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Background: Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel 
disease characterized by continuous mucosal inflammation of the colon and 
rectum. The global prevalence of UC has been rising steadily, and accumulating 
evidence suggests a potential association between proton pump inhibitor 
(PPIs) use and UC development. Nevertheless, the precise role of PPIs in the 
pathogenesis and clinical course of UC remains unclear.
Methods: The C57BL/6J mice were administered saline, omeprazole (OME) 
and dextran sulfate sodium to establish control, PPIs-treated and UC models, 
respectively. The fecal samples were subjected to high-throughput sequencing 
of the V3-V4 hypervariable regions of the 16S rRNA gene. Taxonomic annotation 
was performed using Mothur software to evaluate microbial diversity and 
abundance. Principal coordinate analysis, linear discriminant analysis effect size, 
and functional enrichment analyses were also conducted.
Results: Alpha and beta diversity analyses showed that the richness and diversity 
of the gut microbiota in the PPI and UC groups were significantly lower than 
those in the control group (p < 0.05). At the family and genus levels, the UC 
group was dominated by Bacteroides, while the PPIs group exhibited enrichment 
of Eisenbergiella and Prevotella. Furthermore, functional enrichment analysis 
demonstrated that the gut microbiota in the PPI group was predominantly 
enriched in functions related to cell wall and membrane structure biogenesis, 
whereas the UC group was enriched in energy metabolism.
Conclusion: Long-term PPI exposure profoundly alters the gut microbiota, 
characterized by reduced microbial diversity and enrichment of pro-
inflammatory taxa. These findings highlight the contribution of PPIs to gut 
microbiota dysbiosis and UC pathogenesis, emphasizing the need for further 
research on microbiota–immunity interactions and for the development of 
targeted strategies to mitigate PPI-related adverse effects.
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1 Introduction

Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel 
disease (IBD) characterized by continuous mucosal inflammation of 
the colon and rectum (Voelker, 2024). Over the past decades, the 
global prevalence and incidence of UC have increased markedly, 
particularly in newly industrialized regions (Dharni et al., 2024). The 
persistent symptoms of UC, such as bloody diarrhea, abdominal pain, 
and weight loss, impose a substantial clinical and societal burden and 
are associated with an elevated risk of long-term complications, 
including colorectal cancer and extraintestinal manifestations. Despite 
advances in our understanding, the etiology of UC and the 
mechanisms underlying its chronic and heterogeneous nature remain 
incompletely elucidated (Kobayashi et  al., 2020). Proton pump 
inhibitors (PPIs), among the most widely prescribed medications 
worldwide, have attracted increasing attention for their potential 
impact on intestinal homeostasis. Emerging evidence indicates that 
PPI use may alter the gut microbiota and modulate mucosal immunity, 
thereby contributing to the development and progression of UC 
(Singh et al., 2023; Shah et al., 2017).

PPIs effectively inhibit gastric acid secretion and are commonly 
used to treat peptic ulcers, gastroesophageal reflux, Zollinger-Ellison 
syndrome, upper gastrointestinal hemorrhage, and H. pylori infection 
(Abrahami et al., 2022; Clarke et al., 2022). However, many studies 
have shown that long-term use of PPIs may lead to a variety of adverse 
effects such as fractures, Clostridium difficile infection, colorectal 
cancer, and stroke (Abrahami et al., 2022; Yang et al., 2021; Freedberg 
et al., 2017). Recent studies have shown that PPIs use is significantly 
associated with an increased risk of IBD. Xia et al. (2021) found that 
regular or frequent use of PPIs significantly increased the risk of UC 
by pooled analysis of three prospective study cohorts. Similarly, in 
patients with UC, PPI exposure can induce disease exacerbation and 
increase the incidence of IBD-related adverse events, such as 
hospitalization or surgery (Shah et al., 2017). In addition, the use of 
PPIs is associated with decreased remission and increased 
hospitalization rates in IBD patients treated with infliximab (Lu et al., 
2021). However, the potential mechanisms through which PPIs 
influence IBD remain largely unexplored.

