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Introduction: Rotavirus remains a leading cause of severe gastroenteritis in
children globally, including in Ethiopia. Despite the introduction of vaccines,
high mutation and reassortment rates contribute to genetic diversity and
potential vaccine escape. This study aimed to assess the distribution and genetic
characteristics of rotavirus A (RVA) strains in children under five with diarrhea in
central Ethiopia, with comparison to the Rotarix® vaccine strain.

Methods: Stool samples were collected from children under 5 years of age
presenting with diarrhea at health centers in Debre Berhan and Addis Ababa
between April 2022 and December 2023. RVA was detected using quantitative
real-time PCR (gqPCR). Genotyping was performed by Sanger sequencing of
the VP7 and VP4 genes. Phylogenetic analysis was performed in MEGA X
software using the maximum likelihood method with 1,000 bootstrap replicates,
using reference sequences retrieved from the GenBank database. Amino acid
sequences of these proteins were compared with those of the Rotarix® vaccine
strain to identify substitutions in key antigenic regions.

Results: RVA was detected in 30 of 247 samples (12.14%), with 28 successfully
genotyped. G9 was the predominant G genotype (50%), followed by G12 (10.2%),
G2 (7.1%), G1 (3.6%), and G3 (3.6%); 25% remained untyped. P[4] was the
most common P genotype (28.6%), followed by P[6] (21.4%) and PI[8] (17.9%),
with 32.1% untyped. The most frequent G/P combinations were GOP[4] (35%),

G12P[6] (13%), and G9P[8] (9%). Compared to Rotarix®, the circulating G2,
G3, G9, and G12 strains showed 18, 12, 13, and 17 amino acid substitutions,
respectively, within the 29-residue VP7 epitopes. The P[8], P[4], and P[6] strains
exhibited 4, 9, and 18 substitutions, respectively, within the 28 VP4 neutralizing
epitope residues. Phylogenetic analysis revealed that the current identified virus
mainly clusters with strains previously reported from Ethiopia, indicating a shared
evolutionary origin.

Conclusion: The dominance of the GOP[4] genotype, together with substantial
amino acid substitutions in the current circulating RVA strains that diverge
from the G1P[8] Rotarix® strain, may compromise vaccine performance.

01 frontiersin.org


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1656797
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1656797&domain=pdf&date_stamp=2025-10-07
mailto:yisehak.tsegaye.redda@slu.se
https://doi.org/10.3389/fmicb.2025.1656797
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1656797/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Redda et al.

10.3389/fmicb.2025.1656797

These findings underscore the need to evaluate vaccine efficacy, maintain
molecular surveillance, and incorporate broader genotype coverage in future

vaccine design.
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Introduction

Diarrheal diseases remain one of the leading causes of
childhood mortality globally, second only to respiratory tract
infections, with an estimated 1.7 billion cases and over 500,000
deaths annually in children under 5 years of age (Hodges and Kelly,
2023). Among diarrheal pathogens, rotavirus is the leading cause
of severe gastroenteritis in young children worldwide (Chen et al.,
2012).

In 2016, the World Health Organization (WHO) estimated
that rotavirus was responsible for approximately 215,000 deaths in
children under 5 years of age, with Sub-Saharan Africa accounting
for 121,000 (56.3%) of these deaths. In Ethiopia alone, 6,817
rotavirus-related deaths were reported in the same year (Tate et al.,
2016).

The prevention of rotavirus gastroenteritis, particularly in
children, is significantly enhanced by the use of rotavirus vaccines.
WHO’s routine-infant vaccination recommendation for Rotarix®
and RotaTeq® has driven substantial global declines in rotavirus
cases, hospitalizations, and deaths (Mwenda et al., 2010).

Rotarix® has demonstrated substantial impact on rotavirus
disease burden, reducing infection rates from 36% to 22%,
which corresponds to an overall effectiveness of 69% (Kazimbaya
et al, 2018; Willame et al, 2018). However, its performance
varies significantly by region. In high-income countries, vaccine
effectiveness reaches approximately 81%, whereas in low-and
middle-income countries, it averages around 53%. Within Africa,
pooled analyses indicate a 58 % effectiveness against rotavirus-
associated hospitalizations among children who completed the
two-dose schedule, compared to 44% for those receiving only a
single dose (Murunga et al., 2020).

Rotaviruses are non-enveloped, triple-layered viruses
belonging to the Sedoreoviridae family. Their genome consists
of 11 segments of double-stranded RNA (dsRNA) encoding six
structural proteins (VP1-VP4, VP6, and VP7) and six non-
structural proteins (NSP1-NSP6) (Pesavento et al., 2006). Group
A rotaviruses (RVA) are the primary cause of acute gastroenteritis
in humans and are classified into G and P genotypes based on the
VP7 and VP4 gene segments, respectively. Globally, five G types
(G1-G4 and G9) and three P types (P[4], P[6], and P[8]) account
for over 90% of human RVA infections (Miranda et al., 2024;
Santos and Hoshino, 2005). However, rotavirus genotypes show
marked spatiotemporal variation, and the emergence of novel or
unusual strains is driven by reassortment, recombination, and
point mutations (Tcheremenskaia et al., 2007; Matthijnssens et al.,
2011).

In Ethiopia, hospital-based studies have consistently identified
RVA as the leading cause of non-bacterial acute gastroenteritis
in infants and young children, accounting for 18-28% of cases
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(Sahiledengle et al., 2024; Tosisa et al., 2024). Furthermore, Meta-
analysis data have shown evidence of a shift in predominant
genotypes after vaccine introduction (Tosisa et al., 2024).

Despite the 2013 introduction of the monovalent Rotarix®
vaccine (G1P[8]) into Ethiopia’s national immunization program
and a reported 69.8% coverage (Aliyo, 2022), recent data
on circulating RVA genotypes, vaccine effectiveness, and
the emergence of potential vaccine breakthrough genotypes
remain limited.

Given the dynamic nature of RVA epidemiology and
the wvariability in genotype distribution across geographic
regions and over time, continuous molecular surveillance is
critical. Understanding the current genotypic landscape is
essential for detecting emergent strains and guiding future
immunization strategies.

