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Introduction: The relationship between the gut microbiome and Parkinson’s 
disease (PD) has recently attracted significant attention, with most studies 
focused on analyzing microbial composition. However, our understanding of 
the potential causal relationship between the gut microbiota and PD remains 
limited.
Methods: We extracted microbiome data from the metagenome for broad 
taxonomic coverage and accurate functional analysis. Subsequently, Mendelian 
randomization was employed to elucidate the causal relationship between the 
gut microbiome and PD.
Results: The gut microbiota in PD patients was found to be  systemically 
imbalanced, characterized by an abnormal enrichment of potential pathogenic 
bacteria, a significant reduction in key beneficial bacteria, and a reorganization 
of intestinal metabolic functions. This state of imbalance involves significant 
abnormalities in multiple metabolic and regulatory pathways, including the 
glucose metabolism, oxidative stress response, protein homeostasis regulation, 
and immune signaling pathways. These findings suggest that dysbiosis may 
influence host neural function through multilevel metabolic interventions. 
Additionally, specific microbial communities are clearly associated with disease 
risk, with some bacterial populations promoting disease onset and others 
demonstrating a potentially protective effect. Although metagenomic findings 
require validation in larger cohorts, the results of this study indicate that changes 
in gut microbiota composition and function are closely related to PD onset and 
progression.
Conclusion: This study revealed that certain microorganisms traditionally 
considered beneficial may contribute to PD risk. This finding challenges previous 
assumptions and highlights the complexity of host–microbiome interactions. 
The identification of altered metabolic and immune pathways, particularly those 
involving bacteria that produce short-chain fatty acids, underscores the critical 
role of the gut microbiota in PD pathophysiology. However, the relatively small 
sample size of the current metagenomic analysis limits the generalizability of 
these findings. Larger, more diverse cohorts are needed to validate these results. 
Despite this limitation, the study provides important insights into microbiome-
targeted therapeutic strategies, emphasizing the need to reconsider the roles of 
both beneficial and harmful microorganisms in PD.
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1 Introduction

According to the 2019 Global Burden of Disease Study, the 
absolute numbers of deaths and disability-adjusted life years 
(DALYs) attributable to Parkinson’s disease (PD) have increased 
significantly in recent years, driven by global population aging and 
the improved survival rates of middle-aged and older adults (GBD 
2016 Neurology Collaborators, 2019; Han et al., 2025). Consequently, 
PD has emerged as a substantial global health burden that cannot 
be ignored. In terms of clinical manifestations, PD is characterized 
by progressive motor and cognitive impairments and gastrointestinal 
dysfunctions, such as constipation and delayed gastric emptying; 
these gastrointestinal symptoms often precede the onset of motor 
symptoms by several years (Váradi, 2020). The early onset of these 
nonmotor symptoms has increasingly drawn researchers’ attention 
to the underlying mechanisms linking the gut and the central 
nervous system (CNS). Thus, an increasing number of research 
studies focus on the concept of the “gut–brain axis” (GBA) and the 
specific role of the gut microbiota in PD pathogenesis (Cryan et al., 
2019). Gut microbiota dysbiosis has been identified as a significant 
exogenous contributor to the pathogenesis of PD. Emerging 
evidence indicates that specific bacterial taxa can activate innate 
immune pathways, particularly through Toll-like receptors (TLR2 
and TLR4), thereby promoting the abnormal aggregation of 
α-synuclein (α-Syn) within the enteric nervous system (Gorecki 
et al., 2021). As a pivotal pathogenic protein in PD, misfolded α-Syn 
constitutes the core component of Lewy bodies and is capable of 
propagating from the gut to the central nervous system (CNS) via 
the vagus nerve, forming a pathological continuum that supports the 
gut-origin hypothesis of PD (Braak et  al., 2006). Concurrently, 
dysfunction of the GBA compromises intestinal barrier integrity, 
increasing permeability and facilitating the translocation of 
microbial metabolites and pro-inflammatory molecules, such as 
lipopolysaccharide (LPS), into the systemic circulation (Klann et al., 
2021). These circulating factors can activate microglia and trigger 
chronic neuroinflammation. Clinical studies have demonstrated 
significantly elevated levels of inflammatory cytokines, including 
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and 
interleukin-1β (IL-1β), in both intestinal and brain tissues of PD 
patients, underscoring the contribution of systemic inflammation to 
disease progression (Verma et al., 2025). Moreover, the depletion of 
beneficial microbial metabolites, particularly short-chain fatty acids 
(SCFAs), exacerbates inflammatory responses and may enhance the 
translocation of α-Syn across the GBA (Fitzgerald et  al., 2019; 
Mahbub et al., 2024). Certain bacterial components, such as curli 
fimbriae proteins and LPS, have been shown to directly interact with 
α-Syn, accelerating its aggregation and promoting oxidative stress 
(Chen et al., 2016; Taglialegna et al., 2016). Additionally, sulfate-
reducing bacteria, including members of the genus Desulfovibrio, 
can produce neurotoxic metabolites such as hydrogen sulfide, which 
may further impair neuronal function and exacerbate 
neurodegeneration through direct toxic mechanisms (Alam 
et al., 2024).

It is essential to elucidate the gut microbiome–PD association 
more comprehensively to identify relevant information about the 
microbial sources of risk associated with this disease. The advent of 
metagenomic techniques has provided a refined and comprehensive 
approach to such investigations (Villette et al., 2025). Conventional 
16S rRNA gene amplicon sequencing enables the analysis of overall 
gut microbial community structure; however, as this approach is 
generally limited to genus-level resolution, it cannot readily 
distinguish closely related taxa and is insufficient for in-depth 
functional characterization (Papić et  al., 2025). In contrast, 
metagenomics, which involves sequencing the entire microbial 
genome, enables the discrimination of microbes at the species or even 
strain level, permitting the accurate elucidation of functional 
differences, such as those involved in carbohydrate metabolism, 
protein degradation, and SCFA synthesis (Wallen et al., 2022; Boktor 
et al., 2023). The precision and comprehensiveness of metagenomics 
provide more reliable data for understanding the role of the gut 
microbiota in complex neurodegenerative diseases involving 
multifactorial interactions and complicated disease progression, 
such as PD.

