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Objective: This study developed and validated a machine learning (ML)-based 

predictive model utilizing febrile patients’ routine clinical laboratory data for 

the purpose of screening such patients for Talaromyces marneffei infection 

and to provide reference information for feature selection in the subsequent 

establishment of a more precise early warning model. 

Methods: This retrospective study enrolled febrile patients who visited Zhejiang 

Provincial People’s Hospital and the Third Affiliated Hospital of Zhejiang Chinese 

Medical University from January 2021–April 2025. Patient data, including sex, 

age, and laboratory test results, were collected. Through sparse partial least 

squares discriminant analysis, the most informative features were extracted from 

the dataset. Six classic machine learning algorithms were utilized to develop 

the optimal predictive model through 1000 bootstrap resamplings. Finally, the 

model was validated on an independent clinical validation dataset. 

Results: The training dataset comprised 485 febrile patients (141 with 

T. marneffei infection). The clinical validation dataset comprised 1,953 febrile 

patients (13 with T. marneffei infection). The random forest model demonstrated 

the highest performance in classifying T. marneffei-infected patients, with an 

area under the receiver operating characteristic curve of 0.987 in out-of-

bag validation and 0.989 in clinical validation. The model also exhibited good 

specificity (0.999) for T. marneffei infection and good sensitivity (0.845) in 

predicting bacteraemia in clinical validation. 

Conclusion: A random forest model can effectively utilize routine clinical 

laboratory data to predict T. marneffei infection and bacteraemia in febrile 

patients, offering a promising early screening tool for individuals at high risk for 

T. marneffei infection. 

KEYWORDS 

Talaromyces marneffei, febrile patients, machine learning, predictive model, feature 
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Introduction 

Talaromyces marneei (T. marneei), formerly known as 
Penicillium marneei, is a thermally dimorphic fungus belonging 
to the genus Talaromyces. Upon phagocytosis by macrophages 
within a mammalian host (at 37 ◦C), the spores of this fungus 
exhibit resistance to oxidative stress and nutritional deprivation, 
undergoing a transformation into fission yeast (Boyce et al., 
2018). This characteristic renders it an opportunistic pathogen 
that primarily infects immunocompromised individuals. Previous 
reports have focused predominantly on HIV-infected populations. 
However, the proportion of non-HIV-coinfected patients with 
T. marneei infection is increasing annually worldwide (Chan 
et al., 2016; Li et al., 2021). These non-HIV-coinfected patients 
include those who are receiving immunosuppressive therapy or 
have immunodeficiency disorders, and their mortality rate ranges 
from 24% to 51% because of misdiagnosis and agnostic delays (Li 
et al., 2024; Ly et al., 2020). Increasing the detection rate during the 
initial consultation while shortening the diagnostic time is crucial 
for reducing the rate of fatalities caused by T. marneei. 

Several key factors contribute to the high misdiagnosis rate 
and agnostic delays. First, fever is observed in almost all patients, 
and approximately half of them present with cough, while some 
may develop skeletal/joint lesions and skin/subcutaneous lesions 
(Li et al., 2023; Qiu et al., 2015). However, associated symptoms 
(e.g., umbilicated skin lesions) are relatively uncommon, making 
it easy to confuse T. marneei infection with diseases such as 
tuberculosis and respiratory pathogen infections (Chan et al., 
2016). Second, owing to the lack of vigilance among clinicians 
toward T. marneei in nonendemic regions, this fungus is often 
first detected through blood cultures (You et al., 2021). However, 
blood cultures for T. marneei detection take 7–14 days and have 
only 76% sensitivity, leading to missed diagnoses and delayed 
treatment (Ning et al., 2018). In contrast, bone marrow cultures 
and molecular or immunological detection techniques targeting the 
MP1 antigen can increase sensitivity to 90%–100% (Chen et al., 
2022; Ling et al., 2022), but these tests require relevant clinical 
evidence for support. 

