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Introduction: Various drugs can markedly disrupt gut microbiota, resulting
in a reduction of beneficial microbial populations and precipitating a
range of negative clinical consequences. Traditional experimental methods
have considerable limitations in clarifying the mechanisms of microbe-drug
interactions, thereby necessitating the creation of innovative computational
techniques to establish theoretical foundations for personalized and precision
medicine. However, the majority of current computational methods rely
on graph structures, which inadequately represent the intricate, varied, and
heterogeneous interactions among multiple drugs and microbial communities.
Methods: We introduce a hierarchical attention-driven dual-hypergraph
contrastive learning framework for predicting microbe-drug interactions.
Initially, the original bipartite graph and various similarity data are integrated
using nonlinear features by incorporating the functional similarity of medicinal
chemical attributes and microbial genomes, alongside computing the Gaussian
kernel similarity. Subsequently, a dual network structure comprising K-
Nearest Neighbors (KNN) hypergraph and K-means Optimizer (KO) hypergraph
is established, employing a hierarchical attention mechanism to facilitate
collaborative information aggregation between hyperedges and hypernodes. A
contrastive learning approach is implemented to enhance the representation of
the heterogeneous hypergraph space, and the prediction scores for microbe-
drug interactions are derived by dynamically integrating two-channel embedded
features via multi-head attention.

Results: Experiments conducted on various publicly accessible benchmark
datasets demonstrate that the DHCLHAM model markedly surpasses the current
optimal model in critical metrics, including AUC and AUPR. Particularly on the
aBiofilm dataset, the AUC and AUPR attained 98.61% and 98.33%, respectively.
Discussion: A computational framework was developed through multi-
dimensional case validation, integrating artificial intelligence and network
pharmacology principles, offering a novel paradigm for analyzing microbe-drug
interaction mechanisms. The research findings hold significant reference value
for optimizing clinical treatment protocols and establish a theoretical foundation
to develop precise medication strategies aimed at intestinal flora.
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1 Introduction

Microorganisms are omnipresent in the human body,
encompassing the skin, gastrointestinal tract, and oral cavity,
and are essential for sustaining human health (Wu et al.,, 2024).
In homeostatic conditions, the microbial community aids in
the body’s physiological equilibrium by engaging in nutrient
metabolism and influencing immune system development and
function. Disruptions in microbial community structure, known
as dysbiosis, have been associated with various diseases, including
obesity, diabetes, inflammatory bowel disease, and cancer
(Goel et al., 2025). Moreover, during therapeutic interventions,
drugs may interact with host-associated microorganisms,
affecting both drug effectiveness and the composition of the
microbial community (Kumbhare et al., 2023). Consequently, a
comprehensive understanding of microbe-drug interactions is
essential for clarifying disease mechanisms, enhancing therapeutic
strategies, and guiding the creation of innovative treatments
(Zimmermann et al., 2019). Population-based case-control studies
from the United Kingdom and the Netherlands have shown that
various commonly prescribed medications, including atypical
antipsychotics, non-steroidal anti-inflammatory drugs, and statins,
significantly influence the gut microbiota (Liu et al, 2020).
Although these clinical studies offer important insights into the
impact of pharmacotherapy on the gut microbiome, their scope
is inherently restricted and encounters considerable challenges
in assessing the complete range of microbe-drug interactions.
Fueled by the swift advancement of bioinformatics and computer
science, coupled with the growing accessibility of microbial and
pharmacological data, computational methodologies have arisen as
potent instruments to forecast microbe-drug relationships. These
methods efficiently analyze large-scale datasets, identify potential
association patterns, and generate insights to guide experimental
validation, thereby enhancing traditional research paradigms.

1.1 Traditional methods for studying
microbe-drug associations

Traditionally, the investigation of microbe-drug relationships
has predominantly depended on biological experiments, clinical
observations, and empirical treatment methodologies (Long et al.,
2022). In laboratory environments, microbial susceptibility and
resistance to pharmacological agents are evaluated by culturing
microbes in vitro and analyzing their growth inhibition or survival
in the presence of drugs (Xuan et al., 2024a). Clinical observations
concentrate on assessing patient reactions to antimicrobial
treatments, especially in instances of particular microbial
infections, resulting in the progressive accumulation of empirical
treatment protocols. Nonetheless, these conventional methods
demonstrate numerous constraints. Laboratory investigations
require expensive equipment and specialized knowledge, and
in vitro conditions frequently do not accurately mimic the
complexities of the in vivo physiological environment, leading to
possible discrepancies between experimental results and real-world
situations (Zhou et al., 2024). While clinical observations offer
significant practical insights, they necessitate extensive case
collection and extended follow-up durations, complicating the
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timely recognition of generalizable patterns. Furthermore, these
methodologies often exhibit an insufficiency of empirical data
regarding rare or novel microbe-drug interactions (Rajput et al.,
2023).

1.2 Computational methods for studying
microbe-drug associations

The application of computational methods has significantly
advanced the study of microbe-drug associations. Early
approaches laid a crucial foundation for this field. For instance,
pioneering work like HMDAKATZ (Zhu et al., 2021) successfully
demonstrated the utility of heterogeneous networks for deducing
potential associations. This model utilized metrics based on node
correlations which, while effective, highlighted an opportunity
to explore more complex biological representations. Subsequent
research introduced graph neural networks, further enhancing
predictive capabilities. Models such as GCNMDA (Long et al.,
2020a) and EGATMDA (Long et al., 2020b) became influential
paradigms. A common practice in these approaches was the use
of random negative sampling. This strategy proved effective for
model training, yet it does not explicitly differentiate the influence
of various negative samples, presenting a potential avenue
for refining representation learning and improving prediction
accuracy. As the field matured, more sophisticated architectures
emerged. The MKGCN model (Yang et al, 2022) sought to
extract rich features from complex heterogeneous networks.
However, navigating these intricate network structures presents
a challenge in capturing the deeper semantic and relational
information between nodes, which in turn can influence the
model’s interpretability. Similarly, methodologies like PCMDA
(Gu et al,, 2025), which rely on established knowledge graphs,
have been instrumental in integrating static biological data. An
open research question, however, is how to best incorporate
the dynamic nature of microbe-drug associations over time.
More recent models have begun to address these challenges.
The DHDMP model (Xuan et al., 2024b) made notable strides
by incorporating dynamic topological hypergraphs and cross-
attention mechanisms. Its comprehensive design, validated on
a singular dataset, underscores the trade-off between model
complexity and generalizability. Meanwhile, SCSMDA (Tian
et al,, 2023) introduced structure-enhanced contrastive learning,
a powerful technique for improving graph representations.
This work brings to light an important consideration: how to
augment graph structures without inadvertently introducing noise
that could deteriorate the original data’s integrity (Hassani and
Khasahmadi, 2020). These collective efforts highlight the progress
of the field and illuminate the remaining challenges that motivate
our present work.

1.3 A graph-structured approach for
studying microbe-drug associations

Recent advancements in hypergraph structures and graph
contrastive learning have provided novel insights to predict

microbe-drug associations. Hypergraphs extend traditional

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1657431
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Hu and Nie

graphs by incorporating hyperedges, which can represent higher-
order relationships among multiple nodes. This characteristic
renders hypergraphs particularly advantageous for numerous
bioinformatics applications, such as modeling miRNA-disease
associations (Ouyang et al, 2024a). By encompassing these
higher-order interactions, hypergraphs can surpass conventional
graph-based models in numerous data mining and predictive
tasks. The HGCLMDA model (Hu et al, 2023) shows this
methodology by forecasting mRNA-drug interactions via the
random initialization of hyperedge structures and bipartite
graphs, integrating local and global information encoding
modules for contrastive learning. A customized contrastive loss
function is utilized to refine the embedded representations of
mRNAs and drugs, thus augmenting predictive performance.
The HyGNN model (Khaled et al., 2023) relies solely on the
SMILES strings of drugs to construct a hypergraph and employs
a novel attention-based hypergraph edge encoder to learn drug
representations, demonstrating superior performance over
existing methods on two datasets and highlighting the advantages
of hypergraphs in capturing higher-order similarities in drug
chemical structures. To predict drug-microbe-disease associations,
the MCHNN model (Liu et al., 2023) constructs hypergraph
nodes utilizing the characteristics of drugs, microbes, and diseases,
employing contrastive learning to enhance the quality of node
representations. These achievements highlight the potential of
hypergraph structures and contrastive learning in representing
biological relationships. However, differences exist in hypergraph
construction, which can be categorized into three main types: (1)
Direct hypergraph construction utilizing raw linkage data (Ma and
Ma, 2022), which is susceptible to overfitting in link prediction
tasks; (2) Dynamic hypergraph construction through random
initialization (Lu et al., 2024), wherein latent node correlations
are refined during training to yield an adaptive hypergraph
structure, although this method requires substantial computational
resources and experiences diminished interpretability; and
(3) Clustering-based hypergraph construction, which employs
clustering algorithms on raw data prior to hypergraph modeling
(Wuetal, 2020). Our work employs a clustering-based hypergraph
construction strategy, leveraging both KNN and KO (Minh et al.,
2022) algorithms to create two complementary hypergraph models.
The KNN method demonstrates better classification performance
for samples with significant class domain crossing and overlapping,
which aligns with the characteristics of microorganisms and
drugs. Meanwhile, the KO algorithm can more effectively
avoid the occurrence of single information and generate more
comprehensive hyperedges by dynamically adjusting the cluster
centers and optimizing strategies. Considering that microbes
and drugs contain various sources of biological information,
encompassing functional and structural attributes, we initially
calculate multi-view similarity matrices and amalgamate them
through non-linear fusion methods. To thoroughly elucidate
the intricate structural characteristics of microbial and drug
hypergraphs, we compute attention scores for both hyperedges and
hypernodes. We additionally compare hypergraphs based on KNN
and KO to assess their respective effects in relation to traditional
structural enhancement methods.