However, most existing studies have been observational, 
lacking robust evidence of causality. It remains unclear whether 
alterations in the gut microbiota of patients with PD act as a 
driving factor in disease onset or represent a secondary effect that 
emerges during disease progression. To address this limitation, 
Mendelian randomization (MR) has been increasingly applied in 
studies investigating the relationship between the gut microbiota 
and diseases (Jiang et  al., 2023). MR utilizes single nucleotide 
polymorphisms (SNPs) associated with specific microbiota traits, 
effectively simulating a “natural randomized controlled trial” in 
populations, thereby better controlling for environmental and 
other confounding factors (Sekula et  al., 2016). MR can 
significantly reduce bias in analyses of complex diseases such as 
PD, thereby enabling a more precise identification of the 
mechanisms by which the gut microbiota contributes to 
disease progression.

This study was conducted to systematically investigate the 
gastrointestinal symptoms commonly observed in the early stages of 
PD and their potential associations with the GBA, leveraging the high-
resolution and functional profiling capabilities of metagenomics. The 
widespread presence of gastrointestinal symptoms among early-stage 
PD patients underscores the value of in-depth exploration of the 
GBA. Metagenomic technologies provide comprehensive analytical 
support, enabling more precise elucidation of the relationship between 
the gut microbiota and PD progression. Moreover, the application of 
MR offers a robust tool for causal inference, effectively minimizing the 
influence of confounding factors and reverse causality. While our 
results offer valuable insights, they should be regarded as hypothesis-
generating, and further validation in diverse. As longitudinal and 
large-scale cohort studies continue to advance, we anticipate a clearer 
understanding of the specific role of the gut microbiota in PD 
pathogenesis, paving the way for novel approaches to clinical 
intervention and personalized treatment strategies.
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2 Methods

2.1 Metagenomics

2.1.1 Study population and sample collection
A case–control study was conducted from January 2021 to June 

2022 involving 25 patients (13 males, 12 females) diagnosed with 
early-stage PD at the Neurology Department of the Affiliated Hospital 
of Inner Mongolia Medical University and 15 healthy controls (8 
males, 7 females). All participants were between the ages of 58 and 80. 
PD patients were included if they met the primary PD diagnostic 
criteria established by the UK Parkinson’s Disease Brain Bank in 1997: 
(1) a confirmed diagnosis of primary PD; (2) no history of 
autoimmune diseases; (3) no history of inflammatory diseases; (4) no 
prior use of medications that could affect dopamine (DA) levels; and 
(5) Hoehn–Yahr (H–Y) stage 1–1.5 at the time of consultation. 
Patients with primary tremor, PD syndrome due to cerebrovascular 
disease, multiple system atrophy, progressive supranuclear palsy, Lewy 
body dementia, other PD-related syndromes, severe dementia, speech 
disorders, psychiatric disorders affecting emotional expression, and 
other serious physical conditions (e.g., malignancies or disabilities) 
were excluded. All participants provided their written 
informed consent.

2.1.2 Fecal sample collection, DNA extraction, 
and sequencing

Fresh fecal samples (5–6 g) were collected from the study 
participants in the early morning and placed in specially designed 
fecal microbiota preservation containers. After thorough mixing by 
shaking, the samples were quickly frozen at −80 °C and transported 
on dry ice for analysis. DNA extraction from feces was performed 
using the CTAB method, and the purity and integrity of the DNA were 
assessed via 1% agarose gel electrophoresis (AGE). DNA quantification 
was conducted using a Qubit® dsDNA Assay Kit in a Qubit® 2.0 
Fluorometer (Life Technologies, CA, United States). A suitable volume 
of sample was diluted in sterile water to achieve an OD value between 
1.8 and 2.0. One microgram of genomic DNA was used to construct 
the library with an NEBNext® Ultra DNA Library Prep Kit for 
Illumina (NEB, United States), and DNA fragments of approximately 
350 bp were randomly sheared using a Covaris ultrasonic disruptor. 
The library preparation included end-repair, A-tailing, adapter 
ligation, purification, and PCR amplification. After library 
construction, initial quantification was performed using a Qubit 2.0 
instrument. The library was then diluted to 2 ng/μl, and its insert size 
was verified using an Agilent 2100 instrument. If the insert size met 
expectations, quantitative PCR was employed to precisely quantify the 
effective concentration of the library (effective concentration > 3 nM), 
ensuring library quality. Upon passing quality checks, different 
libraries were pooled according to their effective concentration and 
the required sequencing depth, and sequencing was performed on the 
Illumina PE150 platform.

2.1.3 Preprocessing of raw sequencing data and 
metagenomic assembly

Readfq (V8, https://github.com/cjfields/readfq) was used for 
preprocessing raw data from the Illumina sequencing platform to 
obtain clean data for subsequent analysis. The following reads were 
removed: (a) those with low-quality bases (default quality threshold 

≤ 38) exceeding a certain proportion (default length: 40 bp); (b) 
those with N bases reaching a certain proportion (default length: 
10 bp); and (c) those with adapter overlaps exceeding a certain 
threshold (default length: 15 bp). Considering the possibility of 
host contamination in samples, the clean data were BLASTed 
against the host database to filter out reads of host origin. Bowtie2 
software (version 2.2.4, http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml) was applied using the default setting with the 
following parameters (Karlsson et  al., 2012, 2013; Scher et  al., 
2013): --end-to-end, --sensitive, -I 200, and -X 400. MEGAHIT 
software (v1.0.4-beta) was used for assembly analyses of clean data, 
with the following assembly parameters: --presets meta-large 
(--end-to-end, --sensitive, -I 200, -X 400) (Karlsson et al., 2013; 
Nielsen et al., 2014). Scaftigs without N were obtained by breaking 
the resulting scaffolds from the N junction (Qin et al., 2010; Li 
et al., 2015).