Machine learning has been demonstrated to significantly 
increase accuracy in the clinical diagnosis of pathogen infections 
(Radaelli et al., 2024). Huang et al.’s (2022) employed a regression 
model in an HIV-infected population and identified key predictors 
useful for the dierential diagnosis of T. marneei infection, such 
as leukocytes and lactate dehydrogenase; together, these factors 
achieved an AUC of 0.815. Using a logistic regression model, 
Qiu et al. (2025) identified multiple independent predictors of 
T. marneei infection in non-HIV-infected patients; these factors, 
including, among others, age and white blood cell dierential, also 
jointly achieved an AUC of 0.9. These two pivotal studies indicate 
that T. marneei infection can be predicted via routine blood 
cell counts, biochemical tests, and other conventional laboratory 
data. However, these studies were conducted in regions where 
T. marneei is endemic (Guangdong and Guangxi, China), and 
the patient populations were stratified on the basis of HIV 
infection status. In nonendemic regions, patients often present with 
persistent fever as the primary symptom, and clinicians generally 
do not inquire about sensitive questions such as HIV infection 
status. For such complex patient populations, rapid alerts for 

T. marneei infection on the basis of routinely available test results 
would hold especially high clinical value. 

The objective of this study was to develop a predictive model 
for T. marneei infection using routine laboratory test data from 
infected patients (including HIV-coinfected, non-HIV-coinfected 
patients, and patients whose HIV infection status is unclear), 
thereby significantly advancing the timing of clinical intervention 
and reducing the risk of patient mortality. Additionally, this study 
aimed to identify high-value predictive factors for future large-
scale, multiregional, multicentre clinical trials of early warning 
models for T. marneei infection. 

Materials and methods 

Patients and data collection 

The patient data utilized in this study were retrospectively 
collected from febrile patients who visited the Third Aÿliated 
Hospital of Zhejiang Chinese Medical University (Zhejiang, 
China), The First People’s Hospital of Yuhang District (Zhejiang, 
China), and Luqiao Hospital of Traditional Chinese Medicine 
(Zhejiang, China) between April 2021 and April 2025. The 
inclusion criteria for patients were as follows: (1) They met 
the diagnostic criteria for fever (as defined in the IDSA/SCCM 
consensus guidelines) (O’Grady et al., 2023). (2) They had 
undergone blood culture tests (because none of the hospitals 
involved in this research had a unified standard for blood culture, 
only patients who met the testing conditions outlined in the 
American Society for Microbiology Cumitech were selected). (3) 
Clinical information and laboratory test results, including blood 
culture, routine blood tests, biochemical tests, and procalcitonin 
measurement, were available. Anonymized patient information 
and test data were collected through the Laboratory Information 
System (LIS). The basic patient information included sex and 
age. The laboratory test data included blood culture results, 
routine blood tests, biochemical tests, and procalcitonin. To ensure 
the comparability of data from dierent institutions, all clinical 
research centers selected for this study employed a combination 
of mass spectrometry and biochemical methods to identify the 
pathogens in all positive blood cultures. The mass spectrometers 
used by all centers were all Autobio MS series fully automated 
microbial mass spectrometry detection systems and utilized the 
same pathogen identification database, which includes the spectral 
patterns of T. marneei. The patients were divided into three 
groups, namely, T. marneei infection, other pathogen infection 
(positive), and no pathogens detected (negative), according to 
the results of blood cultures. Data processing and modeling in 
this study were conducted within the R computing environment 
(version 4.4.2). 

Data processing 

Samples and laboratory tests with more than 10% of values 
missing in any group were excluded to mitigate the impact 
of missing data on subsequent analyses. For the remaining 
samples with missing values, the advanced multiple imputation by 
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chained equations (MICE) method was employed for imputation. 
The number of imputations was set at 5 to enhance the 
stability and accuracy of the imputation results. To eliminate 
the potential eects of dierent scales among various indicators 
and the influence of extreme values on model construction, all 
continuous variables underwent logarithmic transformation and 
Z-score standardization, ensuring the comparability of indicators 
within the model. 

