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Multi-cohort metagenomics
reveals strain functional
heterogeneity and demonstrates
fecal microbial load correction
improves colorectal cancer
diagnostic models
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Introduction: Colorectal cancer (CRC) is strongly associated with alterations in
the gut microbiome. While numerous studies have examined this association,
most focus on genus– or species–level taxonomic classifications, overlooking
functional heterogeneity at the strain level.
Methods: We integrated 1,123 metagenomic samples from seven global
CRC cohorts to conduct multi-level metagenome-wide association studies
(MWAS). Fecal microbial load (FML) correction was applied to mitigate technical
confounding. We evaluated the performance of taxonomic models at various
resolutions strain, species, and genus levels in classifying CRC status both within
and across cohorts.
Results: Strain–level analysis revealed conspecific strains with divergent
associations to CRC. For instance, distinct strains of Bacteroides
thetaiotaomicron exhibited both protective and risk-increasing effects
across different cohorts. Genomic functional annotation suggested potential
mechanistic bases for these opposing roles. Correction for FML reduced
confounding and significantly improved the performance of within–cohort and
cross–cohort CRC classification models. Interestingly, genus- and species-level
models demonstrated superior predictive robustness compared to strain–level
models, likely due to higher microbial abundance and greater cross-population
conservation at these taxonomic ranks.
Conclusion: Our study underscores the biological relevance of strain level
analysis in elucidating functional diversity within the microbiome. However,
higher taxonomic levels provide more robust and clinically translatable
diagnostic markers for CRC. Integrating FML correction with multi-level
taxonomic profiling enhances both mechanistic insight into microbiom CRC
interactions and the generalizability of diagnostic models across diverse
populations.
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Introduction

Colorectal cancer (CRC), comprising approximately 10%
of all cancer cases worldwide, stands as the second leading
cause of cancer-related mortality (Sung et al., 2021). Due to its
typically asymptomatic early stages, CRC is often diagnosed
at advanced phases when therapeutic options are limited.
Accumulating evidence over recent years has firmly established
a critical association between CRC development and the human
gut microbiome, with interactions primarily mediated through
mechanisms such as microbial metabolism, inflammatory
regulation, immune dysbalance, and intestinal barrier dysfunction
(White and Sears, 2024; Wong and Yu, 2023). Studies have further
highlighted the potential of gut microbes as diagnostic biomarkers,
demonstrating high accuracy in predicting gastrointestinal diseases
including CRC and inflammatory bowel disease (IBD) (Wong
et al., 2017; Wang and Jia, 2016).

Notably, most existing research has focused on taxonomic
analysis at the genus or species level, overlooking the functional
heterogeneity that may exist among different strains within the
same genus or species. Strains from the same microbial species
can exhibit divergent phenotypes or even opposing biological
functions in host environments. For example, Escherichia coli (E.
coli), a common commensal in mammalian intestines, includes the
probiotic strain Nissle 1917, which synthesizes essential vitamins,
alongside highly pathogenic variants like E. coli STEC O26:H11 and
EHEC O104:H4, associated with hemolytic uremic syndrome and
fatal diarrhea (Marx, 2016; Bonanno et al., 2015). Similarly, distinct
strains of Staphylococcus aureus and Streptococcus pyogenes elicit
markedly different immune responses in humans (Sela et al., 2018;
Van Rossum et al., 2020).

Advances in metagenomic sequencing depth and high-
resolution taxonomic profiling tools have enabled strain-level
metagenome-wide association studies (MWAS), providing new
avenues to dissect microbiome functional characteristics (Shi et al.,
2022; Olm et al., 2021). However, a gap remains in strain-resolved
MWAS of CRC, particularly regarding systematic cross-cohort
comparisons across diverse geographical populations.