Ultimately, microbe-drug

association scores are obtained by synthesizing data from both
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hypergraphs, using multi-head attention mechanisms to produce
microbe-drug embedding features.

This study presents a novel framework that integrates a bi-level
attention mechanism with bi-hypergraph contrastive learning to
predict microbe-drug interactions. The primary contributions of
our research are as follows:

(1) We use original microbe-drug association data, in conjunction
with various sources of microbe and drug similarity data, to
develop a dual-hypergraph structure employing a combination
of KNN and KO clustering algorithms. A non-linear fusion
method is used to amalgamate multi-source similarity data,
employing normalization and localized similarity calculations
to enhance this fusion process.

(2) To manage the high-dimensional data represented in
hypergraphs, where hyperedges can include multiple

nodes, we develop both a hyperedge-level and a node-level

attention mechanism for intra-hypergraph information
aggregation. Furthermore, we incorporate bi-hypergraph
contrastive learning with a Graph-Transformer to augment
and amalgamate dual-view representations.

(3) We establish a computational framework based on network
pharmacology principles through multi-dimensional case
studies, presenting a novel paradigm to model microbe-
drug interaction mechanisms. Our findings offer essential
guidance for refining clinical treatment protocols and establish
a theoretical basis for the progression of precision medicine

strategies aimed at the gut microbiota.

2 Materials and methods

This section offers a succinct summary of the experimental
dataset and the essential concepts that form the foundation of
our model. (A) Data Processing and Hypergraph Construction
(DPHC): Microbe-drug associations are extracted, and functional
similarity along with Gaussian kernel similarity is computed
for microbes, whereas structural similarity and Gaussian kernel
similarity are determined for drugs. The similarity matrices are
then combined using a non-linear fusion strategy to produce
a comprehensive similarity matrix. Using the fused similarity
matrix and the original microbe-drug associations, hypergraphs
are constructed through KNN and KO algorithms to delineate
the hyperedges. (B) Hierarchical Feature Learning (HFL): A
hierarchical attention mechanism is implemented to independently
calculate hyperedge-level and node-level attention. Topological
characteristics are derived using hypergraph convolutional
networks. Moreover, contrastive learning is utilized to augment the
discriminative capacity of embeddings across various hypergraph
perspectives. A perceptual attention mechanism dynamically
integrates multi-view features, while multi-head attention is
used to adaptively merge the dual-channel embeddings. (C)
Association Prediction and Biological Validation (APBV): The
ultimate embedding representations are enhanced through a
fully connected layer, and the probabilities of microbe-drug
associations are reconstructed via matrix multiplication. To

biologically interpret the anticipated interactions, network
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pharmacology validation is conducted, including target
localization, pathway analysis, and functional enrichment

analysis. The workflow and detailed process of DHCLHAM are
illustrated in Figures 1, 2.

2.1 Data collection

Despite the increasing body of research, existing understanding
of microbial functions, colonization patterns, and mechanisms of
action during pharmacological treatment is still inadequate. In
recent years, numerous specialized databases have been established
to document microbe-drug interactions, including MDAD (Sun
et al, 2018), aBiofilm (Rajput et al, 2018), and DrugVirus
(Andersen et al., 2020).

MDAD database, created by Sun et al. in 2018, was assembled
through the meticulous curation of experimentally and clinically
validated microbe-drug interactions sourced from existing drug
databases and scientific literature. It comprises 2470 verified
records of microbe-drug associations, involving 1,373 drugs and
173 microbes. The dataset can be accessed publicly at http://
chengroup.cu-mt.edu.cn/MDAD.

aBiofilm is a database of anti-biofilm agents that catalogs
1,720 compounds targeting 140 microbial species. The database
documents details for each anti-biofilm drug, including molecular
structure, drug classification, antimicrobial potency, and citations.
The dataset can be accessed publicly at http://bioinfo.imtech.res.in/
manojk/abiofilm/.

DrugVirus is a specialized database that records the activity
of drugs aimed at human viruses and their interactions. It is
intended to enable the investigation and assessment of broad-
spectrum antiviral drugs (BSAs), which are agents that suppress
various human viruses, along with categories of drugs that include
BSAs. The database can be accessed at https://drug-virus.info/.

Table 1 presents statistical information regarding the three
datasets, their densities are 1.04%, 1.19%, and 5.61%, respectively.

2.2 Data processing and hypergraph
construction

2.2.1 Microbe similarity network construction

This study evaluates microbial similarity through two
methodologies. The initial category of microbial similarity
is functional similarity, determined through the Kamneva
(Kashyap et al, 2017) algorithm. Assuming the existence of
two microbes, m; and m;, their functional similarity can be
represented by MS;(mj, m;). However, many microbes do not
have similarity scores in MS;, and obviously that MS; is sparse,
and additional similarity information must be obtained to
uncover more valuable microbial insights. The second microbial
similarity is Gaussian interaction profile kernel similarity, which
posits that analogous microbes exhibit comparable functions,
leading to similar interaction profiles. The Gaussian kernel
similarity effectively harnesses the interaction information
among nodes within the network. Consequently, it offers
a robust approach to measure the similarity among nodes.
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Specifically, in the original matrix A, microbes m; and m;
can be represented as rows i and j in A. The Gaussian kernel
similarity MSy (mj, m;) of microbes m; and m; is defined in
Equation 1.

MSy(mi,m;) = exp(—nm || A(mj, ) — A(m;, )% (1)

2), 7, is the raw

Nm
Where n = 1'p/(5; 2 [AGmi.)
i=1

bandwidth, always set to 1.

2.2.2 Drug similarity network construction

This model assesses drug similarity through two methods.
The initial aspect is structural similarity, computed via the
SIMCOMP2 algorithm (Hattori et al, 2010).
chemical structure information, we measure drug similarity

Based on

by mapping dataset drugs to those in KEGG and obtaining
structure similarity with a custom cut-off score of 0.5. For
two drugs d; and dj, their structural similarity is expressed
as DSi(d;, dj). However, many drugs lack a similarity score
in DS;, and evidently that DS; is sparse. To derive more
comprehensive similarity information, additional data sources
must be identified. The second type of drug similarity is
the Gaussian interaction profile kernel similarity (DSy),
computed similarly to the microbial Gaussian interaction

profile kernel similarity.

2.2.3 Non-linear fusion of microbe and drug
similarity networks

We use microbes as an example. Following the calculation
of microbial functional similarity and the kernel similarity of
Gaussian interaction profiles, we integrated the two metrics.
Incorporating various similarity measures not only mitigates data
bias but also produces a more precise and rational aggregated
similarity for microbes and drugs. Nevertheless, basic linear
similarity combination techniques frequently prove inadequate
for integrating multiple biological similarities. Conventional
linear fusion techniques often depend on overly simplistic
approaches for integrating multi-view similarity information
(Ouyang et al,, 2024b), such as substituting absent similarity
values with an alternative similarity type or directly averaging
various types of similarities. This method fails to adequately
represent the intricate non-linear relationships among various
similarity types, which may result in information loss or
inferior fusion outcomes. Conversely, non-linear fusion can
dynamically encapsulate the non-linear interactions among various
similarity networks via a sophisticated iterative computation
process, thereby allowing for a more exhaustive investigation
of the profound information concealed within multi-source
data and aiding in the development of a more precise and
comprehensive integrated similarity network. Consequently, we
used non-linear fusion in this model. The non-linear fusion
process involves first calculating the normalized weights and
local relationships for each similarity matrix. Subsequently,
these normalized weights and local relationships from different

frontiersin.org
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FIGURE 1
Workflow of the DHCLHAM.

similarity matrices undergo iterative computation until they fall
below our specified threshold. The flow is shown in Figure 3A.
The combined microbial similarity was indicated as MS. The
normalized weights were calculated and specified as indicated in
Equation 2.