2.1.4 Bioinformatics and statistical analysis
Linear discriminant analysis effect size (LEfSe) (version 1.0) was 

employed to analyze differences in taxonomic abundance across 
groups. Initially, taxa were annotated by group classification, and the 
nonparametric Kruskal–Wallis test was applied to identify taxa with 
significant differences in abundance (p < 0.05). These differences were 
further validated using the Wilcoxon rank-sum test, and linear 
discriminant analysis (LDA) was conducted to estimate the effect size 
of each taxon, with an LDA score threshold set at >2. The results were 
visualized via bar plots to obtain an intuitive display of taxa with 
significant intergroup differences and their relative importance, 
thereby supporting the biological interpretation of functional 
disparities among groups. Data processing and analysis were 
conducted via the R packages tidyverse (version 1.3.2) and microeco 
(version 0.9.1). Spearman correlation analyses were performed 
according to taxonomic abundance data to calculate pairwise 
associations between taxa. Significant and strongly correlated taxa 
pairs (|r| > 0.6, p < 0.05) were identified via the R packages psych 
(version 2.2.1), reshape2 (version 1.4.4), and igraph (version 1.3.5) and 
used to construct a co-occurrence network. The network was 
visualized with Cytoscape (version 3.8.2), and topological parameters 
such as node degree and clustering coefficient were analyzed to assess 
synergistic interactions and ecological relationships among microbial 
taxa, thereby elucidating the complex patterns of microbial 
community interactions. Additionally, STAMP (version 2.1.3) was 
used to analyze differences in gene abundance between groups. Gene 
abundance data were first normalized and grouped, and statistical 
tests such as Welch’s t test or the G test were employed to determine 
genes with significantly different expression levels. Multiple testing 
corrections were performed via the Benjamini–Hochberg method 
(FDR < 0.05) to identify significant genes. The results were visualized 
via bar plots or scatter plots in STAMP, offering an intuitive display of 
gene abundance distribution and significance levels across groups, 
thereby revealing biologically relevant gene-level differences. Finally, 
Spearman correlation analysis was applied to compute the correlation 
coefficients and p values between the gene and taxonomic abundance 
profiles. Correlation and significance matrices were generated and 
visualized as heatmaps using the pheatmap package (version 1.0.12). 
Correlation strengths are represented by a color gradient (ranging 
from negative to positive), and significant correlations (p < 0.05) are 
indicated by asterisks (*).
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2.2 Mendelian randomization

2.2.1 Data sources and selection of instrumental 
variables

The gut microbiota data were derived from the publicly available 
MiBioGen consortium dataset, which includes 24 cohorts comprising 
18,340 individuals from diverse ancestries (Kurilshikov et al., 2021). 
After rigorous quality control, taxa with a prevalence < 20% and 
unclassified groups were excluded, leaving 196 bacterial units 
(phylum, class, order, family, and genus). Genotyping was performed 
with a call rate and imputation quality filter, with minor allele 
frequency exceeding 0.05. A regression model was applied using age, 
sex, batch, and genetic principal components as covariates. Genome-
wide association studies (GWASs) were conducted for each microbial 
feature, and false discovery rate (FDR) correction was applied for 
multiple comparisons (Kurilshikov et  al., 2021). To ensure the 
robustness and reliability of Instrumental variables (IVs) in MR 
analysis, we implemented a series of stringent quality control criteria 
to select genetic variants significantly associated with gut microbiota 
traits. Specifically, to obtain a sufficient number of IVs while 
maintaining significance, we  applied a selection threshold of 
p < 1 × 10−5. This threshold has been widely adopted in microbiome 
studies and facilitates the identification of a broad set of IVs with 
adequate statistical power, thereby providing reliable genetic 
instruments for subsequent MR analyses (Sanna et  al., 2019). To 
minimize the impact of linkage disequilibrium (LD) on the analysis 
and to ensure the independence of IVs, we performed LD pruning on 
the selected single nucleotide polymorphisms (SNPs). Specifically, 
SNPs with an LD r2 < 0.1 within a 500-kb window were removed to 
reduce redundant information arising from genetic correlations 
among SNPs (Ni et al., 2022). In addition, we calculated the F statistic 
for each SNP to assess the strength of the IVs in explaining gut 
microbiota phenotypes and to mitigate bias arising from weak 
instruments (Burgess et al., 2011). SNPs with F statistics less than 10 
were excluded, and only those with sufficiently large F statistics were 
retained for subsequent analyses. These high-quality instrumental 
variables provide a robust genetic basis for causal inference and reduce 
the risk of potential bias.

The PD GWAS dataset used in this study was sourced from the 
FinnGen database, which integrates large-scale genomic data from the 
Finnish Biobank along with corresponding health records. The dataset 
included 5,861 diagnosed PD patients and 494,487 non-PD control 
individuals to ensure the robustness and representativeness of the 
statistical analysis. This GWAS dataset encompasses 21,327,062 SNPs 
and was filtered using standard quality control procedures to exclude 
low-quality variants and those potentially introducing bias. Data 
analyses were conducted as per the FinnGen research protocol, and 
the relevant GWAS results are available from the official FinnGen 
database1 for further research analysis and validation. To further 
validate the MR findings, we supplemented our results with GWAS 
data from the International Parkinson’s Disease Genomics Consortium 
(IPDGC). This study included 482,730 participants, comprising 
33,674 PD patients and 449,056 controls of European descent, 
covering 17,891,936 SNPs.

1  https://r12.finngen.fi/pheno/G6_PARKINSON

2.2.2 Statistical analysis
All calculations were performed using R software (version 4.4.1). 

The primary causal estimates were obtained using the inverse 
variance weighted (IVW) method. The IVW method provides the 
most efficient and unbiased estimates when the SNPs fully satisfy the 
assumptions of MR; however, if some instrumental variables exhibit 
horizontal pleiotropy, the IVW method may be affected to some 
extent, leading to biased causal estimates. Several sensitivity analyses 
were conducted to complement the primary analysis and assess the 
robustness of the results. First, we  applied the weighted median 
(WM) method, which can provide reliable causal estimates even 
when up to 50% of the instrumental variables are invalid. Second, 
MR–Egger regression was employed to account for the possibility 
that all instrumental variables may be  invalid and to detect 
horizontal pleiotropy. An intercept term significantly deviating from 
zero in the MR–Egger regression test indicates that the results may 
be influenced by pleiotropic bias. Additionally, the MR-pleiotropy 
residual sum and outlier (MR-PRESSO) method was applied to 
identify and correct outliers, thereby improving the accuracy of the 
causal estimates. To evaluate the quality of the instrumental 
variables, Cochran’s Q statistic was calculated to detect heterogeneity 
among the SNPs. A Q statistic p value less than 0.05 indicates 
significant heterogeneity between the SNPs. In such cases, random-
effects IVW was used for causal inference to mitigate the potential 
impact of heterogeneity. Finally, a leave-one-out analysis was 
conducted, where each SNP was sequentially removed, and the 
changes in the overall effect were observed to assess whether any 
individual instrumental variable exerted an undue influence on 
the results.