Additionally, fecal microbial load (FML), an important factor
influencing microbial composition analysis, has gained increasing
attention. A recent study demonstrated that neglecting FML
correction can lead to spurious associations between microbial taxa
and diseases, with effect sizes and significance metrics changing
substantially after load adjustment (Nishijima et al., 2025). This
suggests FML represents a potential confounder in MWAS,
yet its impact on disease classification model performance—
especially across taxonomic levels (strain, species, and genus) and
geographical cohorts—remains uncharacterized.

To address these knowledge gaps, our study integrated 1,123
samples from seven independent CRC cohorts across seven
countries, employing a standardized analytical pipeline to conduct
systematic MWAS at strain, species, and genus levels. We evaluated
the effects of FML correction on the identification of disease-
associated microbial features and the performance of classification
models for CRC. Through multi-cohort, multi-level comparisons,
we aimed to: (1) demonstrate the unique value of strain-level
analysis in resolving biological heterogeneity, (2) assess the
robustness of genus/species-level features in diagnostic models

for clinical utility, and (3) determine whether FML correction
enhances disease prediction performance. Our findings provide
critical insights for mechanistic studies of the gut microbiome in
CRC and its application in early clinical diagnosis.

Materials and methods

Cohort selection

We collected published fecal whole metagenome sequencing
(WMS) data from seven cohorts consisting of CRC patients
and healthy controls, spanning seven countries. Raw sequencing
data for these samples were downloaded from the Sequence
Read Archive (SRA) and European Nucleotide Archive (ENA)
using the following accession IDs: ERP008729 (AUT cohort)
from Feng et al. (2015), PRJEB10878. (CHI cohort) from Yu
et al. (2017), PRJNA531273 and PRJNA397112 (IND cohort)
from Gupta et al. (2019), ERP005534 (FRA cohort) from Zeller
et al. (2014), SRP136711 (ITA cohort) from Thomas et al.
(2019), PRJEB12449 (USA cohort) from Vogtmann et al. (2016),
and DRA006684/DRA008156 (JPN cohort) from Yachida et al.
(2019). Metadata were manually curated from original studies,
excluding samples with missing Age, BMI, or Gender information,
resulting in 1,123 samples. Only colorectal cancer and healthy
control samples were included in downstream analyses, excluding
adenoma cases.

Sample preprocessing and metagenomic
profiling

For raw sequencing data preprocessing, KneadData (https://
github.com/biobakery/kneaddata, V0.12.0) was used for quality
control and host contamination removal. Trimmomatic (V0.39,
integrated in KneadData) performed sequence quality filtering
and adapter trimming with parameters: ILLUMINACLIP:TruSeq3-
PE.fa:2:40:15 SLIDINGWINDOW:4:20 MINLEN:50. Host-derived
reads were removed by aligning to the human reference genome
(GRCh38_p14) using Bowtie2 (V2.4.1) with parameters: –very-
sensitive –dovetail –reorder.

Strain-level abundance analysis of preprocessed sequences was
conducted using Sylph (V0.6.1) (Shaw and Yu, 2024) against
a custom non-redundant strain database (c200_gtdb_strain.syldb,
compression parameter c = 200). Genomes were downloaded from
the Genome Taxonomy Database (GTDB) using genome_updater
(https://github.com/pirovc/genome_updater), with a limit of 100
genomes per species to constrain computational costs, yielding
343,362 strains. For each species, pairwise average nucleotide
identity (ANI) matrices were calculated by FastANI (v1.33) (Jain
et al., 2018), followed by custom graph-based clustering at ANI
thresholds of 95%–99.9%. Here, the 95% ANI threshold is widely
used for microbial species delineation to differentiate interspecies
boundaries (Jain et al., 2018; Konstantinidis and Tiedje, 2005;
Goris et al., 2007), while the 99.9% upper bound is designed to
capture intraspecies strain-level genetic variations, preventing the
loss of biologically meaningful diversity due to overly stringent

Frontiers in Microbiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1656016
https://github.com/biobakery/kneaddata
https://github.com/biobakery/kneaddata
https://github.com/pirovc/genome_updater
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2025.1656016

thresholds. The refined database contained 206,273 strains
(GTDB:206273).