M, (i) / (2 S0 MS; i) ), # 1
1/2, j=i

2
In each similarity network, the KNN algorithm is employed to

S, (i m;) =

assess local relationships. For each microbial node, the algorithm
identifies its k nearest neighbors, sums the similarities to these
neighbors, and normalizes each neighbor’s similarity by dividing it
by the total sum, thereby generating a KNN similarity matrix as
described in Equation 3.

MS; (mi,mj) [ (X gen, MSt (mismy)), j € N;

K (miy mj) =

otherwise
3)
Where Nj is a set of k nearest neighbors of node m; in the
microbial similarity network. K; denotes the local affinity kernel
of the tth data type, and after many experiments, the neighbor
parameter of KNN is taken as N;,,10. Finally, this model iteratively
revises the similarity matrix for each data type according to the
procedure outlined in Equation 4.

MS = K, x (4)

Where t = 1,2,---,M, M is the total number of data types.

MS;(H'I) is the state matrix of the tth data type after the rth iteration.

/(r+1)

In this model, the iteration stops when MS, reaches the

convergence criterion, which is defined as the relative change

HMS;(HI) - MsP| .MS;(” is less than 107°. After iterative
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updating, the final integrated similarity network MS can be
obtained defined as shown in Equation 5.

/(r) /(r) /(r)
_ MS” + MS;” + -+ MS)y,
M

MS

(5)

However, the resulting similarity matrix is not symmetric; thus,
MSfipa = (MS + (MS)T)/2 serves as the final microbial similarity
matrix. The drug integrated similarity network is equivalent to
the non-linear fusion computation of the microbial integrated
similarity matrix previously described.

2.2.4 Dual views hypergraph construction
Traditional graph structures inadequately represent the
intricate entity interactions inherent in microbe-drug association
prediction (Mei et al., 2024). The relationship between microbes
and drugs is not merely a straightforward pairwise interaction.
Furthermore, drugs targeting the same microorganism frequently
the
observed among microbes. By linking drugs with analogous

possess analogous characteristics, akin to similarities
characteristics through hyperedges, the complete network can
be depicted as a higher-order graph. Creating hyperedges to
investigate higher-order relationships among nodes enables a more
thorough examination of intricate interactions within biological
systems. Consequently, we utilize the hypergraph structure as
an intermediary framework for the transmission of microbial
and drug information, enabling the global dissemination of
higher-order information between microbial and drug nodes.
This model uses a weighted hypergraph G = (V, E, W) to
14

constitutes the vertex set of microbe and drug nodes, E is the

represent microbe- and drug-related hyperedges. Here,

set of hyperedges, and W represents a diagonal weight matrix.
The original association matrix and the fused similarity matrix
are concatenated to form node features for microbes and drugs.
This model employs KNN and KO algorithms to construct
hypergraphs for microbes and drugs based on the concatenated
features. In the KNN algorithm, we initially compute the nearest
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FIGURE 2
HCLHAM framework diagram (A) Data processing and hypergraph construction (DPHC); (B) Hierarchical feature learning (HFL); (C) Association
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k neighbors of each microorganism using Euclidean distance, and  cluster centers ¢ by constructing a fitness function based on the
subsequently identify a subset, referred to as a hyperedge, from the ~ Euclidean distances between each microbe and these centers.
k neighbors. Hypergraph structure is called View; is designated By generating high-quality search spaces and directions through
in this paper. In addition, we employ the KO algorithm to select  centroid-based methods, the algorithm optimizes the positions of
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TABLE 1 Statistical information on microbial and pharmaceutical datasets.

10.3389/fmicb.2025.1657431

MDAD 173 1,373 2,470 1.04%
aBiofilm 140 1,720 2,884 1.19%
DrugVirus 95 175 933 5.61%
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FIGURE 3

(A) Calculated graph of non-linear fusion of multiple similarities. (B) Diagram of the process of calculating hierarchical attention in hypergraphs.

cluster centers, thereby enhancing clustering accuracy. Microbe
with closer distances are thereby grouped into subsets, referred
to as hyperedges; this hypergraph structure is denoted as View,
in this paper. After many iterations, the clustering center no
longer changes. At this point, the obtained relationship matrix
of hypergraph hypernodes and hyperedges can be expressed as
H e RV*E In particular, in View; hypergraph, the number of KNN
constructed hyperedge of hypergraph is the number of nodes, and
in View, hypergraph, the number of KO constructed hyperedge of
hypergraph is the number of cluster centers. Here, the hypergraph
association matrix is represented as H. When node v belongs to the
hypergraph e, H (v, e) = 1; otherwise, H (v, ¢) = 0.

2.3 Hierarchical feature learning

2.3.1 Hierarchical attention mechanisms

Graph attention and hypergraph attention mechanisms are
intended to elucidate the complex relationships among nodes and
edges (or hyperedges) within graph and hypergraph frameworks,
respectively, to ascertain the relative significance of each edge
(or hyperedge) to a node (Lee and Chae, 2024). This arises
from the adjacency matrix of a hypergraph, which includes
both nodes and hyperedges, with each hyperedge capable of
encompassing multiple nodes. From a specific viewpoint, a singular
hyperedge may theoretically encompass all nodes within the
graph. Hypergraph attention utilizes the initial node features as
input, modifies the representations of the hyperedges, and then
consolidates information from these revised hyperedges to enhance
the representations of the associated nodes. Acknowledging that
some nodes may possess more significant or informative attributes
than others, we present a hierarchical attention mechanism. This

Frontiers in Microbiology

mechanism initially calculates attention scores at the hyperedge
level and then incorporates these scores in the computation of
node-level attention. This method allows the model to better
maintain the global structural attributes of the hypergraph
by adjusting the significance attributed to hyperedges. The
proposed model integrates attention mechanisms at both the
hyperedge and node levels. Figure 3B schematically shows the
dynamic flow of information and the feature enhancement
process between nodes and hyperedges within the hypergraph.
The attention mechanism first calculate the hyperedge-level
attention, then calculate the node-level attention, and finally
update the features of the nodes. Here, the collection of all
nodes associated with a hyperedge e; is defined as y;, while
the collection of hyperedges linked to a node n; is denoted

as p;.

2.3.2 Constructing hyperedge-level attention

The model encapsulates information regarding all nodes
associated with each hyperedge. The hyperedge-level attention
identifies the differing significance of all nodes n, € y; associated
with a specific hyperedge e;. The attention score a;; of a node n; to
a hyperedge ¢; is described in Equation 6.

S(wyni, u)

Zpey], S(winp, u) (©)

aj,- =

Where w; is the learnable parameter matrix, u is the
trainable weight vector. We explored effectively address the
issue of numerical instability in high-dimensional hypergraph
features and enable feature transformation using learnable
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matrices, the similarity function S(.) is defined as scaled dot-
qu/@, where

D is the feature dimension. Unlike cosine similarity, which

product attention, denoted as S(g,k) =

enforces vector length normalization and discards magnitude
information, scaled dot-product attention directly utilizes the
original feature magnitudes to preserve the intensity of node
features, which is critical for capturing absolute importance
in hypergraph structures. Furthermore, the gk computation
of scaled dot-product attention is inherently compatible with
matrixized operations, enabling efficient GPU acceleration. This
significantly reduces computational overhead compared to non-
linear metrics like Euclidean distance, making it suitable for end-
to-end training on large-scale hypergraphs with complex high-
order relationships.

2.3.3 Constructing node-level attention

The revised hyperedge representation is employed to derive
the node representation. The node attention assesses the varying
significance of distinct hyperedges, and the attention score b;; of
hyperedge e; to node n; is defined as shown in Equation 7.

S(waej, win;)

by =
/ 2 pep S(waep, wini)

%

Where w; and w3 are learnable parameter matrices.
Finally the hyperedge representation ¢; =
updated node representation Z; = ¢(>_ e
aggregating their neighbor information, here ¢(.) consists of two

icy; GiW1Ni and the

bijwzej), are derived by

layers of MLPs and an ELU activation function.