This study aimed to characterize the distribution and genetic
diversity of RVA strains in diarrheic children in central Ethiopia
and assess their genetic similarity and antigenic divergence from
the Rotarix® vaccine strain.

Methods

Study design and sample collection

A cross-sectional study was conducted between April 2022 to
December 2023 from Debrebirhan City health post in Debrebirhan
and Nifasilk lafto sub-city health post in Addis Ababa, central
Ethiopia. A total of 247 fecal samples were collected from children
under 5 years of age who had diarrhea and visited health service
centers as outpatients in the study area. The study included children
who presented with a passage of at least three watery or liquid
stools per day for less than 14 days, with or without vomiting. The
samples were collected as part of the routine diagnostic procedure
at the laboratory.

The samples were collected in sterile stool cups and transported
under a cold chain to the Institute of Biotechnology, Addis Ababa
University (AAU). A 10% fecal suspension was prepared with
phosphate-buffered saline. The mixture was vortexed vigorously
and then centrifuged at 10,000 rpm for 5 min. The supernatant was
transferred to new tubes and stored at—20 °C until RNA extraction.

Detection and genetic characterization of
RVA

RNA extraction and quality assessment
For RNA extraction, 250 L of supernatant was mixed with 750
wL TRIzol reagent (Invitrogen), incubated for 5min, and 150 wL
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TABLE 1 Sociodemographic characteristics of study participants (n = 247) and Rotavirus Prevalence.

Characteristic (n)(%)

Percentage (%)

Rotavirus cases (n)

Prevalence (%) p-value

Age group (Months)

Percentage (%)

G3 G9
Genotype

B

60
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§
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o
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&

P6 P8
Genotype

FIGURE 1

Percentage distribution of RVA G types (A) and P types (B) isolated
from children with acute gastroenteritis in Addis Ababa and Debre
Birhan, Central Ethiopia from April 2022—-December 2023.

chloroform was added and vortexed. After centrifugation at 12,000
rpm for 15 min at 4 °C, the upper aqueous phase was transferred to
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0-12 19 7.7 2 10.0 0.08

13-36 142 57.5 21 14.8

37-60 65 26.3 5 7.7

Residence

Urban 218 88.3 26 11.9 0.75

Rural 29 11.7 4 13.8

Sex

Male 138 55.9 17 12.3 0.91

Female 109 44.1 13 11.9

Location

Addis Ababa 139 56.3 17 12.2 0.96

Debre Birhan 108 43.7 13 12.0

Overall 247 100 30 12.1 —
TABLE 2 Percentage distribution of RVA G/P genotype combinations
isolated from children with acute gastroenteritis in Addis Ababa and

A Debre Birhan, Central Ethiopia, from April 2022 to December 2023.
60

G/P genotype Frequency Percentage(%)
combinations

G1PX 1 4.4
G2PX 1 44
G2P6 1 44
G3P8 1 44
G9P4 8 34.8
GoP8 2 8.7
G9PX 3 13.0
GXP8 2 8.7
GXP6 1 44
G12P6 3 13.0
Total 23 100

new tube, mixed with an equal volume of 70% ethanol, and purified
using a GeneJET RNA purification kit (Thermo Fisher Scientific).
RNA integrity was assessed using the TapeStation system (Agilent),
following the manufacturer’s instructions. The extracted RNA was
stored at—80 °C.

RT-gPCR detection of RVA

RVA detection was performed using a qPCR targeting the
NSP5 gene, as previously described by Bergholm et al. (2024).
Briefly, reactions were carried out in a final volume of 30 puL
using the 4 x TagMan Fast Virus 1-Step Master Mix (Thermo
Fisher Scientific). Each reaction contained 1x master mix, 600 nM
of each primer (forward: TGATTCTGCTTCAAACGATCCA;
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MZ602164.1/RVA/IMAGctIpG4/Belgium
MF494748.1/RVA/A7TVAN2015/G1/Turkey
KX545324.1/ RVA/Human-wt/RUS/NN79-16/2016/G1P8
JX027828.1/RVA/Human wt/AUS/CK00084/2008/G1P 8
MF352438.1/ RVA/Human-wt/PAK/GB 37/2013/G1P8
MH381856.1/ RVA/ICH1460 glycoprotein/India
ON500511.1/ RVA/UAE/UAEU20180

MN561345.1/ RVA/Human/strain RV 65/Jordan
MF168212.1/ RVA/Human-wt/USA/NVU12-13-167/2013/G1G12PX
PV009115/RVA/Human-wt/ETH/DB-417/2022/G1PX
PQ001376.1/ RVA/Human-wt/ETH/BD35/2021/G1P8
LC541517.1/ RVA/L87 gene for structural/Malaysia
PP211182.1/ RVA/Human-wt/PA207/2021/ITA/IG1P8
PP861385.1/RVA/Human-wt/CHN/Fuzhou /2023/G1P 8
LC582731.1/ RVA/aa-r6-22/Iraq

91

KX362928.1/ RVA/Human-wt/VNM/12034 68/VP7 c1
KU145654.1/ RVA/Human-wt/ARG/Arg3180/2014/G1P8
LC750891.1/ RVA/Human-wt/JPN/IW15-17/2015/G1P8-E2

KJ752985.1/ RVA/Human-wt/ZAF/MRC-DPRU83/2011/G1P8
FJ348346.1/ RVA/Hu/Ha1/2006/Cuba/G1P6
- MH591254.1/ RVA/Human-wt/LBNA017/2011/G1P 8
9 80 JN232068.1/ RVA/isolate R289-2002/Brazil
— JN849114.1/RVA/Vaccine/USA/Rotarix-A41CB052A/1988/G1P1A 8
GU565057.1/RVA/NVaccine/lUSA/RotaTeq-WI79-9/1992/G1P7 5

FIGURE 2

the nodes.