3 Results

3.1 Differences in the composition of the 
gut microbiota

To investigate the differences in the gut microbiota composition 
between patients with PD and healthy individuals, we conducted a 
differential analysis across multiple taxonomic levels (phylum, class, 
order, family, genus, and species) using the LEfSe method to identify 
potential key biological biomarkers. Our results revealed significant 
taxonomic differences in the overall microbial composition between 
the PD group and healthy controls. At the phylum level (Figure 1A), 
Proteobacteria was predominant in the PD group (LDA score = 4.50, 
p = 0.037), whereas no dominant phylum was observed in the healthy 
controls. Further analysis at more refined taxonomic levels revealed 
that the relative abundances of Gammaproteobacteria and Bacilli were 
significantly greater in the PD group than in the healthy group (LDA 
scores = 4.59, p = 0.020 and 4.03, p < 0.001, respectively) (Figure 1B). 
In contrast, Betaproteobacteria was more abundant in the healthy 
control group (LDA score = 2.88, p = 0.043).

At the order level (Figure 1C), the abundances of Enterobacterales 
and Lactobacillales were significantly enriched in the PD patient group 
(LDA scores of 4.54, p = 0.035, and 4.05, p = 0.001, respectively). 
Additionally, Actinomycetales and Micrococcales were more prevalent 
in PD patients (LDA scores of 2.55, p < 0.001, and 2.02, p < 0.001, 
respectively), further supporting the structural alterations of the gut 
microbiota in PD.
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At a more refined taxonomic (family) level (Figure 1D), the 
relative abundances of Enterobacteriaceae, Streptococcaceae, 
Lactobacillaceae, and Enterococcaceae were significantly greater in 
the PD group than in the healthy control group, with LDA scores of 
4.46 (p = 0.049), 3.83 (p = 0.002), 3.63 (p < 0.001), and 3.47 
(p = 0.037), respectively. In contrast, the family Ruminococcaceae 
was more enriched in the healthy control group (LDA score = 4.55, 
p = 0.040).

At the genus level (Figure  1E), the relative abundances of 
Klebsiella, Streptococcus, and Lactobacillus were significantly greater 
in the PD group than in the healthy control group (LDA scores: 3.95, 
p = 0.003; 3.88, p = 0.006; and 3.77, p < 0.001, respectively). These 
alterations suggest the potential enrichment of pathogenic taxa in the 
gut microbiota of PD patients, which may contribute to intestinal 
inflammation and metabolic dysregulation. In contrast, the genus 
Faecalibacterium was significantly more abundant in the healthy 
control group (LDA score = 4.56, p = 0.043), indicating its possible 
role in maintaining gut health and exerting anti-inflammatory effects.

Further species-level analysis revealed specific differential 
bacterial taxa (Figure 1F). In the healthy control group, the abundances 
of Faecalibacterium prausnitzii and uncultured Butyricicoccus sp. were 
significantly greater than those in the PD patients (LDA scores of 4.24, 
p = 0.020; 3.12, p = 0.026, respectively). In contrast, the abundance of 
pathogenic bacteria such as Klebsiella pneumoniae, Streptococcus, and 
Lactobacillus mucosae was markedly elevated in the PD patient group 

(LDA scores of 3.32, p = 0.003; 2.29, p = 0.012; 3.40, p = 0.005, 
respectively).

3.2 Analysis of species co-occurrence 
networks

Our analysis of positive correlations revealed several bacterial 
strains exhibiting significant synergistic interactions (Figure 2). For 
example, the correlation coefficient between Alistipes and Clostridium 
reached r = 1.000, indicating an almost perfect positive correlation. 
Similarly, the strong positive correlations within Alistipes (r = 1.000) and 
between Alistipes and Clostridium (r = 0.999) suggest that these bacteria 
may coexist in the intestinal environment and potentially collaborate in 
certain metabolic processes or in maintaining the intestinal ecological 
balance. Notably, the strong correlations of Clostridium_sp._CAG349 
with Alistipes_sp._CAG514 (r = 1.000) and Clostridium_sp._
CAG349_48_7 (r = 0.999) further support the possibility of synergistic 
interactions between these species in the gut. Additionally, 
Verrucomicrobia_bacterium_CAG312_58_20 was significantly 
positively correlated with all of the aforementioned strains (correlation 
coefficients ranging from approximately 0.999 to 1.000), suggesting that 
this species of the Verrucomicrobia phylum may play a key role in the 
formation of stable symbiotic networks with other strains. The most 

FIGURE 1

LEfSe analysis revealed differences in the microbiota composition between PD patients and healthy controls. Each bar graph represents the linear 
discriminant analysis (LDA) score of different microbial taxa at the phylum (A), class (B), order (C), family (D), genus (E), and species (F) levels between 
the two groups. A higher LDA score indicates a greater enrichment of that particular taxon in the corresponding group. The blue bars indicate 
microbes dominating in the healthy control group, whereas the red bars indicate those dominating in the PD patient group.
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notable negative correlations were between Faecalibacterium_prausnitzii 
and Blautia_schinkii (r = −0.527), as well as Eisenbergiella (r = −0.538).

3.3 Analysis of the abundance differences 
in the functional genes of the gut 
microbiota

We subsequently compared the functional gene abundances of the 
gut microbiota between the PD patient and healthy control groups. 
The results revealed significant upregulation of several metabolism-
related genes in the PD group (Figure  3), suggesting that the gut 
microbiota may undergo functional reprogramming in response to 
inflammation and oxidative stress. First, regarding carbohydrate 
metabolism and energy pathways, we observed that the abundances 

of K00105 (alcohol dehydrogenase, EC: 1.1.1.2) and K00131 
(glyceraldehyde-3-phosphate dehydrogenase, EC: 1.2.1.9) were 
significantly greater in the PD patient group than in the healthy 
control group (p < 0.006). Additionally, the levels of K00054 (pyruvate 
kinase, EC:2.7.1.40) and K01101 (β-galactosidase, EC:3.2.1.23) were 
increased in the PD patient group, suggesting an increase in glucose 
metabolism-related pathways in these patients. Similarly, the 
abundance of genes associated with the respiratory chain was also 
significantly increased in the PD patient group. For example, the 
expression levels of K18692 (NADH:quinone oxidoreductase subunit 
1, EC:1.6.5.3) and K21562 (NADH dehydrogenase, EC:1.6.5.3) were 
elevated, indicating that the gut microbiota in PD patients may exhibit 
adaptive changes in energy production. Further analysis of genes 
related to protein metabolism and homeostasis revealed that the 
abundances of K19005 (ubiquitin-conjugating enzyme E2 N, 