2.3.4 Hypergraph convolutional networks

We employ hierarchical attention to generate information-rich,
context-aware node embeddings, which are subsequently fed into
the hypergraph convolutional network as high-quality inputs to
learn the global topological structure of the entire hypergraph.
The hypergraph convolutional network (HGCN), which employs
updated nodes for spectral convolution, effectively encodes
higher-order relationships within the hypergraph structure
(Yang et al, 2024). Feature transformation and hypergraph
aggregation facilitate the capture of deeper features, enhanced
expressiveness, and improved generalization. Following the
adjustment of the nodes, the update formula is delineated
in Equation 8, predicated on the weights of the matrix
and hyperedges.

X" = o(D; V2 HWD; 'HT D; /2 X6} (8)

Where X! is the aggregated information at layer LX° = X. 6/ is
the learnable weight matrix, and o(.) is the non-linear activation
function. D, is the degree matrix of the hyperedge, defined as
d(e) = Y ,cy H(v,e). D, is the degree matrix of the node, defined
as d(v) = ), w(e)H(v,e). After being updated by HGCN, the
embedding representations of microbes and drugs are denoted as

HGCN HGCN
Zpy "N and Z 75,
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2.3.5 Dual views contrastive learning

To tackle the issues of data sparsity and intricate relationships
present in real-world hypergraph structures, contrastive
learning has become a prevalent approach in recent years.
Simultaneously, various studies have combined contrastive
learning with graph-structured data to improve the quality
Current GCL-based feature

extraction techniques can be classified into two primary categories:

of embedding representations.

structural augmentation and feature augmentation (Hu et al,
2023). Structural augmentation systematically eliminates nodes or
edges from the graph to produce a modified structure, which is
subsequently processed through an encoder to yield contrastive
representations. Conversely, feature augmentation incorporates
random noise into node embeddings to generate alternative
perspectives for contrastive learning. However, both strategies
demonstrate significant shortcomings. Structural augmentation
may compromise the intrinsic properties of the original graph by
indiscriminately removing nodes or edges, thereby jeopardizing
the graphs semantic integrity. Likewise, feature augmentation
uniformly applies noise to all nodes, disregarding the distinct
attributes and contextual information of each node. This study
employs a dual-view contrastive learning framework to address
these issues. The dual hypergraph structure effectively addresses
both issues: maintaining the fundamental structure of the input
graph while reducing the potential for node feature deterioration
caused by indiscriminate noise introduction. The suggested
dual-view hypergraph contrastive learning approach guarantees
the coherence of embeddings for identical nodes across various
views and the differentiation of embeddings among disparate
nodes. A contrastive objective function is utilized, using the
two previously established hypergraph structures. This objective
ensures that the encoded representations of each node in the
two views are aligned and remain discriminative in relation to
the representations of other nodes. That is, for each node v, its
embedding v; generated in one view is designated as an anchor
point, and the embedding generated in the other view is denoted
as u;, such that different embeddings v; and u; of the same node
in different two views form positive sample pairs. Embeddings
vk and ug(k # i) of the other nodes are considered as negative
sample pairs, where vy forms an inner view negative sample
pair with anchor point v; and uj forms a cross-view negative
sample pair with anchor point v;. In contrastive learning, we
employ InfoNCE (Ouyang et al., 2024a) to guide the model in
learning the similarities and differences between data samples.
The sample pairs for each positive example are defined in
Equation 9.

Ly(i,ui) = ©)
esim(g(v,'),g(ui))/f

—log esim(g(vi)g(u) /T 4 Zk;éi £sim(gvi).g(vi)) /T

+ g esim(g(vi).g(ug))/

Where sim(.) is the cosine similarity function and g(.) a
two-layer neural network projection head utilized to augment
the informational capacity of the nodes, v is temperature
control parameter.
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The hypergraph contrastive loss functions of microbes and
drugs are defined Equation 10.

(m)

£ (i) =
Nm

- Z log — sim(g(v) g(v)) /T sim (g(vi).g(ug)) /7
(i;l es’m(g(”i)’g(”i))/t-ﬁ-zk#e &i)g(vg ki€ &(vi)g(uge

Ly, Vi i) =

Na
—2 log— gl sim (g0 g(0) /T sim (g(vp)g(ug)) /7
i=1 esim(glvidgu; )/r""Zk#ie VST AY ki€ ek

esim(g(vi)g(uy)) /T

esim(g(vi)g(up)/

Where N, and N; denote the number of nodes for microbes
and drugs, respectively, and View, (k = 1, 2) represents the
View, and View, hypergraphs. The perspectives on microbes
and drugs are symmetrical in the two distinct View; and View,
hypergraph representations of the nodes. Therefore, the final
overall contrastive loss functions for microbes and drugs is denoted
in Equation 11.

(m) (m) (m)
Ecé = E}i/iem(w’ u;) + Egiewz(ui,vi) a1
Ef;z) = E%ﬁ‘lwl (vis u;) + [’(Vilwz (ui, vi)

2.3.6 Integrated networks

Subsequent to employing contrastive learning, we trained
the contrast loss from two distinct perspectives. Afterwards,
we aim to amalgamate the two perspectives to create a more
comprehensive embedding feature vector. Initially, due to
the inherent differences between View; and View, views, the
variation in hyperedges influences the microbial and drug
embedding feature vectors, resulting in inconsistent preferences
between the two views, thereby affecting the final prediction
of microbe-drug associations differently. A global average
pooling layer, followed by a fully connected neural network,
is employed to calculate the weights for each view. The
embedding representation is ultimately integrated with the
attention weights, defined here using microbes as an example in
Equation 12:

Zn®" = ReLU(FNN(GAP(Zy, o NViemy) | zp 0N iew), )
Zy™" = ReLU(ENN(GAP(Zy CNVien)y) | Zp@ON(Viewa),
Where GAP(.) is a global average pooling layer, FNN(.)
is a two-layer fully connected neural network where the non-
linear activation functions of the two layers are ReLU() and

Sigmoid() functions, and ZﬁGCN(')

represents the embeddings of
the microbes for the View; and View, views. The final microbial
embedding representation with attentional weights is obtained
Ty = [Z,‘,/,i ew‘,Z,‘ﬁ "2]. Similarly, the attention weight embedding
of the drug can be obtained Z; = [Z;/iewl , Z;/iewz ].

Utilizing attentional embedding, we acquire the embedding
information of the two hypergraph structures. Drawing from
Graph-Transformer (Ma et al., 2023), we present a multi-head
attention mechanism to synthesize various perspectives of microbes
and drugs. In summary, using microbes as an example, the multi-

head attention mechanism extracts feature from various subspaces
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in each self-attention layer, which are subsequently combined to
derive the features of the microbes. The computed Z,‘,;i " and Zn‘? e
are initially concatenated to produce a composite representation of
the microbes Z,, = [Z,Y,iewl,Zn‘feWZ] and eventually Z,, = [Z}, 72 ].
Utilizing the Transformer’s framework, we project the microbial
final representation data onto three fundamental components:

the microbial query matrix Q, = WgZ, = [q,lwqfﬂ], the
microbial key matrix K,, = WyZ, = [kin,kzm], and the

WyZ, = [V}

m>

vfn], via three
projection weight matrices Wy, Wi, and W,. Meanwhile, based

microbial value matrix V,, =
on the ¢q,, and ky,, calculated above and on Scaled Dot-Product

Attention, the inter-view attention matrix A,, can be defined as
Equation 13.

explal, - (k) /,/dy)
N2 explay « () /]

Am(iyj) = (13)

Where j represents View; and View,, A, (i,j) denotes the
attention of the ith view to the jth view of the current microbe,
and df is the dimension of the microbe’s embedded representation,
s0 A,; € R¥*? represents the inter-view attention matrix in both
views of the microbe. The attention matrix corresponds directly
to the quantity of microbial nodes. The interactions among the
various views can be emphasized based on the attention scores
of the two perspectives. To enhance the capture of richer feature
representations and to improve the robustness and generalization
of the model learning process, a self-attention mechanism is
implemented as multi-head attention. The definition is specified in
Equation 14.

N
1 TP
V_ave, = NPZ;((AM VI

(14)

Where N denotes the quantity of multi-heads, determined
subsequent to the parametric analysis in the experiment.
Ultimately, we encode the feature vector embedding derived
from the multi-head attention using a two-layer feedforward
final
Wy, - Vec(V_avey,), where W) is a parameter in the

network to achieve the
hy =

feedforward network, and Vec(.) represents the vectorization

embedding representation

operation of row concatenation, i.e., multiple vectors are
concatenated by rows to form a long vector. Then, for N,,, microbes,
the embedding matrix can be expressed as Hy, = [h1,ha,- -+ , hn,,]-
Similarly, the embedding matrix Hy = [hy, ks, - - , hy,] for drugs

can be obtained.