Maximume-likelihood trees of rotavirus G1 strains were constructed based on the partial VP7 CDS region sequences (881 base pairs). AT92 + G
nucleotide substitution model was used to construct the phylogenetic tree. The human RVA G2 strain (AF401754.1) was used as the outgroup. The
current Ethiopian strain are written in bold and italic. Each color represents a specific clade. Bootstrap values (1,000 replicates) of >70% are shown at

AF401754.1/ RVA/Human/G2 strain KO-2/VP7

reverse: GCATTTGTCTTAACTGCATTCGA), 150 nM of TagMan
probe (VIC-TCACCAGCTTTTCGATAAG-MGB), 2 pL of RNA
template, and nuclease-free water to volume. Positive and negative
controls were included in each run. Amplification was performed
on a CF X 96 Real-Time PCR Detection System (Bio-Rad) under
the following cycling conditions: reverse transcription at 50 °C for
5 min, initial denaturation at 95 °C for 20 s, followed by 45 cycles of
denaturation at 95 °C for 15 s and annealing/extension at 60 °C for
1 min, with fluorescence acquisition at each cycle.

cDNA synthesis

Complementary DNA (cDNA) was synthesized from qPCR-
positive samples using the SuperScript IV ¢DNA Synthesis Kit
(Thermo Fisher Scientific), following the manufacturer’s protocol.
Briefly, 5 pL of RNA template was combined with 1 pL of 50 ng/pL
random hexamers and 1 L of 10 mM dNTP mix in a total volume
of 13 L. The mixture was incubated at 95 °C for 5 min and then
chilled on ice for 1 min. Subsequently, 4 WL of 5 x SuperScript IV
buffer, 1 wL of 100mM DTT, 1 nL of RNaseOUT™, and 1 puL of
SuperScript IV Reverse Transcriptase were added, bringing the final
volume to 20 L. Reverse transcription was carried out at 50 °C for
10 min, followed by enzyme inactivation at 80 °C for 10 min. The
resulting cDNA was stored at —20 °C until further use.

VP7 and VP4 gene amplification

For the VP7 gene, primers VP7F (5-ATGTATGGTATTG
AATATACCAC-3) and VP7R (5-AACTTGCCACCATTTT
TTCC-3') were used to amplify an 881 bp fragment. For the VP4
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gene of the VP8* region, primers con3 (5-TGGCTTCGCTC
ATTTATAGACA—S/) and con2 (5-ATTTCGGACCATTTATA
ACC-3') were used to amplify an 877 bp fragment as previously
described (World Health Organization, 2009). The PCR reactions
were carried out using 2X Platinum SuperFi PCR Master Mix as
per the manufacturer’s instructions. Each 20 |LL reaction mixture
contained 1X of Platinum SuperFi PCR Master Mix (Invitrogen),
600 nM of both forward and reverse primers, and 2 wL of cDNA.
The PCR cycling conditions were as follows: initial denaturation
at 98 °C for 30, followed by 35 cycles of 98 °C for 105, 60 °C for
30s, and 72 °C for 30s, with a final extension at 72 °C for 5 min.
The PCR products were subsequently separated on a 1% agarose
gel, stained with GelRed™, and visualized using the ChemiDoc™
MP Imaging System.

Sequence analysis and genotype determination
PCR products were assessed for quality and specificity
by gel bands of
expected size with minimal background were selected for
sequencing. PCR products were purified using the GeneJET
Gel Extraction Kit (Thermo Fisher Scientific) and Sanger
sequenced (Macrogen Europe). Consensus sequences were
assembled using Geneious (v.2024.0.7).
determination was initially performed by comparing the

agarose electrophoresis; sharp, single

Prime Genotype
consensus sequences to reference nucleotide sequences using
BLASTn (National Center for Biotechnology Information (NCBI),
2025). Rotavirus genotypes were further confirmed using the
ViPR viral species identification tool (Pickett et al., 2012) and
validated through phylogenetic analysis. The VP7 and VP4
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Tree scale: 1 |

99

'AB905222.1/ Porcine rotavirus C VP7 gene for viral
FIGURE 3

Maximume-likelihood trees of Rotavirus G2 Strains were constructed based on the partial VP7 CDS region sequences (881 base pairs). AT92 + G + |
nucleotide substitution model was used to build the phylogenetic tree. Porcine Rotavirus Strain (AB905222.1.) was used as the outgroup. The current
Ethiopian strains are written in bold and italic. Each color represents a specific clade. Bootstrap values (1,000 replicates) >70% are shown at the nodes.