Recent studies have shown that PPI-mediated gastric pH elevation 
can increase the migration of bacteria from the oral cavity to the 
intestinal lumen (Macke et  al., 2020). This process reduces gut 
microbiota diversity and increases the abundance of potential oral 
pathogens (Hopkins et  al., 2022). In addition, PPIs may increase 
colonic mucosal permeability (Takashima et al., 2020). Coincidentally, 
gut microbiota dysbiosis and gut barrier disruption promote bacterial 
infection in the intestine, a central factor in the pathogenesis of UC 
(Azimi et al., 2018). And these alterations are also key risk factors for 
adverse outcomes in patients receiving PPI therapy (Naito et al., 2018). 
Furthermore, the gut microbiota of PPIs users and IBD patients share 
certain characteristics, manifested by a decrease in the diversity and 
abundance of the anti-inflammatory microbiota Faecalibacterium 
(Carr, 2018). These findings suggest that the PPI-mediated 
pathogenesis of UC may be closely related to gut microbiota dysbiosis.

In summary, although PPIs have been implicated in the onset 
and progression of UC, current evidence remains limited. In this 
study, we  conducted an exploratory animal experiment to 
investigate the effects of PPI exposure on gut inflammation and 
gut microbiota dysbiosis in models of UC, with particular 

attention to the potential disruption of microbial diversity and the 
enrichment of pro-inflammatory taxa that may exacerbate 
mucosal inflammation and disease progression. These findings 
provide an experimental basis for elucidating the role of PPIs in 
UC and may inform future clinical applications and 
therapeutic strategies.

2 Materials and methods

2.1 Establishment of the PPI and UC mouse 
models

2.1.1 Ethical approval
All mice were purchased from Hangzhou Ziyuan Laboratory 

Animal Technology Co., Ltd., and all experimental procedures were 
approved by the Experimental Animal Ethics Committee of Anhui 
Medical University (protocol no. LLSC20230782).

2.1.2 Dose optimization of omeprazole
Male C57BL/6 J mice (6–8 weeks old) were acclimatized for 

1 week under standard laboratory conditions (room temperature, 
12-h light/dark cycle). To determine the optimal dosage of omeprazole 
(OME; MedChemExpress, CAS: 73590–58-6), mice (n = 6 per group) 
received oral gavage of OME at doses of 0, 1, 5, 10, 15, or 20 mg/kg/
day for 8 weeks. Based on induction results, 10 mg/kg/day was 
selected for subsequent modeling.

2.1.3 Animal model and grouping
Mice were randomly assigned to three groups: control (n = 5), 

PPI-treated (n = 5), and ulcerative colitis (UC; n = 10). The control 
group (saline-treated) was used to establish baseline microbial and 
inflammatory readouts. The PPI-treated group received 
omeprazole (OME) at 10 mg/kg/day by oral gavage for 8 weeks, 
allowing evaluation of the effects of chronic PPI exposure in the 
absence of DSS. The UC group, induced with dextran sulfate 
sodium (DSS; MP Biomedicals, CAS: 9011-18-1), served as the 
positive control to validate inflammation-related outcomes. UC 
was induced by administering 2.5% DSS in drinking water for 7 
consecutive days, followed by 7 days of regular water. This 
two-cycle regimen was repeated, yielding a total induction period 
of 28 days.

2.2 Body weight monitoring and sample 
collection

Throughout the experimental period, mouse body weights were 
recorded daily prior to administration to monitor weight changes. At 
the end of the induction phase (8 weeks for the PPI group and 28 days 
for the UC group), mice were anesthetized, and blood was collected 
from the abdominal aorta. Serum was isolated by centrifugation and 
stored at −20 °C for subsequent inflammatory cytokine analysis. The 
colonic tissue was harvested and washed with normal saline. Each 
sample was fixed in 10% neutral formalin solution for histological 
examination and immunohistochemistry. Fresh fecal samples were 
collected, flash-frozen in liquid nitrogen, and stored at −80 °C until 
further processing for microbiota analysis.
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2.3 Enzyme-linked immunosorbent assay 
(ELISA)

Serum concentrations of interleukin (IL)-1β, IL-6, tumor necrosis 
factor-alpha (TNF-α), IL-10, and myeloperoxidase (MPO) were 
determined using enzyme-linked immunosorbent assay kits (ELISA, 
BosterBio, Wuhan, China), kits (BosterBio, Wuhan, China), following 
the manufacturer’s protocols. Briefly, antibody-coated 96-well plates 
were incubated with serum samples at 37 °C for 90 min. After 
washing, biotin-labeled detection antibodies were added and 
incubated for 60 min at 37 °C. Optical density (OD) was measured at 
560 nm using a microplate reader (Molecular Devices), and cytokine 
concentrations were calculated based on standard curves.