2.4 Association prediction

In the concluding phase of score prediction, we employ the
final embedding representations H,, and H; of microbes and drugs
acquired previously. After that, we derive the embedding matrices
for both microbes Y,, = FNN(H,,) and drugs Y; = FNN(H,)
using a fully connected neural network (FNN). Subsequently,
the reconstructed correlation matrices are generated through
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the matrix multiplication of the two features, as delineated in
Equation 15.

As =Y, Y] (15)

2.5 Loss function

The initial association matrix of microbes and drugs is
sparse, with sparsity levels of 1.04%, 1.19%, and 5.61% for the
three datasets, respectively. The quantity of unobserved terms
significantly exceeds that of observed terms, creating an imbalance
that impacts model training. To address this issue, we employ a
trade-off parameter « to equilibrate the observed and unobserved
terms, and the model’s objective function is delineated as presented
in Equation 16.

(1-a)
2

Lre = |Pa(a — 492 + % |Paa — 4|2 (16)
Where Q and € are used for observed and unobserved entries,
respectively, A is the true value matrix, As is the prediction matrix,
and ||| is the Frobenius norm.
The comprehensive loss function for model optimization
comprises the reconstruction loss and the comparative loss between
microbes and drugs, as delineated in Equation 17.

L= Lpg+ 1LY +yLt (17)

Where A and y are control coefficients for regulating the
comparative loss of microbes and drugs, and considering the
experimental complexity, A and y are uniformly set to 1.

3 Experiments and results

This section provides a thorough experimental assessment
of DHCLHAM. We evaluate DHCLHAM against multiple
baseline methods to illustrate its performance. Visualization
experiments underscore the distinguishing ability of the
microbial and drug node embeddings produced by DHCLHAM.
Ablation studies are performed to evaluate the contribution
of each module in the model. Ultimately, a parameter
sensitivity analysis is conducted to facilitate model refinement
and optimization.

It is worth noting that, DHCLHAM uses the Adam optimizer
for training and applies a grid search strategy to tune its
parameters. Ultimately, the learning rate is set to 0.0001, and
the trade-off parameter « is 0.11. In the biological correlation
encoding component, the dimension is set to 256. During training,
DHCLHAM achieves the highest evaluation value at 400 epochs.
All experiments are conducted on a desktop with an Intel
Core i5-13400F CPU and an NVIDIA RTX4060Ti 8GB GPU.
The software environment includes PyCharm 2024.1, Python
v3.9.0, Pytorch v2.1.0, NumPy v1.26.0, scikit-learn v1.5.2, and
scipy v1.13.1.
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3.1 Efficiency analysis

As depicted in Figure 2, the training process of DHCLHAM
consists of three main steps constructing an integrated similarity
network and dual hypergraphs, implementing a dual-level
and  dual
contrastive learning, and finally integrating the networks via

hypergraph attention mechanism hypergraph
an integrated network.

In the first step, given m microbes and n drugs, DHCLHAM
calculates the similarities among microbes and among
drugs, respectively. This process has a time complexity of
O(m*)+0(n?).

fusion to create integrated similarity networks for microbes

Subsequently, the model employs non-linear

and drugs. The associated iterative update process has a time
complexity of O(m®)+O0(n®). For the construction of dual
hypergraphs in DHCLHAM, both the KNN algorithm and
the KO algorithm are employed. The KNN algorithm, with
a time complexity of O(m?)+0(n?), is used to identify the k
nearest neighbors for each node. The KO algorithm utilizes
K-means clustering to compute the clustering center vectors,
which has a time complexity of O(m-c-t)+O(n-c-t), where
c is the number of cluster centers and t is the number of
iterations. Following this, the strategy update introduces a time
complexity of O(N-D), where N is the population size and
D is the dimensionality of the search space. Overall, the KO
algorithm has a time complexity of O(m-c-t)+O(n-c-t)+O(N-D).
Summing up the time complexities of all the aforementioned
operations, the total time complexity for the first step
is O(m3)+0(n?).

In the second step, DHCLHAM’ hierarchical attention
mechanism is explicitly designed to be computationally efficient
by performing attention calculations on local neighborhoods.
For Hyperedge-Level Attention, the model first learns to
aggregate node information to form hyperedge representations.
For each hyperedge e; containing k; = y; nodes, the attention
calculates weights for all within that
hyperedge. This corresponds to a local attention operation
with a complexity of O(k?). Subsequently, the model updates
each nodes representation by attending over its connected
hyperedges. For each node n; connected to d; hyperedges, the

mechanism nodes

attention mechanism calculates weights for these neighboring
hyperedges. This is another local attention operation with a
complexity of O(d?). The total complexity of our hierarchical
attention module is therefore O(k%)+0O(d?). The model then
uses HGCN to learn embeddings for microbes and drugs,
a process characterized by a time complexity of O(|E|-C-F),
where |E| signifies the number of hyperedges in HGCN, C
is the dimensionality of input features, and F corresponds
to the Additionally,
during the contrastive learning phase, DHCLHAM measures

dimensionality of output features.
similarities among all nodes, adding a time complexity of
O(m*)+0(n*). Hence, the aggregate time complexity for this step
is O(|E|-C-F)+0(m*)+0(n?).

In the third and final step, DHCLHAM integrates the
embeddings from the dual hypergraphs using an integrated
network primarily that utilizes a multi-head attention mechanism.
The time complexity for this integration is O(m*-h)+O(n*-h), with
h representing the number of attention heads.
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In summary, the total time complexity for training DHCLHAM
is the sum of the time complexities from all three steps. After
disregarding constant factors from each step, the overall time
complexity can be succinctly expressed as O(m>)+0(n?).

Table 2 compares our model with the baseline methods in
terms of computational time complexity. In comparison to simpler
models such as GCNMDA (Long et al., 2020a), whose per-iteration
training complexity is approximately O(n*)+O(n-H-M), primarily
determined by random walks and the matrix multiplication in the
decoder, the time complexity of ordinary GNN models mainly
stands at O(|A|-F), predominantly governed by the graph’s edges.
Our model’s per-iteration training complexity is higher, which is
chiefly attributed to the quadratic relationship with the number of
nodes brought about by the dual-view attention and contrastive
learning modules. This represents a deliberate trade-off, where
increased computational investment is made to capture more
complex relationships and achieve higher prediction accuracy.
The dominant cubic complexity O(m>)4+0(n?) in our framework
originates from the one-time similarity fusion preprocessing step,
whereas the computational load during the iterative training phase
is comparable to other attention-based GNN architectures.

3.2 Experimental setup and evaluation
metrics

A five-fold cross-validation approach is employed to
thoroughly evaluate the efficacy of DHCLHAM and the baseline
methods on the MDAD, aBiofilm, and DrugVirus datasets. For
each dataset, confirmed microbe-drug pairs are positive samples,
making up the positive set. Unverified pairs are negative samples,
forming the negative set. Then, from the negative set, we randomly
pick the same number of samples as the positive set to create
the 5-fold cross-validation set. The dataset is divided into five
equal subsets, with each subset being successively assigned as
the test set, while the other four subsets are utilized for model
training. This guarantees that each subset functions as both a
training and testing set in various iterations. We then calculate the
quantities of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) to assess model performance. The
assessment metrics comprise the area under the receiver operating
characteristic curve (AUC), the area under the precision-recall
curve (AUPR), and the Fl-score. The metrics are delineated as
presented in Equations 18-21.

TP
Recall = ———— (18)
FN + TP
. TP
Precision = —— (19)
FP+ TP
TP + TN
Accuracy = * (20)
TP+ TN + FP + FN
2 X Precison x Recall
F1 — score = (21)

Precison + Recall

Frontiers in Microbiology

10.3389/fmicb.2025.1657431

3.3 Performance evaluation

To evaluate the performance of our proposed DHCLHAM
model, we conducted 5-fold cross-validation on the MDAD,
aBiofilm, and DrugVirus datasets and plotted the AUC and AUPR
curves. As shown in Figure 4, the DHCLHAM model exhibited
outstanding performance across all three datasets. Specifically,
on the MDAD dataset, the model achieved an average AUC of
98.27% and an average AUPR of 97.87%. On the aBiofilm dataset,
the average AUC and AUPR values were 98.61% and 98.33%,
respectively. Meanwhile, on the DrugVirus dataset, the average
AUC was 92.23% and the average AUPR was 92.14%. We also
calculated the standard deviations. The standard deviations of
AUC and AUPR for the 5-fold cross-validation on the MDAD
dataset were 0.0018 and 0.00139, respectively, indicating relatively
small fluctuations and stable model performance. For the aBiofilm
dataset, the standard deviations were 0.0025 for AUC and 0.00215
for AUPR, showing slightly larger fluctuations and somewhat
reduced stability. The DrugVirus dataset, being the smallest in size,
had the largest standard deviations of 0.0057 for AUC and 0.0036
for AUPR. Overall, these results demonstrate that the DHCLHAM
model can accurately predict microbial responses to different drugs
across various datasets.