Species-level analysis utilized MetaPhlAn4 (V4.1.1)
(Blanco-Míguez et al., 2023) with the mpa_vJan21_
CHOCOPhlAnSGB_202103 reference database. Taxonomic
results from both tools were merged at genus, species, and strain
levels using MetaPhlAn’s merge_metaphlan_tables.py script for
downstream differential analysis.

Fecal microbial load prediction

Fecal microbial load (total microbial cells per gram or
cell density) was predicted using the Microbial Load Predictor
(MLP, https://microbiome-tools.embl.de/mlp/) (Nishijima et al.,
2025), an R-based computational tool designed to estimate
FML from species-level taxonomic profiles of the human gut
microbiome. Input files consisted of species-level taxonomic
feature tables generated by classification tools including mOTUs
v2.5, mOTUs v3.0, MetaPhlAn3, MetaPhlAn4, or RDP-based 16S
rRNA annotations. Given the demonstrated congruence between
species-level classifications from MetaPhlAn4 and Sylph, we
utilized the metagenomic profiling outputs of MetaPhlAn4 to
predict the fecal microbial load.

Microbiome diversity and community
structure analysis

Alpha-diversity metrics (Shannon index, Richness) were
calculated using the vegan package (V2.6-8) (Oksanen, 2022).
Multivariate linear regression models [lm() function] analyzed
covariate effects on diversity, reporting coefficients, standard
errors, and p-values with residual diagnostics. Group differences
were tested via Wilcoxon rank-sum tests. Beta-diversity was
assessed using Bray-Curtis distance-based permutational
multivariate analysis of variance (PERMANOVA) (Anderson,
2014) via adonis2 in vegan, evaluating independent contributions
of covariates (Disease, Age, Gender, BMI, and FML) with 999
permutations. Pairwise comparisons of significant variables
(e.g., Disease) used pairwise.adonis() from the pairwiseAdonis
package, with p-values corrected for false discovery rate (FDR)
via Benjamini–Hochberg. These analyses were conducted using
R scripts.

Training-test set partitioning

Samples from each country were partitioned into training and
test sets at an 8:2 ratio, with the random grouping process repeated
100 times to construct diverse datasets. Stratified sampling was
employed in each partition to ensure balanced class representation
in the test set, maintaining proportional distribution of colorectal
cancer (CRC) and non-CRC cases. To preserve consistency
between the feature matrix (microbial abundance data) and
metadata, microbial abundance matrices were extracted according
to the partition results. All partitioned datasets (including metadata

and microbial profiles) were stored in a predefined directory
structure for subsequent model training and validation.

Differential abundance analysis

Multivariate Association with Linear Models 2 (MaAsLin2,
V1.20.0) (Mallick et al., 2020) was used to identify microbial
features associated with CRC status. We utilized OTU abundance
tables generated by Sylph and MetaPhlAn4, combined with sample
metadata including disease status, age, gender, BMI, and total fecal
microbial load (FML). Two model types were constructed: one
excluding FML as a covariate and another including it to assess
its regulatory effect. Linear regression models were applied with
log-transformed feature data, using raw relative abundances (where
the sum of relative abundances for each taxonomic level OTU in
a single sample equals 1) without normalization. Features were
filtered to require a minimum occurrence frequency of 10%, and
multiple hypothesis testing was corrected using the Benjamini-
Hochberg method with a significance threshold FDR < 0.25.

Functional annotation of strain genomes

Functional annotation of bacterial genomes was performed
using three databases: VFDB (Zhou et al., 2025), CARD (Alcock
et al., 2023), and KEGG (Kanehisa and Goto, 2000). For VFDB,
Abricate (V1.0.1) (Seemann, 2017) was applied to genome FASTA
files to identify virulence factors, with a minimum sequence
identity and coverage set to 50%. For CARD, Resistance Gene
Identifier (RGI, V6.0.4) (Alcock et al., 2023) was used with the
CARD database to predict antibiotic resistance genes, using contig
input and DIAMOND for sequence alignment. For KEGG, gene
prediction and general functional annotation were performed
with Prokka (V1.14.6) (Seemann, 2014), followed by functional
annotation of predicted protein sequences and KEGG pathway
assignment using EGGNOG-mapper (V2.0.1) (Cantalapiedra et al.,
2021). Differential pathway enrichment was evaluated by Fisher’s
exact test with FDR-adjusted p-values.