PQ001386.1/ RVA/Human-wt/ETH/GR140/2021/G2P4
PQ001387.1/ RVA/Human-wt/ETH/GR158/2021/G2P4
PQ001384.1/RVA/Human-wt/ETH/GR27/2021/G2P4
PV009120 /RVA/Human-wt/ETH/AA-49/2022/G2PX
PV009121 /RVA/Human-wt/ETH/DB-321/2022/G2PX/
MG996053.1/ RVA/Human-wt/SGP/NV-16-161/2016/G2P4
OM928421.1/ RVA/Human-wt/strain L247
LC750862.1/RVA/Human-wt/JPN/19R826/2019/G2P 4
MF494809.1/RVA/93TOKAT2016/G2/turky
LC750861.1/RVA/Human-wt/JPN/19R824/2019/G2P 4
MN561341.1/ RVA/Human wt/strain RV 27/Jordan
MN561349.1/RVA /Human/RV Z43/Jordan
ON525290.1/ RVA/Human-wt/ITA/PA49-15/2015/LinIVa3
ON456083.1/RVA/UAEU2018E/UAE
[OP717660.l/RVA/Human-WUMWI/BTYlHT/2016lG2P4
OR194170.1/RVA/Human-wt/CHN/19131013/2019/G2
JX273720.1/RVA/Human-wt/PAK-HF5/2010/G2P4
MF494789.1/RVA/Human-wt/22DBAKIR2013/G2/Turkey
KF648941.1/RVA/Human-wt//RUS/S12-14/2012/G2P 4
MW561261.1/RVA/human/QAR/2018/G2
KF812586.1/RVA/Human-wt/KOR/Seoul1608/2011/G2P8
JQ837882.1/RVA/Human-wt/IDN/BL-5210/2006/G2P4
JQ069521.1/ RVA/Human-wt/CAN/RT008-09/2009/G2P4
4 MH925743.1/RVA/Human-wt/FVP724 VP7-like gene /Mexico
KY200655.1/ RVA/Human-wt/MAR/MA070/2012/G2
KR094080.1/RVA/Human-wt/isolate NG144 glycoprotein/Lebanon
KT007684.1/ RVA/Human-wt/CU-B1775/KK/2013/G2P
PP827406.1/ RVA/Human/PER/Arequipa/347/2021/NVP7
GU979198.1/ RVA/Human-wt/GER31-08/Germany
KC443249.1/ RVA/Human-wt/AUS/CK20032/2006/G2P 4
FJ436810.1/RVA/Human-wt/G2 isolate DC2010/Madagascar
KR705228.1/RVA/Human-wt/BEL/BE21/2005/G2P 4
EF690776.1/RVA/Human-wt/G2P4 /Agroj44/2001/BGD
KY489871.1/RVA/Human-wt/TWN/2006/03-95s-914/G2P4
MW553015.1/RVA/Human-wt/ZAF/UFS-NGS-NICD9554/2012/G2P 4
MZ065960.1/RVA/Human-wt/BEN/3001607613/2017/G2P 4
KP752805.1/RVA/Human-wt/MUS/MRC-DPRU308/2012/G2G12P X
GU598244.1/ RVA/Human-wt/strain MMAO08-4/Myanmar
KC442979.1/ RVA/Human-wt/USA/VU08-09-38/2008/G2P4
KJ753528.1/RVA/Human-wt/SEN/MRC-DPRU1915/2008/G2P4
83 KP753183.1/RVA/Human-wt/UGA/MRC-DPRU3710/2009/G2P4
KJ870825.1/RVA/Human-wt/COD/KisB527/2009/G2P4
HM066118.1/RVA/Human-wt/15988 08BA/gene/Brazil
GU565068.1/ RVA/Vaccine/USA/RotaTeq-SC2-9/1992/G2P7 5
protein 7 complete cds strain/ 87-G2/47.19553182

94

{e

o]
«

84

94

4

gene sequences were submitted to GenBank under accession
numbers PV009100-PV009139.

Data analysis

RVA nucleotide sequences aligned with global
representative sequences retrieved from the GenBank database

were

(National Center for Biotechnology Information, Bethesda, MD,
USA) using ClustalW in MEGA X (Kumar et al, 2018). The
best model for each dataset was determined using the “Find Best
DNA/Protein model”, and maximum-likelihood phylogenetic trees
were constructed using MEGA X software (Kumar etal., 2018).
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The statistical reliability was checked using 1,000 bootstrap
replicates. Nucleotide and amino acid distances were calculated
using the P Distance Model.

For antigenic characterization, deduced amino acid sequences
of RVA were aligned with known epitope regions of the Rotarix®
vaccine strain using ClustalW, and alignments were visualized
with the Jalview alignment tool (v2.11.3.3) to identify amino
acid differences.

Structural analyses of VP7 (PDB ID: 3FMG) and the VP8*
domain of VP4 (PDB ID: 1IKQR) were performed using the PyMOL
Molecular Graphics System, Version 3.0 (Schrodinger, LLC). Major
antigenic epitopes were annotated, including VP7 regions 7-
la, 7-1b, and 7-2, and VP8* epitopes 8-1 to 8-4. Amino acid
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PV009116/RVA/Human-wt/ETH/AA-39/2023/G3PX/VP7
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PQ001389.1/RVA/Human-wt/ETH/BD134/2022/G3P8
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£F373651 .1/RVA/Hu-wt/IND/11-04-0574/2016/G3P8

7

ON500504.1/RVA/UAE/U2018H/VP7
MK873211.1/RVA/Human-wt/THA/SIRAV-652/2017/G3P8

OP730447.1/RVA/1636100/Bangladesh
MKO050163.1/RVA/Human/319/Iran/2017/G3
gt ON525301.1/RVA/Human-wt/ITA/PA248-20/2020/VP7/G3
MG735433.1/RVA/Human-wt/PAK/NIH-BBH-4519/2015/G3P8

OR771974.1/RVA/Human-wt/RUS/NN752-22/2022/G3P4
9-|-—ON792129.1/RVA/Human-thMWI/BTYZQD/ZOl&/GSP4
FMF469245.1/RVA/Human-wt/USA/SSCRTV 00022/2013/G3P8
FKJ919899.1/RVA/Human-wt/HUN/ERN5523/2012/G3P4

OR756357.1/RVA/Human-wt/VNM/VE3526/2018/G3P8
{—K‘{418051.1/RVAIHuman-wt/TWN/105~701~D04212016/G3P8
JIN849140.1/RVA/Human-wt/BEL/BE1214/2009/G3P8
- KU522128.1/RVA/Human-wt/ESP/SS75912259/2015/G3P8
GU985255.1/RVA/Human/CHN/G3 strain DD8
74 KJ412900.1/RVA/HUmMan-wt/PRY/1747SR/2009/G3G1P8
GQ282613.1/RVA/ARG/6295/VP7
GU393006.1/RVA/GER/GER198-08
L KJ454514.1/RVA/Human-wt/BRA/AL20101/2011/G3P8

100+ DQ779051.1/RVA/Human/5044/Japan

J
O

g

100 - KU973946.1/RVA/Human-wt/CAD/STHYCHRB1757/2008

GU565079.1/RVA/Vaccine/USA/RotaTeq-WI78-8/1992/G3P75

LC542725.1/RVA/Human-wt/JPN/TKC16-1/2016/G3P8

uman-wt/USA/3000390639/2015/G3P8
uman/Malaysia/G3P8
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current Ethiopian strains are written in bold and italic. Each color represents a specific clade. Bootstrap values (1,000 replicates) >70% are shown at

substitutions identified from sequence alignments were mapped
onto the corresponding 3D structures. Comparative structural
analysis was conducted between the circulating and vaccine strains.