3.4 Baseline models

To demonstrate the superiority of the proposed method,
we compared DHCLHAM with six state-of-the-art approaches,
including the classic graph-structured GCNMDA (Long et al,
2020a), the latest Graph Transformer-based KNDM (Chen et al.,
2025), hypergraph contrast learning-based HGCLMDA (Hu
et al., 2023), standard graph contrast learning-based SCSMDA
(Tian et al, 2023), the latest microbe-drug association-based
NRGCNMDA (Du et al., 2025), and MCHAN (Li et al., 2024).

GCNMDA (Long et al., 2020a): This study is the first to employ
a graph structure to represent microbe-drug association data.
A heterogeneous network of drugs and microbes is constructed
and represented utilizing the random walk with restart (RWR)
algorithm. A conditional random field (CRF) layer is incorporated
into a graph convolutional network (GCN) framework, featuring
an attention mechanism that updates the node embeddings. A
bipartite network of microbes and drugs has been reconstructed.

KNDM (Chen et al., 2025): This approach initially constructs a
knowledge graph comprising drug and microbe entities to reveal
the similarities and associations between entities. Subsequently,
an entity category-sensitive Transformer (ECST) is proposed to
integrate the diverse entity types and their complex relationships.

HGCLMDA (Hu et al., 2023): This method combines GCN and
HGCN to capture local and global structural info from mRNA-drug
bipartite graphs, mining high-order relationships between mRNA-
drug pairs. It also uses a cross-view contrastive learning architecture
to boost learning ability.

SCSMDA (Tian et al., 2023): This approach develops similarity
and meta-path induction networks for microorganisms and drugs.
It improves node embeddings via a structure-enhanced contrastive
learning approach and employs a self-paced negative sampling
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TABLE 2 Compare the time complexity of other methods with ours.

Core algorithm

10.3389/fmicb.2025.1657431

Time complexity MDAD highest AUC

GCNMDA (Long et al., 2020a)

Graph convolutional network, conditional random field

O(n*)+0(n-H-M) 0.9423 4 0.0105

attention mechanisms

KNDM (Chen et al., 2025) Knowledge-graph transformer, semantic feature learning strategy O(m?)+0(n?) 0.9688 =+ 0.0032
with recursive gating

HGCLMDA (Hu et al., 2023) Hypergraph convolutional network, cross-view contrastive O(m®)+0(n?) 0.9762 £ 0.0029
learning

SCSMDA (Tian et al., 2023) Structure-enhanced contrastive learning, structure-enhanced O(m*)+0(n*)+0(T-m-n) 0.9407 £ 0.0044
contrastive learning

NRGCNMDA (Du et al., 2025) Graph convolutional network incorporating a fusion residual O(m-n-F) 0.9516 =+ 0.0024
network mechanism, conditional random fields

MCHAN (Li et al., 2024) Contrastive learning, contrastive learning, graph convolutional O(L-S-F)4+O(m/n-F) 0.9538 £ 0.0068
networks

DHCLHAM Hypergraphs contrastive learning, non-linear fusion, hierarchical O(m?)+0(n?) 0.9827 £ 0.0018

In the column of time complexity, m represents the number of microbe nodes, n represents the number of drug nodes, F indicates the feature dimension of the node, L is the number of layers,

H is the adjacency matrix, and S is the sparsity of the adjacency matrix.
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FIGURE 4

The ROC and PR curves of DHCLHAM for predicting microbe-drug associations on MDAD, aBiofilm and DrugVirus datasets based on 5-fold
cross-validation. (a—f) Correspond to the ROC and PR results for the three datasets, respectively.

technique to identify the most informative negative samples,
subsequently training an MLP classifier for association prediction.

NRGCNMDA (Du et al., 2025): Shallow features are derived
from a microbe-drug heterogeneous network using Node2vec.
A Residual Graph Convolutional Network (REGCN) is utilized
to capture long-range dependencies through skip connections.
A CRF layer imposes contextual constraints to refine the
embeddings, and association scores are ultimately computed using
a bilinear decoder.
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MCHAN (Li et al., 2024): A graph convolutional network

an attention mechanism is employed to

network
heterogeneous

incorporating

extract essential information. Two topologies

established: a
and a

are super graph featuring

super nodes, conventional heterogeneous graph.
Graph embeddings are directed through a cross-contrastive
learning task, and the outputs of the graph convolutional
networks are integrated with an attention mechanism to

forecast associations.
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FIGURE 5
Visual comparisons of AUC and AUPR values for DHCLHAM and six other methods on the MDAD, aBiofilm, and DrugVirus datasets are presented.
Different colors denote various methods, with the y-axis representing values of AUC and AUPR. (a—f) Correspond to the AUC and AUPR results for
the three datasets, respectively.

Figure 5 shows the evaluation of DHCLHAM against
baseline methods utilizing AUC and AUPR metrics on the
MDAD, aBiofilm, and DrugVirus datasets. The AUC for
the DrugVirus dataset is 0.9223, marginally lower than
NRGCNMDAs 0.9267. However, DHCLHAM’s AUPR of
0.9214 notably surpasses NRGCNMDAs 0.9024, potentially
due to the restricted sample size of the DrugVirus dataset.
Additionally, on the MDAD and aBiofilm datasets, DHCLHAM
attains AUC values of 0.9827 and 0.9861, and AUPR values
of 09787 and 0.9833, respectively, surpassing all baseline
methods. Meanwhile, to verify whether the performance of
DHCLHAM is statistically significantly higher than that of
other baseline models, we calculated a paired t-test of 5-fold
cross-validation of DHCLHAM and six other methods. Statistical
analysis indicates that DHCLHAM significantly outperforms
other methods in these evaluation indicators, with a p-value
less than 0.05, as shown in Table 3. This enhancement may
stem from employing hypergraph structures to encapsulate
high-dimensional data and implementing a bi-level hypergraph
attention mechanism, alongside contrastive learning across dual
hypergraph perspectives. DHCLHAM more effectively models
the intricate interactions between microbes and drugs, thereby
improving predictive performance.

3.5 Ablation experiment

To evaluate the importance of specific modules within the
DHCLHAM model, we performed an ablation study concentrating
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on three essential components across three datasets. This analysis
assesses the impact of each module on the overall model efficacy.

3.5.1 Effects of hierarchical attention and contrast
learning

NoDHA: This the  hierarchical
attention mechanism (DHA) and utilizes conventional graph

variant  eliminates
attention instead.

NoCL: In this configuration, the contrastive learning (CL)
module for hypergraph contrastive learning is excluded, and the
output from the hypergraph convolution is directly input into the
integration network for feature amalgamation.

The NoDHA variant exhibits inferior performance relative to
DHCLHAM across all four evaluation metrics, AUC, AUPR, F1-
score, and ACC, on all three datasets. The decline in performance
may arise from the scarcity of microbial-drug interaction data,
as the bi-level hierarchical attention mechanism facilitates the
acquisition of higher-order information, thus enhancing the
network representation. The introduction of hierarchical attention
updates node embeddings at the hyperedge level, thereby enabling
iterative refinement of node information. This highlights the
essential function of the hierarchical attention mechanism.

The elimination of the contrastive learning module (NoCL)
leads to a significant decrease in all four metrics, indicating
that hypergraph contrastive learning plays a crucial role
in differentiating and augmenting node information from
various perspectives. This consequently enhances predictive
accuracy. These findings collectively affirm the essentiality of
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TABLE 3 Comparison of DHCLHAM with other methods via paired t-test on MDAD dataset.