Batch effect correction

Microbial abundance data were first filtered to remove low-
abundance OTUs (retaining only OTUs present in at least 10%
of samples at the genus and species levels; for strains, due
to low abundance and high specificity, OTUs present in at
least 1% of samples were retained) and then matched with
sample metadata. To correct for cohort-associated batch effects
while preserving disease-related signals, compositional data were
subjected to centered log-ratio (CLR) transformation, which is
suitable for handling the compositionality, sparsity, and skewness
of microbiome data. Batch effects were subsequently adjusted using
the ComBat (implemented in the sva R package, V3.54.0) (Johnson
et al., 2007) method, with cohort as the batch variable and disease
status as a covariate. The effectiveness of batch correction was
assessed using PERMANOVA, and PCA was applied to visualize
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the data before and after correction. The batch-corrected relative
abundance data were then used for downstream analyses.

Disease classifier construction and
validation

Random Forest (RF) (Breiman, 2001) models were employed
in conjunction with Recursive Feature Elimination with Cross-
Validation (RFECV) and hyperparameter optimization to evaluate
the classification performance of microbiome features in predicting
colorectal cancer (CRC). Two independent modeling approaches
were implemented based on feature subsets derived from
differential abundance analysis (with and without fecal microbial
load correction). For each modeling approach, RFECV was first
applied to the training set to identify stable discriminatory
features. Hyperparameters of the RF models were then optimized
via randomized search (RandomizedSearchCV() function in
Python package of sklearn) over a predefined parameter grid.
Model performance was evaluated on the test set, and confidence
intervals for the Area Under the Receiver Operating Characteristic
Curve (AUC) were estimated using bootstrap resampling. Pairwise
comparisons of AUC distributions were conducted using the
non-parametric Mann-Whitney U test: (i) between models
incorporating vs. excluding total microbial load adjustment, and
(ii) across taxonomic levels (genus, species, and strain). Statistical
significance cutoff was set as P ≤ 0.05. Cross-cohort external
validation employed a leave-one-country-out strategy, where
models were trained on data from one country and independently
validated on each of the remaining six countries. This approach
ensured that each national cohort served sequentially as the
training set, with the other six cohorts functioning as distinct
validation sets to assess model generalizability across geographical
populations. Only features retained during training were used in
validation; missing features were imputed with zeros to maintain
dimensional consistency. If all required features were absent in
a validation set, the corresponding model-validation combination
was excluded.

Results

Cohort characteristics and multilevel
microbiota diversity analysis

Raw metagenomic sequencing data from all 1,123 samples
across seven independent cohorts were first processed using a
uniform standardized pipeline to ensure comparability, involving
quality control, adapter trimming, and metagenomic profiling
(detailed in Methods, see Figure 1 and Supplementary Table 1).
Strain-level analysis leveraged the metagenomic classifier Sylph
to construct a non-redundant reference genome database from
the Genome Taxonomy Database (GTDB), while genus- and
species-level taxonomic annotations were performed using
MetaPhlAn4 and Sylph, respectively. Fecal microbial load (FML)
was estimated via the Microbial Load Predictor pipeline (MLP,
https://microbiome-tools.embl.de/mlp/) (Nishijima et al., 2025),
which requires input in mOTU or MetaPhlAn format; given the

demonstrated consistency between Sylph and MetaPhlAn4 at
the species annotation level, we utilized MetaPhlAn4 outputs for
FML estimation and included load as a covariate in subsequent
statistical models.