Feature selection 

All samples that tested positive for T. marneei from January 
2021 to September 2024, alongside randomly selected samples 
with positive and negative blood culture results, were used as the 
training dataset. Feature extraction was accomplished by tuning 
and establishing a sparse partial least squares discriminant analysis 
(sPLS-DA) via the mixOmics package (version 6.26.0). All analyses 
were conducted via R software (version 4.4.2). During the tuning 
process, the optimal number of components and the optimal 
number of variables (clinical and laboratory data) within each 
component were determined through a grid search that explored 
all possible parameter combinations. The top 2 inflection points 
(points with a second derivative of zero) were calculated on the 
basis of the trend and magnitude of changes in contribution and 
stability. The purpose of this step was to stratify features according 
to their contribution or stability and assist in further optimizing the 
number of features. 

Modeling and OOB validation 

The performance of the features was validated via six classic 
algorithms, namely, the decision tree, random forest, neural 
network, conditional inference tree, C5.0 decision tree, and support 
vector machine algorithms (using the caret package, version 6.0.94). 
The validation process comprised 1,000 bootstrap resampling 
iterations. For each sample in the original dataset, we collected its 
predictions whenever it appeared in out-of-bag (OOB) validation 
sets. The final confusion matrix was generated by aggregating 
predictions and comparing with the true class labels across 
all samples. From the confusion matrices, various performance 
metrics, such as the accuracy, precision, recall, and F1 score, 
were calculated to assess the model’s classification eectiveness 
comprehensively. Receiver operating characteristic (ROC) curves 
and area under the curve (AUC) values were used to evaluate 
the performance of the validation models. To analyze the model’s 
classification performance for each category via ROC curves, we 
transformed the ternary (three-class) classification problem into 
three binary (two-class) classification problems (T. marneei vs. 
non-T. marneei, positive vs. nonpositive, etc.). 

Validation of the optimal model in a 
clinical environment 

To detect potential sampling errors during the generation of 
the training dataset and validate the model’s performance in real-
world clinical practice, we applied the optimal prediction model 

continuously to all eligible samples collected between October 2024 
and March 2025. This approach was employed to assess the model’s 
classification capability in authentic clinical scenarios. The model 
was evaluated according to the same indices mentioned above. 
Given that other species of fungi are prone to being confused with 
T. marneei during clinical diagnosis, we specifically extracted the 
prediction results of fungal-infected cases to evaluate the model’s 
performance in correctly identifying them. 

Statistical methods 

The Games–Howell method was employed for significance 
testing of features across dierent groups, accommodating data 
that were not normally distributed and exhibited unequal variances. 
The Holm–Bonferroni method was used to adjust the P-values for 
multiple comparisons. In terms of model performance comparison, 
the DeLong test was employed to conduct significance tests on the 
dierences in AUCs among dierent groups of models, ensuring 
that the comparison results of model performance were statistically 
meaningful. Data distributions are presented as medians and 95% 
confidence intervals (95% CIs). 

Results 

Overview training data 

From January 2021 to March 2025, 37,063 febrile patients 
(inpatients and outpatients) met the inclusion criteria, including 
141 with T. marneei infections, 4,968 with positive blood cultures, 
and 31,954 with negative cultures. A total of 28 test items were 
retained. To ensure balanced training data and meet machine 
learning requirements (number of samples > 10× number of 
features), all 141 T. marneei-infected patients (2021–2024) and 
random subsets of patients with positive and negative blood 
culture (171 and 173, respectively) were included (the raw data 
are presented in Supplementary Table 1, and the summary 
is provided in Supplementary Table 2). The training cohort 
comprised 70.3% males (n = 341) and 29.7% females (n = 144) 
aged 19–102 years (median = 67 years; 95% CI: 27–94). Additional 
data on the pathogen species and intergroup dierences are 
shown in Figure 1A and Supplementary Figure 1, respectively. 
UMAP clustering revealed distinct groupings, with clear separation 
between T. marneei and the other groups (Figure 1B). 