Results

A total of 247 children were enrolled in the study, with a mean
age of 31.5 months. The majority of participants (57.5%) were
between 13 and 36 months old, followed by 37-60 months (26.3%),
and 0-12 months (7.7%). Most children (88.3%) resided in urban
areas, and a slightly higher proportion were male (55.7%). By study
site, the enrollment was distributed between Addis Ababa (56.3%)
and Debre Birhan (43.7%) (Table 1). The overall occurrence of RVA
infection among diarrheic children was 12.14% combining both
study areas. The proportion was relatively equal in Addis Ababa
17/139 (12.2%), and Debre Birhan 13/108 (12.03%). Rotavirus
infection showed a marginally significant association with age
group (p = 0.08), with the highest infection rate observed among
children aged 13-36 months (14.8%), followed by those aged
0-12 months (10.0%) and 37-60 months (7.7%). Infection was
higher among rural residents (13.8%) compared to urban (11.9%)
populations, although this difference was not statistically significant
(p = 0.75). Male and female children had comparable infection
rates (12.3% vs. 11.9%, p = 0.91).
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Out of 30 detected samples, 28 were used for genotyping. The
identified circulating G-types included G1, G2, G3, G9, and G12,
with G9 being the most prevalent genotype, detected in 50% (14/28)
of the genotyped samples, followed by G12 at 10.7% (3/28) and
G2 at 7.1% (2/28). The remaining 25% (7/28) of samples could
not be G-typed (Figure 1A). Among the P-types, P[4], P[6], and
P[8] were detected at proportions of 28.6% (8/28), 21.4% (6/28),
and 17.9% (5/28), respectively, while 32.1% (9/28) of samples could
not be classified into a P-type (Figure 1B). Various G/P genotype
combinations were identified, with the most frequent being G9P[4]
(35%), followed by G12P[6] (13%), GOP[8] (9%), G2P[6](4%), and
G3P[8](4%) (Table 2).

Phylogenetic analysis of the VP7 gene of
the circulating RVA strains

Phylogenetic analysis demonstrated that the current RVA
Gl isolates clustered closely with human GI1 strains previously
reported in Ethiopia, Malaysia, Italy, China, and Iran (Figure 2).
In contrast, the Rotarix® vaccine G1 strain formed a distinct
phylogenetic cluster, separate from the group containing the
Ethiopian isolates. The current Gl strain shared the highest
nucleotide similarity (99.73%) with earlier Ethiopian G1 strains and
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Maximume-likelihood trees of Rotavirus G9 Strains were constructed based on the partial VP7 CDS region sequences (881 base pairs). A T92+G
nucleotide substitution model was used to construct the phylogenetic tree. The human RVA G3 strain (PP848617.1) was used as the outgroup. The
current Ethiopian strains are written in bold and italic. Each color represents a specific clade. Bootstrap values (1,000 replicates) >70% are shown at

PP848617.1/RVA/Human-wt/MOZ/HGM2187/2018/G3P8/Mozambique

exhibited substantial identity (96.34%) with the G1 strain used in
the Rotarix® vaccine.

The currently circulating G2 rotavirus strains (n = 2), collected
from different locations, Addis Ababa and Debrebirhan, were
found to be 100% identical to each other at the nucleotide level and
exhibited 99.52% nucleotide similarity with previously reported
Ethiopian G2 strains. Phylogenetic analysis revealed that the isolate
clustered closely with human RVA G2 strains reported from
Singapore, Japan, Turkey, Jordan, Italy, and Ethiopia (Figure 3).

The nucleotide identity among the circulating G3 strains was
99.52%, while the nucleotide similarity between the current G3
strains and the previously reported G3P[8] Ethiopian strain ranged
from 99.3% to 99.5%. Phylogenetic analysis clustered the current
strains with classic human RVA G3 strains, distinct from the
zoonotic emerging equine-like G3 lineage (Figure 4).

The circulating G9 strains showed high sequence identity,
ranging from 98.9% to 100% to each other. The majority (8 out of
14) were linked to the P[4] genotype. Phylogenetic analysis placed
these strains within the same group as human RVA G9 strains
reported from Pakistan, the Czech Republic, Malaysia, Indonesia,
Russia, and Ethiopia (Figure 5).

The G12 RVA strains identified in this study showed nucleotide
sequence identity ranging from 99.03% to 99.5% among the
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circulating strains. Phylogenetic analysis clustered these G12 strains
with human RVA strains previously reported from Ethiopia,
Malaysia, China, the UAE, Japan, and other countries (Figure 6).

Phylogenetic analysis of the VP4 gene of
the circulating RVA strains

Phylogenetic analysis revealed that the current circulating
P[8] RVAs were closely related to strains previously reported
from Ethiopia, India, the USA, and Thailand. In contrast, the
Rotarix® P[8] strain was placed in a separate group (Figure 7). The
nucleotide sequence identity among the current circulating P[8]
RVAs ranged from 99.6% to 100%, whereas their similarity with the
Rotarix® P[8] strain varied from 90.6% to 91%.

The circulating P[6] RVAs demonstrated a high nucleotide
identity among themselves, ranging from 99.87% to 100%.
Compared to previously reported P[6] strains from Ethiopia, they
showed a nucleotide identity of 99.1% to 99.8%. The currently
circulating P[6] RVAs strain clustered with human RVA strains
isolated from children in Ethiopia, Pakistan, Russia, Thailand,
China, Iran, the Central African Republic (CAF), Brazil, and India
(Figure 8).
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Maximume-likelihood phylogenetic trees of rotavirus G12 strains were constructed using partial VP7 coding region sequences (881 base pairs). The
Tamura 3-parameter (T92) model was applied for tree construction. Human RVA G2 strain (AF401754.1) served as the outgroup. Ethiopian strains
from this study are indicated in bold and italics. Each color represents a specific clade. Bootstrap values (1,000 replicates) >70% are shown at the

AF401754.1/RVA/Human/G2 strain KO-2/VP7

Phylogenetic analysis of the P[4] sequences was conducted
for eight RVA strains circulating in the study area. All P[4]
strains were associated with G9 and identified from the same
area, Addis Ababa. The nucleotide sequence identity among the
circulating P[4] strains ranged from 99.4% to 100%. The current
P[4] strains clustered closely with wild-type G9P[4] human RVA
strains reported from Ethiopia, Italy, the USA, Pakistan, Indonesia,
Iran, the Czech Republic, and South Africa. In contrast, previously
reported Ethiopian P[4] strains associated with G2 were grouped in
separate clusters (Figure 9).