In the subsequent experiments, to mitigate biases from random
dataset partitioning, each cohort was stratified and randomly
divided into training (80%) and test (20%) sets using an 8:2
ratio, with this process repeated 100 times. Training data were
used for identifying differential microbial features via MaAsLin2
and constructing random forest classifiers, while test sets enabled
within-cohort validation of model performance.

Analysis of within-sample diversity (α-diversity) revealed
heterogeneous patterns across geographical cohorts (Figure 2A).
In Indian and Austrian samples, CRC cases exhibited significantly
higher Shannon diversity and richness indices than controls at the
genus, species, and strain levels (P < 0.05 for all comparisons),
whereas most other cohorts showed minimal or non-significant
differences in microbial diversity between groups. These findings
highlight the geographical dependency and complexity of CRC-
associated gut microbiota alterations. Linear regression models
further showed that FML exerted a significant effect on both
Shannon and richness metrics across all taxonomic levels in
all cohorts except India (P < 0.05, Supplementary Tables 2,
3), underscoring the need to account for microbial load when
interpreting diversity indices.

As for β-diversity analysis, principal coordinate analysis
(PCoA) based on Bray-Curtis dissimilarity mirrored α-diversity
trends, with notable distinctions in microbial community structure
between CRC cases and controls (Figure 2B). Significant β-
diversity differences (permutation test, P < 0.05) were observed
at all taxonomic levels in most cohorts, except for Italian and
US samples, indicating region- or population-specific shifts in gut
microbiota associated with CRC. When FML was incorporated
as a covariate in permutational multivariate analysis of variance
(PERMANOVA), it emerged as a significant factor influencing
community structure across all taxonomic levels and cohorts (P <

0.05, Supplementary Tables 4, 5), confirming its role as a critical
confounder in microbiome compositional analyses.

Contrasting effects of conspecific strains in
colorectal cancer

Previous studies have referred to this metric as strain richness
(SR), defined as the number of strains of a given microbial species
j present in the gut of an individual i, denoted as SRij. Typically,
an individual harbors no more than two strains per species. To
distinguish this from the “richness” measure used in Result 1, we
hereafter denote this concept as strain number (SN) (Chen-Liaw
et al., 2025). In our analysis, the proportion of samples with SN
≥ 2 across all cohorts was consistently below 15%, and 91% of
1,123 total samples exhibited fewer than 20% species with SN ≥ 2.
The majority of SN ≥ 2 cases (overwhelmingly SN = 2) aligned
with historical observations (Figure 3A, Supplementary Table 6).
Using MaAsLin2, we identified strain-level associations with CRC
across cohorts and observed striking functional dichotomy within
species.In all cohorts except the USA, two or more strains belonging
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FIGURE 1

Workflow diagram of this study. Fecal samples from colorectal cancer (CRC) patients and healthy controls were collected from seven countries and
subjected to whole-metagenome shotgun sequencing (WMS). After quality control of sequencing files, taxonomic profiling and microbial load
estimation were performed using MetaPhlAn4. In parallel, Sylph was used to annotate microbial features at the genus, species, and strain levels,
generating abundance matrices at each taxonomic level: no batch effect correction was applied for single-cohort analysis, whereas batch effect
correction was performed for cross-cohort analysis. Samples were randomly split into training and test sets and repeated 100 times at each
taxonomic level. For each training set, MaAsLin2 was used to adjust for confounding factors including age, BMI, gender, and fecal microbial load
(FML) to identify associated microbial markers. Features were categorized into before FML adjustment (unadjusted) and after FML adjustment
(adjusted) based on fecal microbial load correction. Finally, random forest models were constructed based on the features for both single-cohort
and cross-cohort analyses to classify CRC and compare model performance.

to the same species were detected. Notably, in the Indian and
Japanese cohorts, certain species such as Vescimonas sp900555735,
Avimicrobium caecorum, Bacteroides thetaiotaomicron, and Dorea
formicigenerans exhibited opposing strain-level associations with
CRC risk, as indicated by their regression coefficients (Figure 3B,
Supplementary Table 7).