2.4 Hematoxylin–eosin (HE) staining and 
immunohistochemistry (IHC)

Colon tissues previously fixed in formaldehyde solution were 
paraffin-embedded, sectioned, stained with HE, and examined 
microscopically. Histological scoring was performed to evaluate crypt 
architecture destruction and inflammatory cell infiltration according 
to the following criteria:

Crypt architecture destruction score:

	•	 Score 0: normal crypt arrangement with uniform density;
	•	 Score 1: mild crypt distortion with partial widening of crypt 

spacing (<30% of crypts affected);
	•	 Score 2: moderate crypt atrophy or branching, 30–60% of crypts 

abnormal, with goblet cell depletion;
	•	 Score 3: severe crypt destruction (>60%), irregular hyperplasia 

or pseudopolyps present, with near-complete loss of goblet cells.

Inflammatory cell infiltration score:

	•	 Score 0: none or few lymphocytes in the lamina propria, with 
no neutrophils;

	•	 Score 1: increased lymphocytes in the lamina propria with 
occasional neutrophils (<5 per high-power field, HPF);

	•	 Score 2: neutrophil infiltration extending to the muscularis 
mucosa, with pericryptal aggregation (5–15 neutrophils/HPF);

	•	 Score 3: diffuse infiltration of numerous neutrophils throughout 
the mucosa, with crypt abscess formation (>15 neutrophils/HPF).

In addition, IHC was performed on colon sections to assess 
interleukin-6 (IL-6) expression. Images were analyzed using 
Image-Pro Plus 6.0 software, and the mean optical density (AOD) 
from three randomly selected fields was calculated. Higher AOD 
values were considered indicative of more severe tissue inflammation.

2.5 Stool DNA extraction and quality 
assessment

Genomic DNA was extracted from fecal samples using the 
QIAamp® DNA Stool Mini Kit (Qiagen, Hilden, Germany) according 
to the manufacturer’s instructions. DNA integrity was assessed by 
agarose gel electrophoresis, and concentration and purity were 

evaluated using a NanoDrop  2000 spectrophotometer 
(10 × Genomics, USA).

2.6 16S rRNA gene amplification and 
high-throughput sequencing

The V3–V4 hypervariable regions of the bacterial 16S rRNA gene 
were amplified in triplicate using high-fidelity polymerase chain 
reaction (high-fidelity PCR) with the primers 341F 
(5′-CCTACGGGNGGCWGCAG-3′) and 806R (5′-GACTACHVG 
GGTATCTAATCC-3′). The specificity of amplification was confirmed 
by agarose gel electrophoresis. Amplicons were purified using the 
Agencourt AMPure XP Kit (Beckman Coulter, USA), and sample-
specific index sequences were added during a second round of 
PCR. Library quality was assessed using a Qubit 3.0 Fluorometer 
(Invitrogen, Thermo Fisher Scientific, USA) and an Agilent 2100 
Bioanalyzer (Agilent Technologies, USA). The pooled libraries were 
sequenced on an Illumina NovaSeq 6000 platform (Illumina, USA) to 
generate 2 × 250 bp paired-end reads.

2.7 Bioinformatics analysis

Raw sequencing reads were subjected to quality control and 
filtering as follows: (1) low-quality reads (average quality score <20), 
reads with adapters, or reads <100 bp were removed using 
TrimGalore; (2) paired-end reads were merged using FLASH 
(v1.2.11); (3) sequences with ambiguous bases or homopolymers 
>6 bp were filtered out using Mothur; (4) low-complexity reads were 
excluded to obtain high-quality clean reads. Chimeric sequences 
were identified using the gold.fa reference database1 and removed. 
Clean reads were clustered into operational taxonomic units (OTUs) 
at 97% similarity using UPARSE, and taxonomic annotation was 
performed with the Ribosomal Database Project (RDP) Release 9 
(201203) via Mothur.

2.8 Diversity and statistical analysis

Alpha diversity indices (e.g., Shannon, Simpson) and rarefaction 
curves were calculated using Mothur. Beta diversity was assessed 
using Bray–Curtis hierarchical clustering, unweighted pair-group 
method with arithmetic mean (UPGMA), and Jaccard-based 
principal coordinate analysis (PCoA) via the Vegan package (v3.3.1) 
in R. Redundancy analysis (RDA) was conducted using Canoco for 
Windows 4.5 (Microcomputer Power, NY, USA), with significance 
assessed by Monte Carlo permutation tests (n = 499).