Comparison of the VP7 and VP4 antigenic
epitopes with vaccine strains

Comparative analysis of the major antigenic epitopes (7-
la, 7-1b, and 7-2) on the VP7 glycoprotein revealed notable
sequence divergence between the currently circulating RVA
strains and the Rotarix® G1P[8] vaccine strain. The circulating
Gl strain (n = 1) demonstrated 100% amino acid identity

across all epitope regions. In contrast, the G2, G3, G9Y,
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and G12 strains exhibited 18, 12, 13, and 17 amino acids
substitutions, respectively, across the 29 epitope-defining positions
(Figures 10A, B).

The analysis of the amino acid sequences of the four major
neutralizing epitopes (8-1, 8-2, 8-3, and 8-4) within the VP8*
domain of the VP4 protein across circulating RVA strains compared
to the Rotarix® vaccine strains revealed that all five circulating
P[8] strains showed four amino acid differences compared to
the Rotarix® P[8] strain. Comparative analysis further revealed
that P[4] and P[6] strains showed greater divergence from the
Rotarix® P[8] strain, with amino acid differences at 9 and 18
of the 28 key epitope residues, respectively. Substitutions such as
E150D and N135D in P[8]; E150D, D116N, D133S, and N135D
in P[4]; and S146N, Q148N, N149S, P114N, D116S, D133N,
N135D, N87T, T88N, and N89Q in P[6] occurred at residues
associated with neutralization escape. Among these, N135D (in
both P[8] and P[4]), D116S and D133N (P[4]), and P114N
and S125V (P[6]) represent non-conservative substitutions within
key neutralizing epitopes. While epitope 8-2 remained conserved
among all P[4], P[6], and P[8] strains, the highest level of variation
was observed in P[6] strains, particularly within epitopes 8-3 and
8-4 (Figures 11A, B).
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FIGURE 7

Maximume-likelihood phylogenetic trees of rotavirus P[8] strains were constructed using partial VP4 coding region sequences (877 base pairs). The
Tamura 3-parameter with invariant sites (T92+1) model was applied for tree construction. The Human RVA P[4] strain
(RVA/Human-wt/ETH/DM134/2022/G9P4) was used as the outgroup. Ethiopian strains from this study are indicated in bold and italics. Each color
represents a specific clade. Bootstrap values (1,000 replicates) >70% are shown at the nodes.

Discussion

In this study, the occurrence of rotavirus infection among
children with diarrhea was 12.14%, which is lower than the rates
reported in earlier studies from Ethiopia (Abebe et al., 2018, 2014;
Aliyo, 2022; Damtie et al., 2020; Gelaw et al., 2018; Mwenda et al.,
2010; Yassin et al., 2012). This decrease may be attributed to
differences in regional socio-economic and environmental factors,
the positive impact of rotavirus vaccination programs (Tosisa et al.,
2024), and improved hygiene and health practices following the
COVID-19 pandemic, as observed in other countries (Nas and
Goziikiiciik, 2024).

The reported 12.14% is notably lower than rates reported
in several other countries, including Kenya (14.5%) (Muendo
et al.,, 2018), Somalia (33.5%) (Roble et al., 2024), and Sri Lanka
(36.5%) (Palihawadana et al., 2018). It is also below the pooled
estimates for Sub-Saharan Africa (19.95%) and South Asia (17.3%)
(Sobi et al, 2024). These variations could be influenced by
several factors, such as differences in rotavirus vaccine coverage,
diagnostic methodologies, healthcare system capacity, and the
genetic diversity of circulating rotavirus strains in each region.

Additionally, the highest infection rate (14.8%) was found in
children aged 13-36 months, suggesting a potential age-related
susceptibility to rotavirus. This period is particularly vulnerable as
it corresponds with the decline of passive maternal immunity and

Frontiers in Microbiology

an increase in social and environmental exposure (Lykouretzos and
Reiss, 2022).

Our study identified five distinct G-types among the circulating
RVA strains: G1, G2, G3, G9, and G12. Notably, G9 emerged
as the predominant G-type, accounting for 50% of the detected
strains. This finding contrasts with previous Ethiopian studies,
which consistently reported G3 as the dominant genotype, followed
by G12 and G1 (Damtie et al., 2020; Tosisa et al.,, 2024). This
shift suggests a major genotype replacement event, likely driven
by selective pressure from the Rotarix® vaccine. Our result aligns
with previous studies that have reported the global dominance
of G9 in recent years (Dong et al., 2023; Kiulia et al., 2014; Le
et al., 2024; Matthijnssens et al., 2010). The high prevalence of
G9 could be attributed to various factors, including enhanced
transmissibility, immune evasion mechanisms, or a combination
of both (Dong et al., 2023). Further analysis of the circulating
G9 strains revealed high sequence identity, ranging from 98.9%
to 100%. These strains clustered within the same phylogenetic
group as G9 strains previously reported from Ethiopia, suggesting
a potential common origin or recent transmission events.