To further explore the biological mechanisms underlying
opposing effects on CRC among strains from the same species,

we performed functional annotation of their genomes using
VFDB (Virulence Factor Database) (Zhou et al., 2025), CARD
(Comprehensive Antibiotic Resistance Database) (Alcock et al.,
2023), and KEGG (metabolic pathway database) (Kanehisa and
Goto, 2000). We compared “risk strains” and “protective strains”
in terms of metabolic pathways and virulence gene content.

Based on presence/absence data of genes as annotated in the
VFDB and CARD (Supplementary Tables 8, 9) , the results show
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FIGURE 2

(A) Comparison of alpha diversity indices (Shannon and Richness) between CRC and control groups across different taxonomic levels (genus,
species, strain) in each country. The Shannon index reflects both the richness and evenness of taxa, while the Richness index represents the number
of unique taxa. Statistical significance was assessed using the non-parametric Wilcoxon rank-sum test. Significance levels: ****p < 0.0001;
***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant. (B) Principal component analysis (PCA) of genus-, species-, and strain-level microbial profiles
in CRC and control samples from different countries. Each subplot shows the distribution of samples along the first two principal components (PC1
and PC2) with 95% confidence ellipses for each group.
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FIGURE 3

(A) Distribution of strain richness for each species across all samples from the seven countries. Strain Number (SN) indicates the number of strains
identified within the same species. (B) Opposite correlation coefficients with CRC among strains from the same species across different cohorts,
identified by MaAsLin2 analysis. Positive values indicate a positive association with CRC, while negative values indicate a negative association. False
discovery rate (FDR) <0.25 was used as the threshold for statistical significance. (C) Comparison of virulence gene types between CRC-associated
risk strains and protective strains within the same species. (D) Comparison of antibiotic resistance gene types between CRC-associated risk strains
and protective strains within the same species.

that risk strains generally carry a more diverse set of virulence factor
genes (VFGs) and antibiotic resistance genes (ARGs) (Figures 3C,
D). Specifically, VFDB data showed that risk strains carry VFGs
including fliP and rfaD. fliP is involved in flagellar protein transport
and assembly and may induce chronic inflammation via the
TLR5/NF-κB pathway (Song et al., 2017). rfaD is involved in the
biosynthesis of bacterial lipopolysaccharide (LPS). LPS can activate
the host immune system and trigger inflammatory responses; under
chronic inflammatory conditions, LPS may continuously stimulate
the intestinal immune system, thereby leading to persistent
inflammation (Zhang et al., 2024). Other VFGs, such as cps4I
and pseB, may promote bacterial colonization, immune evasion,
and host inflammatory responses. Although these genes are not
classical oncogenes, their presence in the gut microbiota or
specific risk strains may indicate a microenvironment conducive
to low-grade chronic inflammation, which is a known risk
factor for CRC (Shimomura et al., 2023). CARD data showed
that ARGs such as ACI-1, dfrF, and tet(O/W/40) may reflect
community structures associated with dysbiosis and increased
microbial activity.

In the KEGG pathway analysis, we compared the enrichment
of pathways between risk strains and protective strains
(Supplementary Table 10). Considering the high ANI similarity
among strains of the same species, the FDR threshold was relaxed
to 0.25 to avoid missing potentially relevant differences. The results
showed that map00540, which is related to lipopolysaccharide
biosynthesis, may induce chronic inflammation via the

TLR4/NF-κB signaling pathway (Hu et al., 2021; Luo and
Zhang, 2017), thereby increasing CRC risk, and map05111,
which is related to Vibrio cholerae infection, may contribute
to carcinogenesis by sustaining chronic infection and local
inflammation (Ou et al., 2009). By contrast, map00511, which is
related to other glycan degradation, may help maintain normal
glycosylation levels and reduce abnormal glycosylation-associated
changes in cell adhesion and metastasis (Bangarh et al., 2023),
whereas map00600, which is related to sphingolipid metabolism,
may modulate the ceramide–S1P balance (Karmelić et al., 2024),
promoting apoptosis and exerting anti-inflammatory effects.