FIGURE 2

Gut microbiota interaction network in PD. Nodes represent species, whereas edges indicate the correlation between two species. The thickness and 
color of the edges reflect the strength and direction (positive or negative) of the correlation, respectively.
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EC:2.3.2.23) and K22212 (ubiquitin-specific protease 10, EC:3.4.19.12) 
were significantly greater in the PD patient group than in the control 
group, suggesting alterations in the gut microbiota’s function in 
protein degradation and stability regulation. Moreover, genes 
associated with nucleic acid metabolism and DNA repair were 
upregulated in the PD patient group. For example, K11144 (DNA 

methyltransferase, EC:2.1.1.37) and K03346 (DNA methyltransferase 
1, EC:2.1.1.37) expression levels were elevated, suggesting that these 
genes may play crucial roles in maintaining genomic stability and 
repairing DNA damage. In terms of amino acid metabolism, the 
abundances of K01635 (glutamine synthetase, EC:6.3.1.2) and K01598 
(adenosine deaminase, EC:3.5.4.4) were increased in the PD patient 
group, further indicating that changes in amino acid metabolism 
might have occurred in the gut microbiota of these patients. The 
elevated abundances of K01256 (β-glucosidase, EC: 3.2.1.21) and 
K01597 (guanine deaminase, EC: 3.5.4.3) support this conclusion. 
Notably, the increased abundance of K03294 (ribosomal protein L3, 
EC:3.6.5.3) suggested enhanced protein synthesis and translation 
functions in the PD patient group, which may reflect the potential role 
of the microbiota in regulating cellular functions.

3.4 Significant differences in functional 
metabolic pathways

The results of the KEGG pathway analysis (Figure  4) revealed 
significant differences in several functional metabolic pathways 
between the PD patient group and the healthy control group, providing 
new insights into the potential biological differences between the two 
groups in terms of metabolic activity, signal transduction, 
environmental adaptation, and immune regulation. Our analysis 
revealed that the abundance of basal transcription factors was 
significantly greater in the PD patient group than in the healthy control 
group (p < 0.001). Moreover, the immune regulation and infection-
related Staphylococcus aureus infection pathways demonstrated 
significantly higher abundances in the PD patient group (p < 0.001), 
further suggesting that immune responses in the gut microbiota of PD 
patients may be under stronger regulation. At the metabolic level, the 
retinol metabolism pathway was significantly elevated in the PD patient 
group (p = 0.001), indicating that this pathway may play a crucial role 
in PD pathogenesis. Additionally, the MAPK signaling pathway (plant) 
and naphthalene degradation pathway were significantly more active 
in the PD patient group than in the healthy control group (p < 0.005), 
suggesting that these pathways may be  closely associated with the 
pathological processes of PD. Notably, glutathione metabolism was 
significantly upregulated in the PD patient group (p = 0.006), possibly 
reflecting the metabolic adaptation of patients in response to oxidative 
stress. Furthermore, the thiamine metabolism and fatty acid 
degradation pathways were significantly more abundant in the PD 
patient group (p < 0.007), further supporting potential alterations in 
energy metabolism within the gut microbiota of PD patients. The 
oxidative phosphorylation and ketone body synthesis and degradation 
pathways exhibited slight increases in activity in the PD patient group 
(p < 0.05), suggesting that the gut microbiota may play a role in energy 
metabolism and homeostasis maintenance in PD patients. Finally, the 
carbohydrate digestion and absorption pathway was also somewhat 
enriched in the PD patient group (p = 0.050), indicating that this 
metabolic pathway may be involved in gut microbiota regulation in PD.

3.5 Correlation heatmap

We revealed a complex landscape of interactions between key 
bacterial species and metabolic pathways within the gut microbiota 

FIGURE 3

Comparison of gene expression between healthy controls and PD 
patients. The left bar chart illustrates the expression levels of various 
genes in both groups, whereas the right dot plot, with error bars, 
shows the average expression levels of each gene in the two groups 
along with their variability. Blue represents the healthy control group, 
and red represents the PD patient group.
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functional metabolic network of PD patients (Figure 5). Regarding 
positive correlations, Eubacterium sp. CAG:202 has garnered 
particular attention. This strain was significantly positively 
correlated with multiple metabolic pathways, including the ABC 
transporter pathway (r = 0.646, p < 0.0001), oxidative 
phosphorylation (r = 0.587, p < 0.001), thiamine metabolism 
(r = 0.547, p < 0.001), and β-lactam resistance (r = 0.615, 
p < 0.0001). In contrast, certain bacteria, widely recognized for 
their anti-inflammatory properties, exhibited negative correlations 
with multiple metabolic pathways. Faecalibacterium prausnitzii is a 
representative example that was significantly negatively correlated 
with glutathione metabolism (r = −0.305, p < 0.05), benzoate 
degradation (r = −0.281, p < 0.05), and β-lactam resistance 
(r = −0.241, p < 0.05). Faecalibacterium prausnitzii has known 

anti-inflammatory properties; thus, reduced anti-inflammatory 
bacteria in an inflammatory environment may promote an 
imbalance mechanism that overactivates metabolic pathways, 
thereby exacerbating disease progression. Moreover, pathways 
closely related to energy metabolism, such as oxidative 
phosphorylation and fatty acid degradation, were significantly 
enriched in the PD patient group and were negatively correlated 
with beneficial microbiota, including Faecalibacterium prausnitzii 
and uncultured Ruminococcus sp., further implying that dysbiosis 
of the microbiota may disrupt intestinal metabolic homeostasis to 
some extent. The significant negative correlations observed in 
vitamin-related pathways, such as amine and retinol metabolism, 
also suggest that these key metabolic pathways may play important 
roles in gut microbiota metabolic dysregulation in PD.