All statistical analyses were performed using SPSS software 
(version 22.0; IBM Corp., Armonk, NY, USA). Based on the 
normality test of the original data, one-way analysis of variance 
(ANOVA) or the Kruskal–Wallis test was used to compare groups. 
Correlations were analyzed using Spearman’s rank correlation 
coefficient. p-values were adjusted for multiple testing using the 

1  http://drive5.com/uchime/gold.fa
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Bonferroni false discovery rate (FDR) method, and FDR-adjusted 
p-values <0.05 were considered statistically significant.

3 Results

3.1 Mouse PPI model induction

Body weight changes in mice in each group after OME 
administration at different concentrations are shown in 
Figures 1A,B. Weight in all groups decreased during the first 2 weeks. 
Starting from the 3rd week, the weight of the control group gradually 
recovered, while that of the PPI group recovered somewhat, and the 
overall trend was downward. When the OME concentration was 
10 mg/kg/d, the weight loss was the highest (22.00 ± 0.20 g vs. 
19.28 ± 0.77 g, p < 0.001), and above 10 mg/kg/d, the weight loss did 
not change with an increase in OME concentration (15 mg/kg/d: 
21.28 ± 1.08 g vs. 19.80 ± 0.79 g, p = 0.022; 20 mg/kg/d: 21.60 ± 1.03 g 
vs. 19.45 ± 0.79 g, p = 0.002).

The results of ELISA showed that the levels of pro-inflammatory 
factors IL-1β, IL-6, and TNF-α in the blood were increased in a 
concentration-dependent manner with OME, while levels of the anti-
inflammatory factor IL-10 were opposite. This correlation peaked at an 
OME concentration of 10 mg/kg/day (Figure 1C). MPO, another factor 
that determines the degree of the inflammatory reaction, showed 
similar changes to pro-inflammatory factors (10 mg/kg/d: 
101.27 ± 8.75 pg./mL vs. 113.59 ± 4.17 pg./mL, p = 0.022; 15 mg/kg/d: 
101.27 ± 8.75 pg./mL vs. 112.17 ± 7.58 pg./mL, p = 0.068; 20 mg/kg/d: 
101.27 ± 8.75 pg./mL vs. 114.88 ± 7.78 pg./mL, p = 0.032; Figure 1D). 

Combined with body weight and inflammatory factor levels, we selected 
10 mg/kg/day as the optimal induction concentration, which was 
adopted in subsequent studies.

3.2 OME and DSS induced colonic 
inflammation

Colonic inflammation was evaluated by HE  staining and 
IHC. HE staining showed that crypt destruction and inflammatory 
infiltration scores were both 0 in the control group, 2 in the PPI group, 
and 3  in the UC group (Figures  2A–C). Immunohistochemical 
analysis demonstrated a stepwise increase in the AOD values among 
the control, PPI, and UC groups, with statistically significant 
differences (0.14 ± 0.02 vs. 0.36 ± 0.05 vs. 0.57 ± 0.12, p = 0.001; 
Figures  2D–G). These findings suggest that long-term OME 
administration may elicit colonic inflammatory responses comparable 
to those observed in DSS-induced colitis.

3.3 OME and DSS induce gut microbiota 
dysbiosis

3.3.1 Sequencing depth and species diversity
The rarefaction curve tends to flatten with an increase in 

extracted sequences, indicating that the sample sequencing is 
reasonable and the sequencing depth is basically covered, and it can 
be  used for subsequent analysis (Supplementary Figure S1A). In 
addition, the species accumulation curves gradually tends to flatten, 

FIGURE 1

Body weight and inflammatory factors in mice during the PPI-induced period (n = 6 per group). (A) Weight change curves. (B) Body weight of mice 
induced by different concentrations of PPIs. (C) Levels of inflammatory factors in abdominal aorta of mice induced by different concentrations of PPIs. 
(D) Levels of MPO in abdominal aorta of mice induced by different concentrations of PPIs. *Indicates 0.01 ≤ p < 0.05, **indicates p < 0.01.
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indicating that all samples are sufficiently collected 
(Supplementary Figure S1B). Through rarefaction and species 
accumulation curves, we also found that the species richness of the 
control group was the highest, followed by that of the PPI and UC 
groups. The rank-abundance curves covers both the uniformity and 
richness of the species in a sample. In the present study, the curves 
for the three groups were flat, indicating a more uniform species 
distribution. In addition, the curves for the control group had the 
largest range span on the horizontal axis, indicating the highest 
species abundance, whereas the UC group had the smallest span and 
lowest species abundance (Supplementary Figure S1C).