G12 (10.7%) and G2 (7.1%) were the second and third most
common G-types, respectively. The presence of these genotypes
highlights their importance in the current epidemiology of
rotavirus infections. G12 has been increasingly reported worldwide,
especially in Africa and India, where it shows a notable prevalence
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Phylogenetic analysis of rotavirus P [6] strains. A maximum-likelihood tree was constructed based on partial VP4 gene sequences (877 base pairs)
using the Hasegawa-Kishino-Yano model with invariant sites (HKY + 1). The Human RVA P [8] Rotarix® strain (JN849113.1) was used as the outgroup.
P [6] Ethiopian strains from this study are indicated in bold and italics. Each color represents a specific clade. Bootstrap values (1,000 replicates) >70%
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among hospitalized children (Arun et al.,, 2019; Mokoena et al,
2021). Although less common, G2 continues to play a significant
role in rotavirus infections due to its involvement in genetic
diversity and reassortment events (Jere et al.,, 2011; Miao et al,
2025). G2 rotavirus causes severe gastroenteritis, particularly in
infants and young children, and has been linked to major outbreaks
(Lugonja et al., 2020; Stojkovska et al., 2020; Tate et al., 2016). It
may also cause extra-intestinal symptoms, such as neurological and
respiratory complications (Dian et al., 2021).

The low occurrence of G1 rotavirus strains in the current study
contrasts with previous studies, indicating their prevalence in the
country (Abebe et al., 2018; Aliyo, 2022; Damtie et al., 2020; Tosisa
et al., 2024). This decline may reflect shifts in viral ecology or
the influence of vaccination programs, which could exert selective
pressure on these strains.

Further genetic analysis of the current G1 strain revealed that
its viral sequence shared a high nucleotide identity (96.34%) with
the G1 strain in the Rotarix® vaccine. This high genetic similarity
suggests that the vaccine may still confer immunity against the
circulating G1 strain.

Among the rotavirus P-types identified, P[4] was the most
prevalent (28.6%), followed by P[6] (21.4%) and P[8] (17.9%).
This pattern differs from earlier studies in Ethiopia, where P[8]
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was the predominant type (Abebe et al., 2018, 2014; Aliyo, 2022;
Damtie et al., 2020; Gelaw et al., 2018; Mwenda et al., 2010; Yassin
etal., 2012). These findings indicate that rotavirus types can evolve,
emphasizing the importance of regular monitoring to guide vaccine
planning and safeguard public health.

Circulating P[8] rotavirus strains showed a notably low genetic
similarity of 90.6% to 91% to the Rotarix® P[8] vaccine strain. This
finding was confirmed by phylogenetic analysis, which showed that
the circulating strains clustered separately from the vaccine strain.
This significant genetic distance may have important implications
for vaccine effectiveness.

Genetic analysis of the circulating P[4] rotavirus strains in
the current study revealed a high level of nucleotide sequence
similarity, ranging from 99.4% to 100%. All P4 strains were
associated with the G9 genotype and were identified exclusively
from Addis Ababa. This finding points to a highly clonal and
likely localized circulation of a specific G9P[4] strain within Addis
Ababa during the study period. Therefore, the identification of
a clonal G9P[4] rotavirus population highlights the potential to
cause localized outbreaks and underscores the critical need for
continuous, robust molecular surveillance. Phylogenetic analysis
showed that these strains clustered with G9P[4] human RVA strains
previously reported from Ethiopia and other countries, including
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Maximume-likelihood phylogenetic trees of Rotavirus P [4] strains were constructed using partial VP4 coding region sequences (877 base pairs). The
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Pakistan, the Czech Republic, Malaysia, Indonesia, and Russia. The
close genetic relationship indicates that the current clones may have
evolved from earlier circulating strains in Ethiopia.

GI9P[4] was the dominant G/P genotype combination in the
current study, accounting for 35% cases. Its predominance suggests
its strong adaptability and potential fitness advantage, making
it an important candidate for consideration in future vaccine
strategies. G9P[4] has increasingly been reported as a significant
strain associated with acute gastroenteritis in children, indicating
a possible shift in global rotavirus epidemiology. Its emergence and
dominance have been documented in several countries, including
Iran (Kachooei et al.,, 2023), Mexico (Felix-Valenzuela et al,
2016), Pakistan (Usman et al, 2024), and Guatemala (Quaye
et al., 2013), emphasizing its global relevance and the need for
continued monitoring.

Emerging rotavirus strains such as GI12P[6] and GOP[8],
though less common, are gaining attention due to their increasing
prevalence and potential public health impact. In Africa, these
genotypes have spread across several countries following the
introduction of rotavirus vaccines (Rakau et al., 2021). In Turkey,
G12P[6] accounted for 11% of pediatric gastroenteritis cases,
indicating its growing significance (Aydin and Aktas, 2017).
Whole-genome analyses suggest that G12P[6] may have undergone
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reassortment with porcine strains, reflecting its genetic adaptability
(Mokoena et al., 2021). Similarly, GOP[8] has become a common
strain after vaccine introduction among the general public (Abebe
et al., 2014; Aliyo, 2022; Gelaw et al., 2018; Tosisa et al., 2024). This
genotype has been widely reported in different countries, including
Tunisia (Bennour et al,, 2020), Malaysia (Fong et al., 2024; Tahar
et al., 2023), China (Jiao et al., 2023), and Japan (Kawata et al,
2021), underscoring its global relevance.

The G3P[8] rotavirus strain was detected at a low prevalence
(4%) in the current study, compared with previous reports from
Ethiopia (Aliyo, 2022; Damtie et al., 2020; Tosisa et al., 2024). The
genetic analysis revealed that the circulating G3 strains are closely
related to previously reported G3P[8] Ethiopian strains, with a
nucleotide identity ranging from 99.3% to 99.5%. The high genetic
similarity among these strains confirms their close evolutionary
relationship. Phylogenetic analysis showed that the current isolates
clustered with classical human RVA G3 strains and were distinct
from the emerging equine-like G3 lineage. These findings suggest
that the circulating G3 strains in this study are of human rather
than zoonotic origin.