FIGURE 4

Comparison of metabolic pathway activity between the healthy control group and the PD patient group. The bar charts on the left represent the 
distribution of activity for each pathway. On the right, a dot plot with error bars illustrates the average activity of each metabolic pathway and its range 
of variation under the two conditions. Blue represents the healthy control group, whereas red represents the PD patient group.
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3.6 Genetic and sensitivity analysis of the 
gut microbiota in PD patients

The IVW method was used to preliminarily explore the causal 
relationships between gut microbiota characteristics and PD risk. 
First, using data from the FinnGen database, we identified significant 
positive associations between the abundance of the Rikenellaceae 
family (OR = 1.246; 95% CI = 1.049–1.481, p = 0.012) and the Blautia 
genus (OR = 1.240; 95% CI = 1.006–1.528, p = 0.044) and PD risk 
(Figure 6A), suggesting that these microbiota may play a pathogenic 
role in the development of PD. These findings support the potential 
involvement of the gut microbiota in neurodegenerative diseases. 
Moreover, we observed that increased abundances of seven other 
microbiota, including the Bifidobacteriaceae family (OR = 0.819; 95% 
CI = 0.685–0.980, p = 0.029), were significantly associated with 
reduced PD risk, indicating a protective role of these microbiota. In 
particular, the protective effect of Bifidobacteriaceae may act by 
promoting gut health, enhancing host immune system function, or 

improving GBA signaling, providing new directions for future 
experimental research. To further validate these preliminary results, 
we conducted supplementary analysis using the IPDGC database, 
enhancing the breadth and consistency of the findings (Figure 6B). 
In the IPDGC dataset, we  detected potential positive causal 
relationships between the Oxalobacteraceae family (OR = 1.130; 95% 
CI = 1.003–1.273, p = 0.044), Clostridium sensu stricto 1 genus 
(OR = 1.354; 95% CI = 1.068–1.716, p = 0.012), Eubacterium 
xylanophilum group (OR = 1.318; 95% CI = 1.020–1.702, p = 0.035), 
and Bacillales order (OR = 1.144; 95% CI = 1.013–1.293, p = 0.030) 
and PD risk. We also observed several microbiota that were negatively 
correlated with PD risk at the class or genus level. These included the 
order Lentisphaeria (OR = 0.836; 95% CI = 0.724–0.965, p = 0.015), 
the genus Anaerostipes (OR = 0.847; 95% CI = 0.728–0.986, 
p = 0.032), and the order Victivallales (OR = 0.847; 95% CI = 0.728–
0.986, p = 0.032), suggesting that these microbiota may have a 
protective effect in slowing the progression of PD. Future studies 
should further investigate whether the negative correlations between 

FIGURE 5

Heatmap of microbiota taxonomic abundance and associated metabolic pathways. The figure shows the magnitude of the correlation coefficients, 
with red indicating positive correlations and blue indicating negative correlations. Asterisks “*” within each cell indicate statistically significant 
correlations (p < 0.05).
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these microbiota and PD are related to their functional roles within 
the gut microbiota community, particularly focusing on how they 
influence GBA signaling and neuroprotection.

Sensitivity analyses using various methods indicated that the 
effect sizes reported above are robust (Table 1), with no evidence of 
pleiotropy or significant heterogeneity (p > 0.05). Thus, our findings 
are reliable, and no other significant associations between the gut 
microbiota and PD were observed.

4 Discussion

The introduction of the GBA theory has expanded the research 
perspective on the pathogenesis of PD, shifting the focus from the 
traditional view of central neurodegeneration to the regulatory role of 
the gut microbiota (Cryan et al., 2019). In this study, we combined 
metagenomic analysis with MR to systematically explore the genetic 
associations between the gut microbiota and PD, providing new 
insights into their potential causal relationships. Several microbial 
taxa and associated functional pathways were significantly altered in 
PD patients. Furthermore, a series of microbial taxa significantly 
associated with PD risk were identified in two independent databases 
(FinnGen and IPDGC). Some of these taxa exhibited consistent 
disease-promoting or protective trends, strengthening the robustness 
and reliability of the findings.

First, from the perspective of microbiome composition, the gut 
microbiota of PD patients exhibits structural remodeling, characterized 
particularly by a significant reduction in anti-inflammatory bacterial 
populations. Notably, a decrease was observed in well-known SCFA-
producing bacteria, such as Faecalibacterium and members of the 
Ruminococcaceae family; these bacteria are involved in regulating 

immune responses, intestinal inflammation, and the abnormal 
aggregation of α-Syn (Zhuang et al., 2019; Soto-Martin et al., 2020; 
Elford et  al., 2024). Moreover, in MR analyses, SCFA-producing 
bacteria such as Lachnoclostridium and Eubacterium ventriosum are 
often negatively correlated with PD risk (Zhang et al., 2020; Palepu 
et al., 2024). SCFAs serve as the primary energy source for colonic 
epithelial cells and play crucial roles in immunomodulation and anti-
inflammatory responses in PD. These effects are mediated through 
mechanisms such as maintaining intestinal barrier integrity, 
suppressing the expression of proinflammatory cytokines, and 
inducing regulatory T (Treg) cell differentiation (van der Hee and 
Wells, 2021; Blaak et al., 2020; Zhou et al., 2018; Li et al., 2021). In 
contrast, a significant increase in the gut microbiota is associated with 
inflammation and metabolic disorders in PD patients (Aho et al., 2021; 
Pfaffinger et  al., 2025). For example, pathogenic genera such as 
Klebsiella pneumoniae and Streptococcus, which are notably enriched 
in PD patients, can disrupt the intestinal barrier, increase permeability, 
and facilitate the penetration of toxins that, in turn, activate systemic 
immune responses and induce neuroinflammation (Tazi et al., 2010; 
Wang et al., 2024). However, the MR analysis in this study did not 
reveal any significant genetic associations between these harmful 
bacterial taxa and PD. This finding reinforces the reliability of our 
metagenomic findings, emphasizing that correlation does not imply 
causation. This distinction helps prevent overinterpretation and 
highlights MR’s complementary value in validating microbiome–
disease associations, especially in complex diseases like PD. Notably, 
certain beneficial microbes, such as Bifidobacterium dentium, 
demonstrated a significant protective effect against PD in the MR 
analyses despite their increased abundance in PD patients. This 
paradoxical increase may reflect compensatory proliferation, indicating 
that the SCFAs produced by these bacteria may no longer be sufficient 

FIGURE 6

MR analysis suggested causal relationships between the gut microbiota and PD-associated traits. (A) Forest plot showing that, as per FinnGen data, the 
gut microbiota significantly impacts specific PD-related traits. (B) Forest plot of IPDGC data indicating that the gut microbiota has a significant effect 
on PD-related traits.
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TABLE 1  Sensitivity analyses of MR analyses of PD on the gut microbiota by MR–Egger, simple mode, weighted median, weighted mode, and MR–Egger tests for heterogeneity.