3.3.2 OTU cluster analysis
The OTU annotation at different taxonomic levels (superkingdom, 

phylum, class, order, family, genus, and species) for each sample are 
presented in Supplementary Table S1. A total of 3,551 OTUs were 
obtained from the 20 samples, including 1,148 from the control group, 
930 from the PPI group, and 1,473 from the UC group. A Venn 
diagram shows that the three groups shared 222 OTUs, whereas the 
unique OTUs of each group were 583, 477, and 999, respectively 
(Supplementary Figure S1D). Indicator analysis showed that the 
top 100 OTUs had the highest relative abundances (FDR-corrected 
p < 0.05; Supplementary Figure S1E).

3.3.3 Alpha and beta diversity analysis
Alpha diversity is the analysis of species diversity in samples based 

on OTU species and abundance. Observed_species, Chao1, and ACE 
indices are mainly used to calculate community richness and are 
positively correlated with it. Similarly, Shannon, Simpson and coverage 
indices are used to calculate community diversity. The Shannon and 
coverage indices are positively correlated with community diversity, 
whereas the Simpson index is negatively correlated. Based on the 
one-way ANOVA test, the alpha diversity analysis showed that the 
Observed_species, Chao1, ACE, Shannon, and coverage indices were 
lower in the PPI and UC groups than in the control group, whereas the 
Simpson index trended in the opposite direction. These results 
suggested that the richness and gut microbiota diversity in mice 
decreased after induction with OME and DSS (Figure 3).

A sample clustering tree can describe and compare similarities 
and differences in species among groups using a general view-based 
approach. The more similar the samples are, the higher the clustering 
priority. The clustering tree among the UC, PPI, and control groups 
showed that the similarity in species composition was high among all 
samples in the intra-group, while there were significant differences in 
the inter-group (Figure 4A). PCoA showed the relationship between 
the species composition of each group in two-dimensional 
coordinates. In the coordinate plots, the closer the distance between 

FIGURE 2

Colonic tissue pathological examination among control (n = 5), PPI (n = 5) and UC (n = 10) groups. (A) Representative images of crypt destruction and 
inflammatory infiltration in control group. (B) Representative images of crypt destruction and inflammatory infiltration in PPI group. (C) Representative 
images of crypt destruction and inflammatory infiltration in UC group. (D) Representative images of IL-6 expression in control group. (E) Representative 
images of IL-6 expression in PPI group. (F) Representative images of IL-6 expression in UC group. (G) The relative statistical analysis of IHC. *Indicates 
0.01 ≤ p < 0.05, **indicates p < 0.01.
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the samples, the more similar is the species composition, according to 
which differences in species composition and structure can 
be observed. Based on Bray-Curtis, a significant separation in gut 
microbiota composition among the control, PPI, and UC groups was 
revealed based on 2D and 3D images (Figures  4B–D). Similarly, 
principal component analysis and non-metric multidimensional 
scaling also revealed distinct distribution patterns of the gut 
microbiota in distinct groups of mice (Supplementary Figures S2A–D). 
In addition, analysis of similarities based on the R language vegan 
package anosim function showed that the inter-group differences in 
the control, PPI, and UC groups were significantly larger than the 
intra-group differences (Supplementary Table S2, p < 0.001). These 
results showed that the similarity in species composition was high 
among all samples in the intra-group, whereas there were significant 
differences in the inter-group among the UC, PPI, and control groups.

3.3.4 Gut microbiota structural analysis
We analyzed the gut microbiota structure of the control, PPI, and 

UC groups at six levels: phylum, class, order, family, genus, and 
species. Multilayer analysis of the gut microbiota revealed significant 
differences in relative microbial abundance among the three groups. 
At the phylum level, the dominant bacteria in the three groups were 
Bacteroidetes, Firmicutes, and Proteobacteria, but their proportions 
differed (control: 49.59, 38.09, and 9.98%; PPI: 41.51, 50.03, and 4.8%; 
UC: 39.33, 38.96, and 19.26%, respectively). The other dominant 

bacteria in the control, PPI, and UC groups were Actinobacteria 
(1.61%), Verrucomicrobia (1.23%), and Deferribacteres (1.24%) 
(Supplementary Figure S3).