Feature selection 

The sPLS-DA algorithm identifies feature contributions by 
fitting an optimal classification model. With 30 iterations, the 
model error decreased until three components minimized it, 
beyond which overfitting occurred (Figure 1C). Thus, we used the 
first three components for analysis. Clustering revealed distinct 
groups, although the negative and positive clusters overlapped, 
indicating good T. marneei detection but limited dierentiation 
between blood-culture-negative and blood-culture-positive cases 
(Figure 1D). 
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FIGURE 1 

Characteristics of the training sample data. (A) Frequency plot of pathogen species in patients with positive blood cultures. (B) Uniform manifold 
approximation and projection (UMAP) clustering plot of patients (n = 485) in the training dataset. The clustering plot utilized all 28 eligible laboratory 
tests (including sex and age). Patients with T. marneffei infection (n = 141) presented distinct clustering boundaries, whereas the boundaries for 
blood-culture-negative (n = 173) and blood-culture-positive (n = 171) patients were less pronounced. (C) Error convergence curve of the sparse 
partial least squares discriminant analysis (sPLS-DA) model during the calculation of its optimal parameters. (D) Clustering analysis of samples based 
on the first three components of the sPLS-DA model, yielding results similar to those of the UMAP clustering. 

Feature analysis 

By analyzing feature contribution and stability in the sPLS-
DA model, we plotted ranking diagrams for total contribution 

(Figure 2A) and stability (Figure 2B). Significant contribution 

changes occurred at the 3rd and 5th features, and robustness 
changes occurred at the 16th and 19th features. For subsequent 
modeling, we selected the top 16 features ranked by stability 

because higher stability implies that these features make more 

consistent contributions across dierent data subsets and are 

more likely to be genuine features. Figure 2C shows a cluster 

heatmap of these 16 features, with patients aggregated well in 

one-dimensional space, especially T. marneei-infected patients; 
the test items showed intuitive characteristics such as younger 

age and higher procalcitonin levels in T. marneei-infected 

patients. Figure 2D shows the feature–group relationships for each 

component. Component 1 mainly distinguishes the T. marneei-
infected group, Component 2 mainly contributes to dierentiating 

the negative and positive groups, and Component 3 supplements 
the first two. Ridge plots (Figure 3) clearly show the distributions 
of each feature: the T. marneei group were younger and had 

lower monocyte and neutrophil counts but higher triglyceride 

and procalcitonin levels, etc.; blood-culture-positive patients were 

older and had higher urea nitrogen levels. Multiple items in the 
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FIGURE 2 

Extraction of the optimal feature set via sPLS-DA. (A) The subplots above and below represent the total contribution of features and the contribution 
of features within each component, respectively. The green dots represent the inflection points of the contribution trend line (the preceding 
numbers denote the feature indices, and the subsequent numbers represent the fitted values of the trend line). (B) Component-based total stability 
of features. (C) Sample-based clustering heatmap of the 16 optimal features selected on the basis of feature stability. The colors represent the 
results of various laboratory tests. (D) Contributions of group-based features. 

T. marneei group had a bimodal or non-normal distribution, 
indicating that the patients in this group exhibited heterogeneity. 

Model performance 

The confusion matrices of all the models are shown in 
Figure 4A. Table 1 was generated on the basis of the confusion 
matrices. Table 1 shows that the SVM model had the highest 
overall accuracy (0.786; 95% CI: 0.746–0.821), followed by random 
forest model (0.777; 95% CI: 0.738–0.814). In classifying the 
T. marneei group, the random forest model had the highest 
accuracy (accuracy = 0.957), followed by the SVM model 

(accuracy = 0.932). Figure 4B shows that the random forest 
model had the highest average AUC (0.918), followed by the 
SVM model (0.914). Similarly, in classifying T. marneei-infected 
patients, the random forest model had the highest AUC value 
(0.987), followed by the SVM model (0.978). There was also 
no significant dierence in the average AUC between the two 
models (P = 0.959) (Figure 5A). Among all the models, the 
decision tree model had the worst performance in terms of 
both average AUC (0.692) and overall accuracy (0.532, 95% 
CI: 0.486–0.577). Since the main purpose of this study was 
to identify T. marneei-infected patients, the random forest 
model was selected as the final model for subsequent clinical 
validation. 
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FIGURE 3 

Ridge plots for each group based on the 16 optimal features. For clearer visual comparison, all the results in the plots were subjected to logarithmic 
transformation and normalization. 