Source of 
outcome 
data

Exposure 
level

Microbiota MR Egger Simple 
mode

Weighted median Weighted mode Cochran’s Q

OR (95%CI) p value OR (95%CI) p value OR (95%CI) p value OR (95%CI) p value Q Q_p value

FinnGen 

database

family Rikenellaceae 1.076 (0.630,1.840) 0.792 1.254 (0.830,1.893) 0.298 1.212 (0.960,1.530) 0.106 1.260 (0.852,1.863) 0.265 13.781 0.542

FinnGen 

database

genus Blautia 1.127 (0.649,1.958) 0.680 1.367 (0.852,2.194) 0.219 1.300 (0.988,1.711) 0.061 1.356 (0.861,2.135) 0.214 4.490 0.953

FinnGen 

database

genus Coprobacter 0.857 (0.490,1.500) 0.603 0.957 (0.707,1.296) 0.783 0.930 (0.773,1.120) 0.444 0.960 (0.713,1.292) 0.792 9.690 0.376

FinnGen 

database

genus Eubacteriumventr-

iosumgroup

0.617 (0.280,1.357) 0.251 0.909 (0.585,1.412) 0.677 0.862 (0.686,1.084) 0.203 0.909 (0.611,1.352) 0.644 6.860 0.909

FinnGen 

database

genus Phascolarctobact-

erium

1.760 (0.705,4.393) 0.265 0.679 (0.450,1.024) 0.102 0.775 (0.602,0.996) 0.047 0.691 (0.466,1.024) 0.103 4.972 0.663

FinnGen 

database

family Bifidobacteriaceae 0.685 (0.382,1.230) 0.237 0.922 (0.586,1.450) 0.732 0.868 (0.677,1.112) 0.263 0.925 (0.668,1.279) 0.646 7.171 0.619

FinnGen 

database

order Bifidobacteriales 0.685 (0.382,1.230) 0.237 0.922 (0.586,1.450) 0.732 0.868 (0.677,1.112) 0.263 0.925 (0.668,1.279) 0.646 7.171 0.619

FinnGen 

database

phylum Actinobacteria 0.824 (0.351,1.934) 0.663 0.841 (0.509,1.390) 0.511 0.843 (0.641,1.107) 0.219 0.841 (0.516,1.370) 0.498 15.073 0.303

FinnGen 

database

genus Lachnoclostridi-

um

1.284 (0.650,2.534) 0.487 0.708 (0.437,1.149) 0.187 0.744 (0.564,0.982) 0.037 0.705 (0.437,1.139) 0.179 8.673 0.652

IPDGC database genus Clostridiumsensu-

stricto1

1.728 (1.009,2.959) 0.103 1.404 (0.931,2.116) 0.156 1.413 (1.030,1.940) 0.032 1.416 (0.950,2.110) 0.138 1.614 0.900

IPDGC database genus Eubacteriumxyla-

nophilumgroup

1.614 (0.708,3.678) 0.298 1.451 (0.798,2.637) 0.261 1.409 (0.991,2.003) 0.056 1.451 (0.856,2.460) 0.209 5.740 0.453

IPDGC database order Bacillales 1.133 (0.614,2.092) 0.701 1.215 (0.922,1.601) 0.203 1.179 (0.998,1.393) 0.053 1.221 (0.928,1.606) 0.192 7.820 0.349

IPDGC database family Oxalobacteraceae 1.422 (0.856,2.362) 0.198 1.194 (0.913,1.561) 0.217 1.177 (1.005,1.379) 0.043 1.202 (0.942,1.532) 0.162 5.427 0.942

IPDGC database class Lentisphaeria 0.743 (0.450,1.225) 0.288 0.747 (0.529,1.056) 0.143 0.783 (0.640,0.959) 0.018 0.751 (0.544,1.036) 0.125 5.789 0.447

IPDGC database order Victivallales 0.743 (0.450,1.225) 0.288 0.747 (0.529,1.056) 0.143 0.783 (0.640,0.959) 0.018 0.751 (0.544,1.036) 0.125 5.789 0.447

IPDGC database phylum Lentisphaerae 0.715 (0.431,1.186) 0.235 0.743 (0.553, 

0.999)

0.085 0.762 (0.628,0.924) 0.006 0.745 (0.565,0.982) 0.070 5.899 0.552

IPDGC database genus Anaerostipes 0.568 (0.254,1.270) 0.201 0.976 (0.538,1.769) 0.938 0.792 (0.560,1.120) 0.187 1.024 (0.557,1.884) 0.940 4.561 0.871
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to maintain normal intestinal function (Engevik et al., 2020). Moreover, 
observational studies have linked elevated levels of Bifidobacterium in 
patients with PD to the dosage of levodopa administered to these 
individuals (Wallen et al., 2020). Interestingly, however, Blautia and 
Clostridium—both SCFA-producing bacteria—have demonstrated 
potential pathogenic roles in MR analyses (Song et al., 2024; Dicks, 
2024; Rivera-Chávez et al., 2016). This observation aligns with the 
findings of an animal study conducted by Qiao et al. (2020), which 
demonstrated that SCFAs exacerbate the pathological features of 
PD. These insights offer a more precise microbiota-based intervention 
strategy for the therapeutic application of probiotics in PD.

Through co-occurrence network analysis, we  subsequently 
identified several microbial pairs exhibiting strong correlations in 
patients with PD, with SCFA-producing bacteria showing a 
particularly prominent presence. Notably, strains belonging to the 
genera Alistipes and Clostridium demonstrated exceptionally high 
positive correlations (r = 0.999–1.000), suggesting potentially tight 
synergistic interactions between these taxa. Considering that both 
bacterial taxa possess the potential for SCFA synthesis, particularly 
playing crucial roles in the metabolic pathways of butyrate and 
propionate, their co-enrichment may represent a compensatory 
regulatory mechanism by which the host maintains an anti-
inflammatory microbial ecology under pathological conditions. This 
symbiotic pattern may not only modulate local pH and inhibit 
colonization by pathogenic bacteria but also exert protective effects in 
maintaining intestinal mucosal integrity and immune homeostasis 
(Lin et  al., 2025; Zhao et  al., 2023; Cazzaniga et  al., 2024). Thus, 
we hypothesize that the Alistipes–Clostridium symbiotic network may 
represent a promising target for future microecological interventions 
in PD, with potential clinical applicability. In contrast, we observed a 
moderate negative correlation between Faecalibacterium prausnitzii 
and both Blautia schinkii and Eisenbergiella tayi (r ≈ −0.527 to 
−0.538). Previous studies have demonstrated that Faecalibacterium 
prausnitzii, a key butyrate-producing bacterium, exerts notable anti-
inflammatory and immunomodulatory effects by suppressing 
proinflammatory cytokines and promoting the induction of Treg cells, 
thereby significantly alleviating PD-associated intestinal inflammation 
(Krueger et al., 2025; Bhutta et al., 2024). We hypothesize that the 
enrichment of Blautia schinkii and Eisenbergiella tayi may hinder the 
colonization and functional expression of Faecalibacterium prausnitzii 
through competitive inhibition or interactions involving metabolic 
products, thereby accelerating the shift of the gut ecosystem from a 
homeostatic state to a proinflammatory state. This negative 
relationship may act as a “critical negative regulatory factor” in the 
process of microbial dysbiosis associated with PD.