At the class level, the five most dominant bacteria in the control 
group were Bacteroidia (49.58%), Clostridia (17.54%), Erysipelotrichia 
(14.56%), Bacilli (5.58%), and Epsilonproteobacteria (4.8%). The PPI 
group included Bacteroidia (41.51%), Clostridia (25.63%), Bacilli 
(21.18%), Erysipelotrichia (3.07%), and Alphaproteobacteria (1.52%). 
In the UC group, Bacteroidia (39.33%), Clostridia (23.56%), Bacilli 
(11.42%), Epsilonproteobacteria (6.34%), and Gammaproteobacteria 
(6.25%) were detected. Compared with that in the control group, 
Bacteroidia and Erysipelotrichia abundance decreased in the PPI and 
UC groups, whereas Clostridia and Bacilli showed the opposite 
(Supplementary Figure S4).

At the order level, the top five dominant bacteria in the control 
group included Bacteroidales (49.58%), Clostridiales (17.42%), 
Erysipelotrichales (14.56%), Lactobacillales (5.57%), Campylobacterales 
(4.8%); in the PPI group included Bacteroidales (41.51%), Clostridiales 
(25.37%), Lactobacillales (21.14%), Erysipelotrichales (3.07%), and 
Campylobacterales (1.33%); and in the UC group included 
Bacteroidales (39.33%), Clostridiales (23.45%), Lactobacillales 
(11.27%), Campylobacterales (6.34%), and Enterobacteriales (6.02%). 
Bacteroidales and Erysipelotrichales abundance decreased in the PPI 
and UC groups, whereas Clostridiales and Lactobacillales showed the 
opposite trend (Supplementary Figure S5).

FIGURE 3

Alpha diversity analysis among control (n = 5), PPI (n = 5) and UC (n = 10) groups. (A) Observed_species index. (B) Chao1 index. (C) ACE index. 
(D) Shannon index. (E) Simpson index. (F) Coverage index. All the data in this section follow a normal distribution. Based on one-way ANOVA test, 
p < 0.05 indicates significant difference among groups. The horizontal axis represents the different groups, and the vertical axis represents the diversity 
index value. Each color represents a group: blue for control, orange for PPI, and red for UC group.

https://doi.org/10.3389/fmicb.2025.1657865
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Cao et al.� 10.3389/fmicb.2025.1657865

Frontiers in Microbiology 07 frontiersin.org

At the family level, the top five dominant bacteria in the control 
group included Porphyromonadaceae (39.01%), Erysipelotrichaceae 
(14.56%), Lachnospiraceae (10.11%), Ruminococcaceae (6.03%), and 
Lactobacillaceae (5.53%); in the PPI group included 
Porphyromonadaceae (28.81%), Lactobacillaceae (17.81%), 
Lachnospiraceae (16.84%), Prevotellaceae (8.18%), and 
Ruminococcaceae (7.23%); and in the UC group included 
Porphyromonadaceae (19.11%), Bacteroidaceae (17.04%), 
Lachnospiraceae (11.57%), Lactobacillaceae (11%), and 
Ruminococcaceae (6.95%). Porphyromonadaceae and 
Erysipelotrichaceae abundance decreased in the PPI and UC groups, 
whereas Lachnospiraceae and Lactobacillaceae showed the opposite 
trend (Supplementary Figure S6).

At the genus level, the top five dominant bacteria in the control 
group included Allobaculum (10.21%), Lactobacillus (5.53%), 
Helicobacter (4.8%), Bacteroides (3.37%), and Alloprevotella (2.35%); 

in the PPI group included Lactobacillus (17.81%), Eisenbergiella 
(4.61%), Prevotella (4.27%), Bacteroides (3.41%), and Streptococcus 
(3.3%); and in UC group included Bacteroides (17.04%), Lactobacillus 
(11%), Helicobacter (6.34%), Escherichia/Shigella (5.98%), and 
Parabacteroides (5.9%) (Supplementary Figure S7).

Finally, at the species level, there was a significant difference in the 
gut microbiota of each group with no obvious correlation. 
Streptococcus hyointestinalis (3.28%) was also observed in the PPI 
group (Supplementary Figure S8).