Clinical validation 

Data from all eligible febrile patients seen from January 2025 
to March 2025 were collected. There were 1,953 fever patients 
in total, including 1,721 patients with negative blood cultures, 
219 patients with positive blood cultures, and 13 patients infected 
with T. marneei (a summary is provided in Supplementary 
Table 3). Since these data were normalized independently of 
the training dataset, the predicted probabilities were binarized 
using the Youden index as the threshold to obtain the predicted 
classification labels (Figure 5B). The results revealed that the 
overall accuracy of the model was 0.665 (95% CI: 0.643–0.686), 
and the kappa value was only 0.238, which might be due to 
the imbalance in the dataset (Table 1). The model had high 
specificity when separately predicting blood-culture-negative and 
T. marneei-infected patients, with values of 0.853 and 0.999, 
respectively, but poor sensitivity, with values of 0.642 and 0.692, 
respectively. When predicting blood-culture-positive samples, the 
model had relatively good sensitivity (0.845) but poor specificity 
(0.642). The balanced accuracy (which corrects for the distortion of 
overall accuracy caused by dataset imbalance) of the model when 

separately distinguishing the positive, negative, and T. marneei 
groups was 0.748, 0.846, and 0.744, respectively, indicating that 
the model had the best predictive ability for T. marneei-infected 
patients. This trend was consistent with the AUC values of the ROC 
curves for the three categories, which were 0.848, 0.989, and 0.778, 
respectively (Figure 5C). The above results indicate that the model 
performed well in distinguishing cases of T. marneei infection. 
Moreover, the AUC, sensitivity, specificity, and balanced accuracy 
of the model in classifying fungi and T. marneei were 0.962, 0.913, 
0.692, and 0.803, respectively (Table 1 and Figures 5D–F). 

Discussion 

T. marneei is predominantly distributed in Southeast Asia 
(including Vietnam, Thailand, and southern China), India, and 
southern China. Its conidia are transmitted primarily via aerosols 
(Wangsanut et al., 2023). Fever is the most prominent clinical 
manifestation of T. marneei infection, with a prevalence rate 
exceeding 93% in both adults and children (Sun et al., 2021; 
Zeng et al., 2021). In clinical diagnosis, a history of exposure 
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FIGURE 4 

Six three-class classification models were constructed using the 16 optimal features. (A) Confusion matrices for each model were employed to 
calculate crucial evaluation indices, including the sensitivity, specificity, accuracy, and F1 score. (B) Receiver operating characteristic (ROC) curves 
for each model, along with the area under the curve (AUC) values for each class, were utilized to assess the classification performance of the models 
in a threshold-independent manner. 

to endemic areas and HIV infection are crucial indicators 
suggesting T. marneei infection (Patel et al., 2024). However, 
in nonendemic areas, clinicians may not initially consider 

T. marneei infection when treating febrile patients and may 

not inquire about the aforementioned information. An important 
role of the clinical laboratory is to provide objective reference 

information for clinical decision-making. Therefore, in this study, 
we did not consider including subjective indicators such as 
patient history as training data for the model. The training 

data encompassed inpatients and outpatients from multiple 

clinical research centers, including both AIDS patients and 

non-AIDS patients, to ensure the diversity of the training 

dataset (the proportions of AIDS patients are detailed in 

Supplementary Tables 2, 3). A high diversity of training data can 

significantly improve a model’s generalization ability, strengthen its 
performance in real-world settings, and reduce bias in the extracted 

features that may arise from the use of a single sample source 

(Konkel et al., 2023; Zhang et al., 2023). 
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TABLE 1 The results of the six classical models established using optimized features. 