These findings highlight the utility of strain-level analysis in
resolving microbiome functional heterogeneity, which is obscured
at the species level. The identification of conspecific strains with
diametrically opposed effects on CRC provides a rational basis
for developing strain-targeted therapeutic interventions. Although
we proposed hypotheses for some key pathways and genes, other
pathways and genes not detailed here may also be involved in
microbiota-mediated inflammation and carcinogenesis, and future
studies are needed to clarify their specific roles and mechanisms.

FML correction improves performance of
disease classifiers

Significant features selected by MaAsLin2 at the strain, species,
and genus levels from the training set were input into classification
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models, and the test sets were used for within-cohort validation
of model performance.Across cohorts, fecal microbial load (FML)
correction increased the number of detected differential features
in all groups except Italy, with genus- and species-level features
consistently outnumbering strain-level equivalents (Figure 4A,
Supplementary Table 11). To address feature count variability,
recursive feature elimination with cross-validation (RFECV) was
applied to select subsets optimizing area under the receiver
operating characteristic curve (AUC).

We systematically assessed model performance using multiple
metrics, including AUC, accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and F1
score. At the strain level, models constructed from FML-corrected
features consistently outperformed their uncorrected counterparts
across all cohorts, although the degree of statistical significance
varied (Figure 4B, Supplementary Table 12). Similar trends were
observed at the genus and species levels, where FML normalization
consistently enhanced discriminative accuracy.

To further validate the reliability of conclusions derived
from single-cohort models, we additionally performed cross-
cohort validation. Batch effects were first corrected, and their
influence on disease status at the genus, species, and strain
levels was reduced from 0.123, 0.073, 0.058 to 0.016, 0.017,
0.010, respectively (Supplementary Table 13). We then applied
principal component analysis (PCA) to assess clustering patterns
before and after correction, and observed a markedly increased
overlap across cohorts after correction, indicating that batch
effects had been effectively controlled (Figure 4C). Based on
the corrected data, we re-performed differential feature analysis
and classifier construction, with cross-cohort results further
corroborating the robustness of our initial conclusions (Figure 4D,
Supplementary Table 14).

Higher taxonomic levels outperform
strain-level disease classifiers

We evaluated the impact of taxonomic resolution on classifier
performance by comparing models built from genus-, species-,
and strain-level features across multiple metrics. In all cohorts
except the FML-corrected Indian dataset, genus-, and species-
level models showed significantly better performance in AUC
compared to strain-level models, regardless of microbial load
adjustment (Figure 5). This trend was also observed in cross-cohort
validation, where genus- and species-level models demonstrated
greater generalizability across different geographic populations.
All complete evaluation metrics, including accuracy, sensitivity,
specificity, PPV, NPV, and F1 score, are provided in the shared
Supplementary Table 12.

Two putative mechanisms may explain this observation: (1)
Strain-level features typically exhibit lower relative abundances
than higher taxonomic levels, leading to increased technical noise
and reduced signal-to-noise ratios during metagenomic profiling;
and (2) Strain-specific markers are highly influenced by individual
host backgrounds (e.g., genetics, lifestyle) and geographical factors,
limiting their transferability across diverse cohorts (Andreu-
Sánchez et al., 2025). These findings highlight that while strain-level

analysis uncovers biological heterogeneity, genus-, and species-
level features offer more robust and reproducible signals for
clinical diagnostic applications, balancing mechanistic insight with
practical utility in multi-cohort settings.

Discussion

This study leveraged 1,123 metagenomic samples from seven
independent cohorts to systematically evaluate gut microbiome
associations with colorectal cancer (CRC) across taxonomic levels
(genus, species, and strain). We also investigated the impact of
fecal microbial load (FML) correction on disease classification
model performance and compared predictive capabilities across
taxonomic resolutions.