3.3.5 Differential abundance analysis
ANOVA was used to analyze differences in abundance among the 

three groups in terms of phylum, class, order, family, genus, and 
species. The UC group demonstrated significant enrichment of 
Proteobacteria and Deferribacteres at the phylum level, whereas 
Candidatus, Saccharibacteria and Tenericutes were dominant in the 

FIGURE 4

Beta diversity analysis among control (n = 5), PPI (n = 5) and UC (n = 10) groups based on Bray-Curtis distance. (A) The clustering tree. The length of 
the branches represents the distance between the samples, and the closer the branches are, the more similar the species composition of the samples. 
(B) Two-dimensional diagram of principal coordinates analysis (PCoA) based on OTU abundance. (C) Three-dimensional diagram of PCoA based on 
OTU abundance. (D) Heatmap of PCoA based on OTU abundance. Each dot represents a sample, and the closer the dots are, the more similar the 
samples. Each color represents a group: blue for control group, orange for PPI group, and red for UC group.
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PPI group. Compared with that in the control group, the enrichment 
of Actinobacteria was reduced in the PPI and UC groups 
(Figures 5A,B). At the class level, the PPI and UC groups exhibited a 
notable increase in the abundance of Bacilli, reflecting the potential 
enrichment of the inflammation-associated microbiota. In contrast, 
Erysipelotrichia and Actinobacteria decreased with the same trend in 
both groups, suggesting that OME and DSS usage may alter the 
ecological dominance of specific microbial populations 
(Figures  5C,D). In addition, the microbial taxa with increased 
abundance in the PPI and UC groups also included Lactobacillales, 
Bacteroidaceae, Lactobacillaceae, Bacteroides, Lactobacillus, 
Erysipelotrichaceae_incertae_sedis, Escherichia/Shigella, Clostridium_
XlVa, Blautia, Enterococcus, Parabacteroides_distasonis and 
Parabacteroides_gordonii, while the microbial taxa with decreased 
abundance also included Erysipelotrichales, Coriobacteriales, 
Erysipelotrichaceae, Coriobacteriaceae, Porphyromonadaceae, 
Allobaculum, Anaerobacterium, Intestinimonas, and Lactobacillus_
intestinalis compared with that in the control group in order, family, 
genus, and species levels, respectively (Supplementary Figures S9–S12).

3.3.6 Key differential microbial taxa
The linear discriminant analysis effect size (LEfSe) tool was 

used to identify the microbial taxa most likely to explain the 
intergroup differences. The results showed that the UC group had 
the highest linear discriminant analysis (LDA) scores for 
Gammaproteobacteria, Enterobacteriaceae, and Escherichia/Shigella, 
indicating that these taxa may serve as key microbial biomarkers 
associated with UC because of their significant intergroup 

differences. In the PPI group, Prevotella.s_uncultured_bacterium 
and Streptococcus exhibited the highest LDA scores, suggesting that 
PPI usage might selectively amplify these taxa, thereby influencing 
gut microbiota ecology (Figure  6A). Furthermore, a cladogram 
visually illustrated the taxonomic distribution patterns of key taxa 
enriched in the different groups. The enriched taxa in the UC group 
were primarily clustered under the phyla Proteobacteria and 
Bacteroidetes, which are commonly associated with inflammatory 
conditions in the gut. In contrast, the control group was 
predominantly enriched in taxa from the phylum Firmicutes. 
Similarly, the differential taxa in the PPI group were also 
concentrated within the phylum Firmicutes but were more 
specifically associated with lactic acid bacteria (Figure 6B).

3.3.7 Functional annotation and clustering 
analysis

Functional annotation and classification of samples from the 
control, PPI, and UC groups revealed significant differences in 
functional distribution and relative abundance among the 
experimental groups. In the Clusters of Orthologous Groups of 
proteins (COG) functional annotations, the functions related to 
“translation, ribosomal structure and biogenesis” and “amino acid 
transport and metabolism” were the most abundant across all groups. 
This indicates that the gut microbiota primarily centers on protein 
synthesis, ribosomal functionality, and amino acid metabolism, 
whereas a substantial proportion of annotated functions remain 
unknown (Supplementary Figures S13A–C). However, in the PPI 
group, functions related to “cell wall/membrane/envelope biogenesis” 

FIGURE 5

Differences in composition of gut microbiota among control (n = 5), PPI (n = 5), and UC (n = 10) groups. (A) Barplot of differential microbial taxa at the 
phylum level. (B) Heatmap of differential microbial taxa at the phylum level. (C) Barplot of differential microbial taxa at the class level. (D) Heatmap of 
differential microbial taxa at the class level. Based on ANOVA, p < 0.05 indicates significant difference among groups. Barplot: Horizontal axis 
represents the different groups, and the vertical axis represents the relative abundance value of species. *Indicates 0.01 ≤ p < 0.05, **indicates 
0.001 ≤ p < 0.01, ***indicates 0.0001 ≤ p < 0.001, and ****indicates p < 0.0001. Heatmap: Horizontal axis represents the different groups, the vertical 
axis represents the different species, and the color gradient from blue to red indicates the relative abundance of species from small to large.
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FIGURE 6