Model Random forest Neural network Conditional 
inference tree 

SVM Decision tree C5.0 decision tree Clinical validation 

Group Neg TM Pos Neg TM Pos Neg TM Pos Neg TM Pos Neg TM Pos Neg TM Pos Neg TM Pos Fungi 

Sensitivity 0.728 0.943 0.69 0.723 0.915 0.632 0.751 0.851 0.491 0.769 0.894 0.714 0.503 0.56 0.538 0.734 0.908 0.649 0.642 0.692 0.845 0.913 

Specificity 0.837 0.971 0.850 0.833 0.939 0.841 0.766 0.916 0.844 0.846 0.971 0.854 0.798 0.866 0.624 0.827 0.951 0.847 0.853 0.999 0.642 0.692 

PPV 0.712 0.930 0.715 0.706 0.86 0.684 0.64 0.805 0.632 0.735 0.927 0.726 0.580 0.632 0.438 0.702 0.883 0.698 0.970 0.900 0.23 – 

NPV 0.847 0.977 0.834 0.844 0.964 0.807 0.848 0.938 0.753 0.868 0.957 0.845 0.743 0.828 0.713 0.849 0.962 0.816 0.243 0.998 0.970 – 

Precision 0.712 0.930 0.715 0.706 0.860 0.684 0.64 0.805 0.632 0.735 0.927 0.726 0.58 0.632 0.438 0.702 0.883 0.698 0.970 0.900 0.23 – 

Recall 0.728 0.943 0.690 0.723 0.915 0.632 0.751 0.851 0.491 0.769 0.894 0.714 0.503 0.560 0.538 0.734 0.908 0.649 0.642 0.692 0.845 – 

F1 score 0.720 0.937 0.702 0.714 0.887 0.657 0.692 0.828 0.553 0.751 0.910 0.720 0.539 0.594 0.483 0.718 0.895 0.673 0.772 0.783 0.361 – 

Prevalence 0.357 0.291 0.353 0.357 0.291 0.353 0.357 0.291 0.353 0.357 0.291 0.353 0.357 0.291 0.353 0.357 0.291 0.353 0.881 0.007 0.112 – 

DR 0.260 0.274 0.243 0.258 0.266 0.223 0.268 0.247 0.173 0.274 0.26 0.252 0.179 0.163 0.19 0.262 0.264 0.229 0.565 0.005 0.095 – 

DP 0.365 0.295 0.340 0.365 0.309 0.326 0.419 0.307 0.274 0.373 0.28 0.346 0.309 0.258 0.433 0.373 0.299 0.328 0.583 0.005 0.412 – 

Balanced 

accuracy 

0.782 0.957 0.770 0.778 0.927 0.736 0.759 0.883 0.668 0.808 0.932 0.784 0.651 0.713 0.581 0.781 0.929 0.748 0.748 0.846 0.744 0.803 

Accuracy 

(95% CI) 
0.777 (0.738–0.814) 0.746 (0.705–0.785) 0.689 (0.645–0.730) 0.786 (0.746–0.821) 0.532 (0.486–0.577) 0.755 (0.713–0.792) 0.665 (0.643–0.686) 

Kappa 0.665 0.619 0.532 0.677 0.293 0.631 0.238 

SVM, support vector machine; DR, detection rate; DP, detection prevalence; PPV, positive predictive value; NPV, negative predictive value. 
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FIGURE 5 

Clinical validation outcomes of the optimal model. The performance of the optimal model was rigorously evaluated using an independent and 
continuous dataset (n = 1,953). (A) The disparities in the mean AUC across the six models were utilized as the criterion for selecting the optimal 
model. The numbers in the grid represent P-values. (B) Confusion matrix for the clinical validation of the optimal model (random forest). (C) ROC 
curve of the optimal model, accompanied by AUC values for each category. The model achieved an average AUC of 0.872 for three-class 
classification, with the highest AUC (0.989) observed for predicting T. marneffei-infected patients. (D) The quantity and proportion of fungal patients 
in the validation dataset. (E) Confusion matrix of the model’s classification of fungi into the positive group in the validation dataset. (F) ROC curve of 
the model’s classification of fungi into the positive group in the validation dataset. 