The observation that 25% and 32.14% of samples were
deemed untypeable for P-type and G-type, respectively, highlights
significant challenges in rotavirus genotyping. The difficulty in
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Antigenic variability in the VP7 protein of RVA strains circulating in Ethiopia compared to the Rotarix® vaccine strain. (A) Alignment of amino acid
residues within antigenic epitopes of Ethiopian RVA VP7 sequences compared with the Rotarix® vaccine strain. Differences are highlighted in green:
residues linked to neutralization escape are shown in red. (B) Surface representation of the VP7 trimer (PDB ID: 3FMQG), illustrating amino acid
substitutions identified in Ethiopian RVA strains. Antigenic epitopes 7-1a, 7-1b, and 7-2 are colored green, yellow, and pink, respectively, while
surface-exposed substitutions relative to the Rotarix® strain are highlighted in red. Structure rendered using PyMOL (Schrédinger, LLC).
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accurately typing rotavirus samples might be due to high genetic
variability and the presence of rare genotypes, which complicate
the genotyping process (Adah et al, 2003; Dellis et al., 2024).
Mutations at primer binding sites and mixed infections further
hinder sequencing accuracy (Iturriza-Gémara et al., 2001). Due
to high mutation rates, 28.3% of rotavirus samples were untyped
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from primer mismatches (Mitui et al., 2012). In Brazil, 86.9% of
initially untypeable cases could later be classified into genotypic
combinations (Willame et al., 2018). These issues have important
implications for public health surveillance, as a high proportion
of untypeable strains may indicate the presence of novel or
uncommon variants that are not accounted for in current
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Antigenic variability in the VP8* domain of the VP4 protein in rotavirus RVA strains circulating in Ethiopia compared to the Rotarix® vaccine strain. (A)
Alignment of amino acid residues within defined antigenic epitopes of the VP8* domain, comparing Ethiopian RVA sequences with the Rotarix®
vaccine strain. Amino acid differences are highlighted in green; residues associated with neutralization escape are indicated in red. (B) Surface
representation of the P[8] monomer (PDB ID: 1KQR). The upper and lower panels show the front and rear views of the VP8* structure. Antigenic
epitopes 8-1 through 8-4 are colored blue, yellow, green, and cyan, respectively. Surface-exposed substitutions relative to the vaccine strain are
marked in red. Visualization and annotation were performed using PyMOL (Schrédinger, LLC).
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monitoring systems or vaccine formulations. This underscores
the need for improved primer design and the adoption of Next-
Generation Sequencing (NGS) approaches to enhance genotyping
resolution and ensure comprehensive strain characterization.

A comparative analysis of VP7 and VP4 antigenic epitopes
revealed substantial amino acid variability between circulating
Ethiopian RVA strains and the Rotarix ~* Multiple mutations were
detected within neutralizing epitopes across various genotypes,
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which may have implications for vaccine effectiveness. Similar
antigenic divergence has been observed in China (Mao et al,
2022), Qatar (Mathew et al., 2023), Belgium (Zeller et al., 2012),
and Gabon (Manouana et al., 2021), emphasizing the need for
continued monitoring of rotavirus strain evolution.

The comparison between the circulating G1 rotavirus and
the Rotarix® vaccine strain revealed no amino acid substitutions
within the VP7 antigenic epitopes, suggesting a high degree of
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genetic conservation. On the other hand, G2, G3, G9, and G12
strains exhibited significantly higher amino acid variability in
VP7 antigenic epitopes, with 18, 12, 13, and 17 substitutions,
respectively, compared to the Rotarix® vaccine G1 strain. This
suggests potential limitations in vaccine-induced immunity against
heterotypic (non-Gl) strains (Esona et al., 2011; Fallah et al., 2024;
Zeller et al., 2012). These substitutions, linked to neutralization
escape, have been observed in studies from the USA and other
regions (Esona et al., 2011; Motamedi-Rad et al., 2020), indicating
that such variability may reduce vaccine effectiveness.

Circulating P[8], P[4], and P[6] RVA strains exhibited
substantial amino acid substitutions in the VP8* region of VP4
neutralizing epitopes compared to Rotarix - Non-conservative
substitutions occurred at residues associated with neutralization
escape, including N135D, present in both P[8] and P[4], which
introduces a negative charge; D116S and DI133N in P[4],
which remove negative charges and could disrupt electrostatic
interactions; P114N, which replaces a rigid proline with asparagine,
potentially altering local backbone stability; and S125V in P[6],
which changes a polar residue to hydrophobic, possibly reducing
epitope accessibility (Kazimbaya et al., 2018). These changes
may undermine vaccine effectiveness against both homotypic and
heterotypic responses (Motamedi-Rad et al., 2020; Xu et al., 2019)
and could help explain the continued high prevalence of RVA
infection despite high immunization coverage in the country.

Although the pentavalent RotaTeq® and Rotasiil® vaccines
are not part of Ethiopia’s national immunization program, their
broader formulation theoretically offers wider coverage than
Rotarix® However, its potential superiority against the strains
circulating in Ethiopia remains uncertain. Numerous studies
from diverse global settings have shown that RotaTeq® also
faces challenges from antigenic drift, with significant amino acid
mismatches and neutralization escape mutations reported between
its vaccine components and wild-type strains (Manouana et al.,
2021; Mao et al.,, 2022; Mathew et al., 2023; Ogden et al., 2019;
Zeller et al,, 2012). Therefore, it is unclear if RotaTeq® would
provide substantially better protection in the Ethiopian context.
This highlights a critical gap and reinforces the urgent need
for next-generation multivalent vaccines tailored to the specific
genotypes prevalent in high-burden regions like sub-Saharan
Africa. Multivalent vaccines such as Rotasiil® represent promising
alternatives, as they broaden strain coverage and offer additional
advantages in efficacy, safety, and thermostability (Kanungo et al.,
2022), making it well-suited for rotavirus control in resource-
limited settings.

Conclusion

This study highlights the genetic diversity and evolving
nature of circulating rotavirus strains in the region. The
predominance of G9P[4] and the detection of multiple amino
acid substitutions in both VP7 and VP4 antigenic regions,
particularly in non-GI genotypes, suggest potential challenges
to current vaccine-induced immunity. The observed divergence
from the Rotarix® vaccine strains, especially in key neutralizing
epitopes, raises concerns about reduced vaccine effectiveness
against heterotypic strains. Furthermore, the close phylogenetic
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clustering with strains from diverse global regions underscores
the interconnectedness of rotavirus epidemiology. These findings
emphasize the need for continuous molecular surveillance and
consideration of genotype diversity in future vaccine development
and immunization strategies.
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