P-value GCNMDA KNDM HGCLMDA SCSMDA NRGCNMDA MCHAN
AUC 3.71e-4 1.64e-5 9.77e-3 2.65e-6 2.33e-8 1.56e-4
AUPR 6.16e-4 6.3e-4 1.24e-5 5.06e-9 5.68e-6 2.49e-3
A B
MDAD aBiofilm DrugVirus ACC
0.99 0.95
N 0.99
i & T F1-
0.9 . > -_\—‘ 0.9 "_\\ o
0.93 0.93 I 1 0.85 l gl !
L
0.9 0.9 0.8
AUC |AUPR - ACC AUC |AUPR FL- ACC AUC |AUPR i ACC
score score score e
‘ NoDHA 0.9705 | 0.9688 | 0.9455 | 0.9446 | |mmNoDHA 0.9701 | 0.9674 | 0.9403 | 0.9396 NoDHA 0.9135 | 0.9106 | 0.8447 | 0.8427
‘ NoCL 0.9773 | 0.9717 | 0.9462 | 0.9457 NoCL 0.9765 | 0.9744 | 0.9386 | 0.9302 NoCL 0.9143 | 0.912 | 0.8552 | 0.8537
‘-O-I)HCL}IAM 0.9827 | 0.9787 [ 0.9521 | 0.9525 | [~—DHCLHAM| 0.9861 | 0.9833 | 0.9521 | 0.9525 | |~~DHCLHAM| 0.9223 | 0.9214 | 0.8687 | 0.8623 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99
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FIGURE 6
(A) Ablation experiments of DHCLHAM with different metrics compared under the two modules NoDHAL and NoCLTF. (B) Impact of non-linear
fusion in the MDAD dataset. (C) The influence of DHCLHAM on predictive performance across varying head counts in three datasets. (D) Impact of
DHCLHAM on predicting performance at different values of K and C on DrugVirus.

each component within DHCLHAM and validate the superior
efficacy of the fully integrated model. The findings are depicted in
Figure 6A.

3.5.2 Effects of non-linear fusion

Non-linear fusion can inherently incorporate diverse similarity
information from both microbial and drug feature domains,
thereby significantly enhancing the model’s predictive capability.
The efficacy of non-linear fusion was evaluated by executing
the model with a singular similarity and a linear fusion of two
similarities. Specifically:

MS;1&DS;: In the data preprocessing phase, only microbial
functional similarity and drug structural similarity were used.

MS,&DS;: In the data preprocessing phase, only microbial
Gaussian kernel similarity and drug Gaussian kernel similarity
were used.

Linear: During the data preprocessing phase, linear average
fusion was employed for microbial functional similarity and
microbial Gaussian kernel similarity, as well as for drug structure
similarity and drug Gaussian kernel similarity.

Our proposed model, employing the previously mentioned
similarity combinations, was assessed on the MDAD dataset using
identical parameter configurations. As illustrated in Figure 6B,
t the performance of MS;&DS;, MS,&DS,, and Linear on
the MDAD dataset deteriorated. This indicates that non-linear
fusion effectively captures the non-linear relationships between
microbial and drug similarity perspectives, thereby improving
overall model performance.
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3.6 Parametric analysis

Multiple critical parameters influence the efficacy of the
DHCLHAM model. This
hyperparameters: the quantity of attention heads (head), the
count of HGCL layers, the value of K in the KNN method for
hypergraph construction, and the number of clustering centers C

section addresses four essential

in the KO method. Relevant experiments were performed, and the
outcomes were assessed utilizing AUC, AUPR, F1-score, and ACC
as performance metrics.

(1) The effect of altering the number of multi-head attention heads
is depicted in Figure 6C, where the head value is chosen from
the set {2, 3, 4, 5, 6}. The MDAD and aBiofilm datasets exhibit
optimal performance across evaluation metrics when the head
count is configured to 5. Conversely, for the DrugVirus dataset,
optimal metric values are achieved with a head count of 4.

(2) The impact of the number of HGCL layers is encapsulated in

Table 4, to avoid overfitting, the number of HGCN layers is set

to {1, 2, 3, 4}. The optimal values, highlighted in bold in the

table, indicate that the model attains maximum performance
across all three datasets when employing two layers.

The impact of the K value in the KNN method and

the number of cluster centers C in the KO method on

(©)

hypergraph construction is also analyzed. K and C ascertain
both the length and quantity of the hyperedges, rendering
their selection crucial. Utilizing the DrugVirus dataset as a
reference, Figure 6D illustrates that DHCLHAM attains peak
performance with K configured at 13 and C configured at 9.
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TABLE 4 Impact of DHCLHAM in predicting performance under different number of HGCN layers on three datasets.
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Dataset Number of HGCN AUC AUPR F1-score ACC
MDAD 1 0.9793 0.9735 0.9294 0.9309
2 0.9827 0.9787 0.9521 0.9525
3 0.9802 0.9746 0.9365 0.9355
4 0.9693 0.9604 0.9180 0.9196
aBiofilm 1 0.9822 0.9769 0.9487 0.9457
2 0.9861 0.9833 0.9521 0.9525
3 0.9834 0.9802 0.9488 0.9483
4 0.9723 0.9664 0.9377 0.9377
DrugVirus 1 0.9184 0.9178 0.8588 0.8545
2 0.9223 0.9214 0.8687 0.8623
3 0.9156 0.9113 0.8511 0.8503
4 0.9083 0.9042 0.8330 0.8426

Values in bold denote the best performance achieved for each metric.

3.7 Case studies

To thoroughly evaluate the efficacy of DHCLHAM in
discovering novel microbe-drug associations (MDAs) and in
analyzing the interpretability of its predictions, two case studies
were formulated: one focused on literature validation and the other
employing network pharmacology analysis.

3.7.1Casel

In accordance with the methodology of a prior study (Long
et al, 2020a), we conducted a case study on two commonly
employed antimicrobial agents, ciprofloxacin and moxifloxacin,
using the MDAD dataset. For each target drug, all established
microbe-drug associations were regarded as unknown. Next,
DHCLHAM was utilized to rank all candidate microbes in
descending order based on their predicted association scores. The
highest 20 ranked microbes for each drug were subsequently
chosen and corroborated with existing literature. Figure 7 visualizes
the anticipated microbial associations for both ciprofloxacin
and moxifloxacin.

Ciprofloxacin, a second-generation fluoroquinolone, is
frequently prescribed for respiratory tract infections and sepsis.
It demonstrates extensive antibacterial efficacy, especially against
gram-negative pathogens (Long and Luo, 2021). Devos et al.
(2017) examined the effect of ciprofloxacin on membrane vesicle
(MV) secretion in Stenotrophomonas malt philia. Their findings
indicated that ciprofloxacin not only stimulated the production
of classical outer membrane vesicles (OMVs) but also triggered
the formation of outer-inner membrane vesicles (OIMVs), which
encapsulate both outer and inner membranes and are enriched in
cytoplasmic proteins. Moreover, these OIMVs exhibit trichome-
like surface structures and are linked to the release of bacteriophage
particles and prophage induction, potentially leading to detrimental
effects associated with antibiotic treatment. Szczuka et al. (2017)
demonstrated that ciprofloxacin displayed antibacterial activity
against Staphylococcus epidermidis at standard concentrations,
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although its efficacy was reduced against partially drug-resistant
strains. Furthermore, subinhibitory concentrations of ciprofloxacin
differentially influenced biofilm-associated gene expression and
biofilm morphology in Stapbylococcus epidermidis contingent upon
the strain. Table 5 presents that of the top 20 microbes anticipated
to associate with ciprofloxacin, 18 have been substantiated
by current literature, yielding a validation accuracy of 90%.
Beyond confirming known associations, our model’s unconfirmed
predictions may point toward new research avenues. For instance,
the high-scoring prediction for Streptococcus pneumoniae
serotype 4 suggests a testable biological hypothesis: Ciprofloxacin
may possess notable efficacy against this specific serotype. This
provides a clear direction for experimental validation and could
potentially inform drug development strategies by refining
treatment guidelines for infections caused by this pathogen.
Moxifloxacin is a broad-spectrum antimicrobial agent
categorized as a fourth-generation quinolone antibiotic. It is
commonly prescribed for the treatment of upper and lower
respiratory tract infections, such as acute sinusitis, pneumonia, and
infections of the skin and soft tissues. An experimental study by
Chon et al. (2018) revealed that Clostridium perfringens exhibited
significant susceptibility to moxifloxacin, thereby substantiating
its clinical efficacy in treating infections caused by this pathogen
and underscoring its potential as a viable therapeutic option.
Furthermore, Butt et al. (2014) indicated that the overexpression of
the HicA toxin in Burkholderia pseudomallei led to bacterial growth
inhibition and a heightened population of persister cells resistant
to ciprofloxacin or ceftazidime, thereby emphasizing the potential
of moxifloxacin as an effective antibacterial agent in particular
circumstances. However, not all pathogenic bacteria demonstrate
significant sensitivity to moxifloxacin. Table 6 indicates that of the
top 20 microbes anticipated to associate with moxifloxacin, 16
have been substantiated by current literature, yielding a validation
accuracy of 80%. Among the four unconfirmed candidates in
the top-20 list, Vibrio cholerae, the causative agent of cholera,
was identified with a high association score. This leads to a
clinically significant and actionable hypothesis: Moxifloxacin may
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FIGURE 7

Validation results of the top 20 microbes predicted by DHCLHAM to be associated with two drugs (ciprofloxacin and moxifloxacin) are shown. Blue
lines indicate validated associations, while red lines represent unvalidated ones. Red indicates drugs, and green indicates microbes.