To date, studies on the dierential diagnosis of T. marneei 
infection using routine data (including clinical signs and laboratory 

tests) have been limited, with notable contributions from Lu 

et al. (2025), Qiu et al. (2025), and Huang et al.’s (2022). Lu 

et al. (2025) developed a combined model utilizing CT scans and 

clinical indicators, which serves as an eective assessment tool 
for distinguishing whether pulmonary infections in HIV patients 

are caused by T. marneei. Huang et al.’s (2022) constructed a 

linear regression model by selecting multiple blood cell indicators, 
achieving an AUC of 0.815, with sensitivity and specificity of 0.762 

and 0.761, respectively, in diagnosing HIV patients co-infected 

with T. marneei. Additionally, Qiu et al. (2025) developed a 

logistic regression model incorporating blood cell indices, certain 

biochemical markers, and clinical symptoms, which attained an 
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AUC of 0.918 (95% CI: 0.884–0.953) in dierentiating pulmonary 
tuberculosis from T. marneei infection in non-HIV patients. 

Our model, which references the indicators from the above 
studies and incorporates additional inflammation-related and 
biochemical markers, demonstrated AUC values exceeding 0.98 in 
both OOB validation and clinical validation, outperforming the 
models by Qiu et al. (2025) and Huang et al.’s (2022) Specifically, 
our model achieved a specificity of 0.999 in the validation dataset, 
although its sensitivity was 0.692, which is lower than that of 
Huang et al.’s (2022) model. The imbalance between specificity 
and sensitivity may be attributed to the optimal Youden index 
selecting an imbalanced threshold to maximize the AUC. In 
practical application, this threshold can be adjusted according 
to clinical needs. Although our study did not separate HIV-
infected patients from non-HIV-infected ones, which enhances the 
applicability of our model, our training dataset did not include 
tuberculosis patients. Consequently, the diagnostic eÿcacy of our 
model in dierentiating tuberculosis from T. marneei infection 
may not be on par with that of Qiu et al. (2025) model. Besides, 
during both OOB sample validation and clinical practice validation, 
our model demonstrated significant limitations in dierentiating 
febrile patients with negative and positive blood cultures. There 
are likely two main reasons for this phenomenon. First, to ensure 
balance in the training dataset, we randomly selected a training 
dataset of 171 patients with positive blood cultures. Clearly, 171 
positive samples cannot adequately cover the diversity of pathogen 
species. Similarly, the training data for negative patients failed 
to eectively encompass the characteristics of this group, which 
may be the primary reason for the model’s low accuracy in 
dierentiating between negative and positive patients. Second, the 
insuÿcient number of representative features may be another 
important factor contributing to the model’s inability to eÿciently 
distinguish between patients with negative and positive blood 
cultures (Sterkenburg, 2025). 

Lu et al. (2025), Huang et al.’s (2022), and Qiu et al. (2025) 
identified key laboratory predictors such as aspartate transaminase 
(AST) and albumin levels; platelet and neutrophil counts. Despite 
dierences in patient populations between our study and these 
previous studies, the feature analysis in our study also found that 
these indicators, including albumin, neutrophils, and AST, are 
the optimal features, underscoring their importance in predicting 
T. marneei infection. Notably, the decrease in albumin and 
increase in AST in T. marneei-infected patients (Supplementary 
Figure 1) have been confirmed in other relevant clinical studies 
(Li et al., 2016; Peng et al., 2022). Our findings also revealed 
an abnormal bidirectional (bimodal) distribution of neutrophils 
(Figure 3). Previous research has suggested that this phenomenon 
may be associated with HIV infection. In non-HIV-infected 
individuals, neutrophil counts tend to be elevated in the event of 
T. marneei infection (Chen et al., 2021), whereas in HIV-infected 
patients, neutrophil counts decrease due to immunodeficiency (Li 
et al., 2016). 

