
urate excretion. Additionally, CILF improved renal inflammatory 
damage by modulating the IL-17 and TNF signaling pathways 
(Amatjan et al., 2023; Bian et al., 2024; Dong et al., 2024; Song et al., 
2023; Zhu et al., 2023). Cat’s whiskers (CILF) reduced SUA levels, 
increased the number of gut uric acid-degrading bacteria, 
upregulated intestinal ABCG2 transporter expression, and 
promoted urate excretion through the gut (Zhu et  al., 2023). 
Pharmacological analysis indicated that the active components of 
TCM can target and regulate key proteins, such as STAT3 and 
VEGFA, and influence pathways related to purine metabolism and 
glycerophospholipid metabolism (Cheng et  al., 2023). Clinical 
studies have confirmed that the Yishen Huashi formula enriched 
beneficial bacteria in chronic kidney disease patients, reduced 
proteinuria, and improved lipid metabolism (Zhang et al., 2024). 
Additionally, TCM interventions have been shown to mediate 
systemic effects through the regulation of intestinal metabolites, 
such as SCFAs and indole derivatives. The Sanhua Decoction 
elevated acetic and butyric acid levels in the blood, promoted the 
conversion of microglia toward the anti-inflammatory M2 
phenotype, and mitigated blood–brain barrier damage following 
stroke (Luo S. et al., 2023). FMT experiments have validated the 
efficacy of TCM in modulating the gut microbiome. For example, 
OA intervention significantly reduced uric acid levels in recipient 
mice post-transplantation. These findings highlight the multi-
dimensional synergistic effects of TCM through the “microbiota-
metabolism-immune” axis, offering a safe and multi-targeted 
intervention strategy for the treatment of HUA and its associated 
complications (Figure 2 and Table 1).
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5 Summary and prospects

Gut microbiota interventions execute uric acid (UA)-lowering 
through four concerted mechanisms: bacterial uricase catabolizes 
UA into soluble allantoin; upregulated ABCG2/OAT1 transporters 
enhance renal/enteric excretion; suppressed URAT1/GLUT9 
importers block reabsorption; and SCFA/indole derivatives 
quench UA-driven inflammation by inhibiting TLR4/NF-κB 

signaling—collectively enabling probiotics, FMT, or TCM 
formulations to achieve targeted UA control without 
organ toxicity, with patient stratification guided by microbial 
biomarkers (Prevotella abundance, butyrate:acetate ratios) (Li 
et al., 2025).

However, clinical translation faces mechanistic barriers: strain-
specific purine metabolism requires mapping xanthine dehydrogenase 
pathways in Lactobacillus; dynamic host-microbe crosstalk demands 

FIGURE 2

Uric acid reduction strategies based on gut microbiota.

TABLE 1  Mechanisms of various methods for lowering uric acid.

Methods Subjects Mechanism of intervention Reference

Probiotics Hyperuricemia 

mice

Direct UA degradation and systemic modulation of gut-kidney axis Wu et al. (2021)

Probiotics Hyperuricemia 

mice

Directly degrading UA and inhibiting its synthesis; Reshaping gut microbiota to restore microbial 

purine-tryptophan metabolic networks; Leveraging AhR signaling to synchronize UA excretion and 

anti-inflammatory responses

Wang Q. et al. 

(2024)

Prebiotics and 

synbiotics

Patients with 

primary gout

Synbiotic group showed disease remission markers (reduced inflammation, normalized microbiota) Kondratiuk et al. 

(2020)

Diet Human Limiting purine-rich/fructose-containing foods, enhancing antioxidant/anti-inflammatory effects, and 

improving metabolic parameters

Gao et al. (2021)

Fecal microbiota 

transplantation

Hyperuricemia 

mice

Drove UA metabolism regulation and inflammation suppression Lu et al. (2021)

Fecal microbiota 

transplantation

Rats The microbial taxa may associate with the occurrence of hyperuricemia Liu et al. (2020)

Traditional Chinese 

Medicine

Public databases Drug metabolism-other enzymes, Metabolic pathways, Bile secretion, Renin-angiotensin system, Renin 

secretion by core targets HPRT1, REN and ABCG2

Luo J. J. et al. 

(2023)
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FIGURE 3

Precision modulation framework for uric acid homeostasis: gut microbiota interventions from molecular targets to AI-guided implementation.

quantification of FFAR2/3-mediated SCFA signaling to renal 
transporters; and limited human evidence necessitates ethnic-
stratified RCTs tracking fecal purine metabolites, while biomarker 
personalization gaps call for AI-platforms integrating metagenomics 
and serum UA kinetics.

Bridging these gaps prioritizes engineered bio-therapeutics 
(recombinant uricase-expressing probiotics, nano-encapsulated 
metabolites targeting XO/GLUT9), diagnostic-stratified interventions 
(probiotic cocktails calibrated to Prevotella/SCFA profiles → 
synthetic consortia replacing hepatotoxic drugs), and cross-system 

validation (health-economic analyses against allopurinol, long-term 
safety monitoring via multi-omics registries)—ultimately positioning 
microbiota-directed strategies as first-line solutions for 
refractory hyperuricemia.

In summary, intervention through the gut microbiota offers a 
novel perspective for the prevention and treatment of HUA. The 
integration of its multidimensional regulatory mechanisms with 
targeted intervention strategies holds promise for overcoming the 
limitations of traditional treatments. Future research is required to 
expand mechanistic exploration, drive clinical translation, and 
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ultimately achieve widespread application of “microbiota precision 
regulation” in the treatment of metabolic diseases (Figure 3).
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