TABLE 5 Top 20 predicted ciprofloxacin-associated microbes.

Microbe Evidence Microbe Evidence
Escherichia coli PMID:26607324 Enteric bacteria and other eubacteria PMID:36682905
Stenotrophomonas maltophilia PMID:28488744 Human immunodeficiency virus 1 PMID: 9566552
Haemophilus influenzae MDAD Propionibacterium acnes MDAD
Mycobacterium tuberculosis PMID:30020039 Influenza A virus Unconfirmed
Porphyromonas gingivalis PMID:26369485 Salmonella enterica PMID:26933017
Eikenella corrodens PMID:16875802 Pseudomonas fluorescens PMID:30026133
Candida albicans PMID:31471074 Aeromonas hydrophila PMID:24242249
Stapbylococcus epidermidis PMID:28481197 Hepatitis C virus PMID:12234860
Campylobacter jejuni PMID:27900889 Streptococcus pneumoniae serotype 4 Unconfirmed
Plasmodium falciparum PMID:17214980 Cryptococcus neoformans PMID:29858266

be an effective antibacterial agent against Vibrio cholerae. This  prediction can be directly validated through in vitro antimicrobial
is a plausible hypothesis, as moxifloxacin is a broad-spectrum  susceptibility testing. Given the growing challenge of antibiotic
fluoroquinolone known to target bacterial DNA replication. This  resistance in Vibrio cholerae, this finding could inform drug
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TABLE 6 Top 20 predicted moxifloxacin-associated microbes.

10.3389/fmicb.2025.1657431

‘ Microbe Evidence Microbe Evidence ‘
Candida albicans PMID: 12121916 Vibrio anguillarum Unconfirmed
Human immunodeficiency virus 1 PMID:18441333 Escherichia coli PMID:31542319
Burkholderia pseudomallei PMID:24502667 Vibrio campbellii Unconfrmed
Haemophilus influenzae PMID: 11856249 Vibrio vulnificus PMID:10632381
Salmonella enterica PMID:22151215 Bacillus subtilis PMID:30036828
Clostridium perfringens PMID:29486533 Streptococcus mutans PMID:29160117
Human immunodeficiency virus PMID:18441333 Porphyromonas gingivalis Unconfirmed
Mycobacterium tuberculosis PMID:35975988 Streptococcus pneumoniae PMID:31542319
Vibrio cholerae Unconfirmed Burkholderia cenocepacia PMID:28355096
Listeria monocytogenes PMID:28739228 Clostridium pasteurianum PMID:29486533

TABLE 7 Top 20 predicted SARS-CoV-2 related drugs.

‘ Drug Evidence Drug Evidence ‘
Chlorpromazine PMID:33387629 Nitazoxanide PMID:36066651
Brequinar PMID:36041646 Ritonavir PMID:35183067
Favipiravir PMID:33108587 N-MCT Unconfirmed
Leflunomide PMID:37534317 Filociclovir Unconfirmed
Foscarnet PMID:34638812 Ganciclovir Unconfirmed
Fosamprenavir Unconfirmed Brincidofovir PMID:32834922
Acetylsalicylic acid PMID:36298484 Letermovir PMID:33970450
Arbidol (Umifenovir) PMID:32955901 Labyrinthopeptin A1 Unconfirmed
Lamivudine Unconfirmed Camostat PMID:33176395
Uracil PMID:35337173 Emetine PMID:33302852

development strategies by highlighting moxifloxacin as a potential
candidate for treating cholera, particularly in cases resistant to
standard therapies.

3.7.2 Case 2

To enhance the validation of the model’s interpretability in
predicting microbe-drug associations, we employed a network
pharmacology approach to analyze the SARS-CoV-2 virus as
a case study. The model’s prediction scores were employed to
identify the twenty drugs most pertinent to the SARS-CoV-2 virus.
Fourteen drugs were validated through a literature review, as
shown in Table 7. Secondly, we acquired the genetic information
of the SARS-CoV-2 virus and the target data for 20 validated
and unvalidated drugs from four databases: GeneCards, NCBI,
UniProt, and OMIM, to guarantee thorough gene representation.
In the GeneCards database, we selected genes with scores exceeding
the median of the “Score” column to acquire more precise gene
information. We used the “Human” tag in the NCBI, UniProt, and
OMIM databases to obtain specific gene information. The gene data
from these four databases was amalgamated and deduplicated to
derive the final gene set for the SARS-CoV-2 virus.We acquired
target protein information for the drugs from the ChEMBL
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database and used UniProt to correlate these proteins with human
genes. For compounds lacking target information in ChEMBL, we
used the SwissTargetPrediction database to forecast targets. Upon
acquiring the target information for all validated and unvalidated
drugs, we discovered that merely two target genes were exclusive
to the unvalidated drugs. Consequently, we omitted these two
genes from the target gene set and eliminated duplicates from
the aggregated gene set. Ultimately, we employed the SARS-
CoV-2 viral genes and the drug target genes for Gene Ontology
enrichment analysis. Figure 8 presents a bubble diagram displaying
the enrichment outcomes for designated pathways. The pathway
with the highest enrichment is transcription factor binding,
whereas the pathway with the lowest enrichment is IkappaB
kinase activity. In the protein kinase binding pathway, host cells
infected by SARS-CoV-2 exploit host protein kinases to promote
viral replication and transcription (Huang et al., 2022). SARS-
CoV-2 infection activates or disrupts host transcription factors,
thereby eliciting immune and other responses. The virus depends
on host transcription factors for its replication and transcription,
influencing their recruitment. This pathway is essential for immune
cell functionality and infection-related pathology (Gordon et al.,
2020). Figure 9 shows the enrichment of specific genes across these
20 biological processes. SARS-CoV-2 infection exploits or disrupts
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the binding mechanism of ubiquitin-like protein ligases in host cells
within the ubiquitin-like protein ligase binding pathway (Gonzalez-
Orozco et al, 2024). Clearly, enrichment analysis effectively
validates and elucidates the model’s predictions regarding microbe-
drug associations.

4 Conclusion and discussion

This study presents a dual hypergraph contrastive learning
model that integrates a hierarchical attention mechanism to
derive initial features for predicting microbe—drug interactions.
The model creates two hypergraph structures by combining
the original bipartite graph with a similarity matrix non-
linear fused using KNN and KO algorithms. The resultant
hyperedges facilitate the modeling of intricate relationships
among various drugs and microbes from multiple viewpoints.
Unlike traditional graph attention mechanisms, the proposed
hierarchical attention mechanism systematically aggregates
information at both hyperedge and node levels within the
hypergraph. In contrast to traditional graph-based contrastive
learning methods, we conduct contrastive learning on both
KNN-based and KO-based hypergraphs. We

integrate data from these two hypergraphs using a multi-

subsequently
head attention mechanism to produce the final embedding

representations of microbes and drugs, which are subsequently
employed to calculate microbe-drug association scores. Assessment
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across various metrics on multiple publicly accessible datasets
indicates that the DHCLHAM model surpasses six leading
baseline models. Finally, we substantiate the predictive
efficacy of DHCLHAM in identifying novel microbe-drug
interactions via literature validation and case studies in
network pharmacology.

However, the DHCLHAM model demonstrates specific
limitations, primarily attributable to the inadequate compilation
of similarity data for drugs and microorganisms. In future
endeavors, we plan to investigate supplementary drug-related
data

affinity profiles,

encompassing molecular
SMILES
information (Tanvir et al, 2024). We intend to integrate

fingerprints, drug

sources,
representations and drug-Target
microbial data, including 16S rRNA gene sequences (Wang
et al., 2025). The existing methodology creates two varieties
of hypergraph structures, yet it may inadequately encompass
the complete intricacy of the data. Subsequent research will
the
and dynamically developing hypergraph structures (Bindels

examine amalgamation of both statically configured
et al., 2025). Meanwhile, biological experiments will also be
considered in the future to verify the prediction rate of the
model. Subsequent improvements will concentrate on using
supplementary datasets and sophisticated machine learning
methodologies to enhance the predictive precision of microbe-
drug interactions. Additionally, performing comprehensive case
studies on microbe-drug interactions, augmented by network
pharmacology analyses, will provide enhanced understanding
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FIGURE 9

Diagram of gene pathway correlations. Gene names are located on the left periphery, while specific biological processes are positioned on the right.
Connecting lines denote the relationship between each gene and its corresponding process.

of the fundamental biological connections between microbes  to this paper have been made publicly available here: https://github.
and drugs. com/HZUNie/DHCLHAM/tree/master.
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