Furthermore, our machine learning model identified several 
new laboratory markers with potential predictive value for 
T. marneei infection, including lactate dehydrogenase (LDH), 
procalcitonin (PCT), high-sensitivity C-reactive protein (hs-CRP), 
direct bilirubin (DB), and triglycerides (TG). We observed 
significantly elevated levels of these markers in T. marneei-
infected patients compared with blood-culture-negative febrile 

patients. Notably, LDH, DB, and TG were also significantly elevated 
in T. marneei-infected patients compared with all other febrile 
patients. Except for TG, the elevation of these markers is supported 
by relevant clinical studies (Huang et al.’s, 2022; Li et al., 2024; 
Shi et al., 2021; Sun et al., 2021; Wang et al., 2024). An increased 
level of procalcitonin (PCT) is considered an independent risk 
factor for mortality in patients with Talaromyces marneei infection 
(Sun et al., 2021). T. marneei can induce hepatocyte pyroptosis, 
releasing large amounts of IL-1β and IL-18 (Ma et al., 2021; Wang 
et al., 2022), which may trigger hepatic inflammatory responses, 
potentially explaining the increases in LDH, DB, and TG. 

Additionally, we identified laboratory indicators associated 
with predicting blood culture positivity (including bacteremia 
and fungemia), including urea, creatinine, age, total bilirubin, 
and neutrophil count. These markers were significantly elevated 
in our study compared with blood-culture-negative patients or 
compared with both blood-culture-negative and T. marneei-
infected patients. Clinical studies have shown that older patients 
are more prone to bacteraemia (da Silva et al., 2021). Elevated 
creatinine and urea levels suggest renal dysfunction, which may 
be associated with acute kidney injury commonly accompanying 
bacteraemia (Lentini et al., 2012). Moreover, elevated blood urea 
nitrogen is significantly correlated with bacteraemia prognosis 
(Salih et al., 2013). Elevated bilirubin levels may be related to 
specific bacterial infections or endotoxaemia (Azizoglu et al., 2024). 
During bacteraemia, neutrophils serve as the primary eector cells 
of innate immunity. Therefore, neutrophilia is a characteristic 
feature of bacteraemic patients (Azizoglu et al., 2024; Guo et al., 
2023), and neutrophil counts are positively correlated with the 
bacterial load in the bloodstream (Han et al., 2023). 

This study has several limitations. First, as previously 
mentioned, to ensure a balanced sample size across categories in the 
training dataset, the representativeness of the training samples for 
patients with negative and positive blood cultures was somewhat 
inadequate. Notably, fungi and mycobacteria were not explicitly 
trained or validated as independent output categories in our 
model. Consequently, when applied to the dierential diagnosis 
of patients with suspected T. marneei and fungi infection, the 
model may not demonstrate equivalent diagnostic accuracy in this 
specific patient population. Second, owing to the low number of 
T. marneei-infected patients in nonendemic areas, the proportion 
of T. marneei-infected patients in our clinical validation dataset 
was highly imbalanced. Consequently, metrics that are sensitive 
to data balance, such as the kappa value, may not hold high 
reference value in the clinical validation results. Finally, the study 
subjects were primarily from Zhejiang Province, China, and the 
distribution and clinical manifestations of T. marneei infection in 
nonendemic areas may vary globally. Therefore, the applicability 
and generalizability of this model may be limited in other regions. 

Conclusion 

Our study has successfully established a highly specific model 
for early screening and identification of blood-culture-positive 
and T. marneei-infected febrile patients and also highlights 
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a set of classification-related features. Furthermore, we validated 
the feasibility of eÿciently providing an early warning of 
T. marneei infection in febrile patients via routine laboratory data. 
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