Most cohorts showed higher Shannon diversity and richness
indices in CRC patients compared to healthy controls, aligning
with prior studies suggesting increased microbiota diversity in CRC
(Figure 2A). However, this trend was not statistically significant
in all cohorts, likely reflecting complex influences of population
background, geographical environment, and study design on
microbial community structure. Beta-diversity analysis revealed
limited significant compositional differences between CRC cases
and controls, implying that pronounced microbiome structural
alterations may primarily occur in advanced disease stages
(Figure 2B).

We observed that the majority of samples harbored no more
than two strains per species (Figure 3A), and across multiple
cohorts, distinct strains within the same species exhibited opposing
associations with CRC risk (Figure 3B). This finding underscores
strain-level functional heterogeneity, where conspecific strains
can influence host health through divergent mechanisms.
Strain-level analysis provides finer biological resolution than
higher taxonomic levels, enabling identification of potentially
pathogenic or protective strains.Furthermore, by functionally
annotating the genomes of risk and protective strains within the
same species, we proposed hypotheses regarding their potential
biological mechanisms.

Fecal microbial load (FML) correction significantly improved
both within-cohort and cross-cohort predictive performance of
CRC classifiers (Figures 4B, D). Uncorrected models may be
confounded by total microbial biomass, which distorts relative
abundance measurements and masks true biological signals.
Load adjustment mitigates this confound, allowing models to
more accurately identify CRC-associated microbial features. These
results advocate for routine inclusion of FML as a covariate in
metagenomic analyses.

While strain-level analysis offers high biological resolution,
genus- and species-level models outperformed strain-resolved
counterparts in predictive accuracy (Figure 5). This discrepancy
arises from: (1) lower strain-level abundances and associated
technical noise, reducing signal-to-noise ratios; and (2) high inter-
individual and geographical specificity of strains, limiting cross-
cohort reproducibility. In contrast, genus/species-level features
exhibit greater conservation across populations, making them more
robust for clinical prediction. These findings highlight the need to
balance research objectives when selecting taxonomic resolution:
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FIGURE 4

(A) Number of differential features between CRC and control groups identified by MaAsLin2 at the genus, species, and strain levels before and after
microbial load adjustment across countries. (B) Comparison of classification performance (area under the ROC curve, AUC) of CRC prediction
models before and after microbial load adjustment across countries.Significance levels: ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant.
Statistical significance was assessed using the non-parametric Mann–Whitney U test. (C) PCA of the samples after batch effect correction. Each point
represents a sample, and colors correspond to different study cohorts. (D) Cross-cohort validation performance of CRC classification models before
and after microbial load adjustment.
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FIGURE 5

Comparison of AUC values of CRC classification models constructed at different taxonomic levels (strain, species, and genus). Statistical significance
was determined using the Mann–Whitney U test. Significance levels: ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant.

strain-level analysis for mechanistic insights, versus higher levels
for stable diagnostic markers.

This work has several limitations: although we proposed
hypotheses for some key pathways and genes, their specific
roles and mechanisms still need to be further clarified; host
genetic or clinical variables were not integrated into the
models; and the findings are associative rather than causal.
Future studies could leverage metagenome-assembled genomes
(MAGs) and culturomics to characterize strain functions, and
integrate multi-omics data to develop more comprehensive
predictive models.

Conclusion

Through multi-cohort integrative analysis, this study reveals
taxon-level specificities in gut microbiome-CRC associations.
Strain-level analysis uncovers functional heterogeneity invisible
at higher taxonomic scales, but genus/species-level features
currently offer greater stability for clinical translation. To
further advance the field, future studies should leverage
metagenome-assembled genomes (MAGs) and culturomics
to better characterize strain functions, and integrate multi-
omics data to develop more comprehensive and robust
predictive models. Ultimately, improving high-sensitivity
strain detection and functional validation methods will be
critical for translating strain-resolved microbiome insights into
precision medicine.
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