By integrating functional gene analysis with KEGG metabolic 
pathway analysis, we comprehensively investigated the metabolic 
reprogramming and immune regulation of the gut microbiota in 
patients with PD, thereby elucidating the potential roles of the 
microbiota in PD pathogenesis. The increased abundance of 
metabolic enzyme-encoding genes of the gut microbiota in PD 
patients, such as alcohol dehydrogenase (K00105), glyceraldehyde-3-
phosphate dehydrogenase (K00131), and pyruvate kinase (K00054), 
suggests that the gut microbiota of PD patients has a markedly 
increased capacity for glycolysis and energy metabolism pathways, 
reflecting adaptive responses to altered energy demands during 
disease progression (Li et al., 2024; Shen et al., 2025; Steiner, 2019). 
This trend of increased metabolism is consistent with the increased 
activity observed in the oxidative phosphorylation and carbohydrate 

digestion and absorption pathways identified through KEGG 
metabolic pathway analysis, further indicating that the gut microbiota 
plays a significant role in the metabolic adaptation associated with 
PD, thereby contributing to the maintenance of energy homeostasis. 
The most notable finding is the increased abundance of β-glucosidase 
(K01256) in PD patients, suggesting a potential increase in SCFA 
production within the gut. By promoting SCFA synthesis, the gut 
microbiota may influence the onset and progression of PD through 
mechanisms such as the modulation of immune responses, 
reinforcement of intestinal barrier integrity, and neuroprotection 
(Śliżewska et  al., 2023; Malinowska et  al., 2023). This finding 
corresponds with the significant upregulation of the glutathione 
metabolism pathway and the Staphylococcus aureus infection 
pathway—both involved in immune regulation—and the marked 
enhancement of the fatty acid degradation pathway related to SCFA 
synthesis observed in the PD patient group (Liu et al., 2025; Qin et al., 
2024; Ostrakhovitch et al., 2025).

We subsequently investigated the associations between key 
microbial strains and metabolic pathways to uncover potential 
regulatory mechanisms and their clinical implications. Eubacterium_
sp._CAG:202 exhibited strong positive correlations with several core 
metabolic pathways, including energy metabolism, vitamin 
metabolism, and stress response, suggesting that this strain may play 
a pivotal role as a “metabolic activator” in the gut of patients with 
PD. This pathway’s strong correlation with the oxidative 
phosphorylation and thiamine metabolism pathways indicates its 
potential involvement in the regulation of gut–brain axis homeostasis 
through the modulation of energy supply and metabolism associated 
with neuronal maintenance (Bedarf et  al., 2017). This regulatory 
mechanism may possess neuroprotective significance in the context 
of impaired energy metabolism in the nervous system of PD patients. 
Moreover, the association of this mechanism with resistance-related 
pathways may reflect an adaptive capacity to inflammatory or 
antibiotic-induced stress conditions, thereby providing 
microecological support for the stability of the gut microbiota in 
patients with PD (Zhang et al., 2024). In contrast, Faecalibacterium 
prausnitzii negatively correlated with multiple metabolic pathways, 
particularly those involved in stress response mechanisms, such as 
antioxidant activity and aromatic compound metabolism, reflecting a 
diminished capacity for functional regulation under inflammatory 
conditions. As a key anti-inflammatory bacterium (Mohebali et al., 
2023), reduced Faecalibacterium prausnitzii abundance may lead to 
dysregulation of critical metabolic pathways, thereby triggering 
compensatory stress responses in the host, such as excessive activation 
of the glutathione pathway. Overall, our correlation analysis revealed 
an important trend: the enhancement of microbial metabolic pathways 
in patients with PD does not necessarily indicate functional 
optimization but is more likely to represent a stress-induced 
compensatory response triggered by microbial dysbiosis. The 
reduction in probiotics exacerbates the negative regulation of 
metabolic networks, leading to hyperactivation of pathways related to 
energy production, detoxification, and immune responses, thereby 
reflecting dysregulation of the regulatory capacity of the 
microecosystem under disease conditions. This mechanistic insight 
deepens our understanding of functional imbalances in the 
PD-associated microbiota and provides a theoretical basis for 
identifying “keystone strains” with potential regulatory functions.

Despite the insights gained from this study, this study is limited by a 
small sample size, residual confounding from uncontrolled factors like 
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diet and body mass index (BMI), and population stratification across 
cohorts. These factors may bias associations between the microbiota and 
PD, highlighting the need for cautious interpretation and more robust. 
Future studies should employ larger, ethnically diverse, and longitudinal 
cohorts to validate these observations and improve generalizability. 
Incorporating detailed phenotypic data—such as dietary habits, BMI, 
medication use, and disease-related symptoms—will be essential for 
more precise adjustment of confounding variables. Furthermore, 
mechanistic studies are warranted to elucidate the dual and context-
dependent roles of SCFA-producing bacteria, which may exert both 
protective and proinflammatory effects under different physiological 
conditions (Qiao et al., 2020; Hirayama and Ohno, 2021). Such efforts 
will be  critical to refining microbiome-targeted therapeutic 
strategies for PD.

5 Conclusion

In this work, we provide a novel perspective for exploring the 
relationship between PD and the gut microbiome. By integrating 
metagenomics with MR, we found potentially pathogenic commensal 
bacteria among those traditionally regarded as beneficial, thereby 
challenging established paradigms in previous research. This finding 
contributes to a deeper understanding of the clinical relevance of the 
gut microbiota in PD. Moreover, by revealing alterations in microbial 
metabolic pathways and their associations with immune responses in 
PD patients, we  highlighted the critical role of SCFA-producing 
bacteria, indicating a promising direction for microbiota-targeted 
interventions in PD.
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