Intergroup differences in gut microbiota among control (n = 5), PPI (n = 5) and UC (n = 10) groups detected by LEfSe analysis. (A) Linear discriminant 
analysis (LDA) score distribution. Defined |LDA| > 2 and p < 0.05 of LDA scores indicates significant difference among groups. (B) A cladogram shows 
the taxonomic structure and the relative abundance of the identified taxa. The size of each dot is proportional to the relative abundance of each taxon.
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and “nucleotide transport and metabolism” also showed relatively 
high enrichment, suggesting that PPI usage may influence gut defense 
mechanisms and nucleotide metabolism. Additionally, an increase in 
“signal transduction mechanisms” implies that PPI might impact 
microecological functionality by modulating signaling pathways 
(Supplementary Figure S13B). These trends were even more 
pronounced in the UC group. Moreover, significant enhancements in 
“energy production and conversion” and “carbohydrate transport and 
metabolism” functions in the UC group suggest that the gut 
microbiota in UC patients may adapt to the inflammatory 
environment by boosting energy metabolism. Furthermore, increased 
functions related to “replication, recombination and repair” and 
“mobilome: prophages, transposons” may indicate microbial 
instability and heightened horizontal gene transfer within the 
microbiota (Supplementary Figure S13C).

Further heatmap and clustering analyses revealed differences and 
similarities in the top  30 functions with the highest relative 
abundances across the groups. The enrichment of functions 
annotated by COGs, the Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and KEGG Orthology (KO) collectively reflected the 
adaptive regulatory responses of the gut microbiota to environmental 
pressures, such as inflammatory conditions or drug interventions 
(Supplementary Figures S14A–C). For example, the enrichment of 
glycosyltransferases involved in cell wall biosynthesis in the COG 
indicates active microbial metabolism in maintaining cell wall 
structure and stability. Similarly, the annotation of “biosynthesis of 
ansamycins” in KEGG suggests that microbes may produce secondary 
metabolites with antibacterial properties to compete ecologically. In 
contrast to these shared functional annotations, the metabolic 
pathway database MetaCyc revealed distinct functional enrichment 
among the groups. In the control group, functions were 
predominantly enriched in pathways such as “L-lysine biosynthesis 
III” and “UMP biosynthesis,” indicating a focus on amino acid and 
nucleotide metabolism under healthy conditions. The PPI group 
exhibited enrichment in “guanosine deoxyribonucleotides de novo 
biosynthesis II” and “adenosine deoxyribonucleotides de novo 
biosynthesis II,” suggesting that PPI usage may enhance nucleotide 
metabolism pathways. Meanwhile, the UC group showed enrichment 
in pathways such as “gondoate biosynthesis (anaerobic)” and 
“pyruvate fermentation to isobutanol (engineered),” which may 
be  associated with specific metabolic demands in inflammatory 
environments, reflecting microbial metabolic adaptability to these 
conditions (Supplementary Figure S14D).

4 Discussion

This study was designed as an exploratory animal experiment 
focusing on the effects of chronic PPI exposure on gut microbiota 
and inflammatory readouts, rather than establishing strict clinical 
dose equivalence. In this work, we investigated the impact of long-
term PPI and DSS exposure on the gut microbiota. The results 
demonstrated that both DSS and prolonged PPI use significantly 
reduced the richness and diversity of the gut microbiota. Specifically, 
there was a notable decrease in beneficial bacteria such as 
Faecalibacterium, alongside a significant increase in potentially 
pathogenic taxa such as Escherichia/Shigella and Enterococcaceae. 
Furthermore, functional enrichment analyses suggested that PPIs 

may disrupt the microbial ecological balance by affecting the gut 
defense mechanisms and nucleotide metabolism. These findings 
provide important insights into the mechanisms by which PPIs 
induce the gut microbiota and immune dysregulation. They also offer 
new perspectives and experimental evidence regarding the 
pathogenesis of PPI-mediated UC.

Previous studies have demonstrated that C. difficile is a potential 
risk factor for adverse outcomes, such as gut infections, small gut 
bacterial overgrowth, spontaneous bacterial peritonitis, and IBD. The 
use of PPIs significantly increases the abundance of Enterococcaceae, 
a risk factor for C. difficile infection (Hopkins et al., 2022; Naito et al., 
2018; Carr, 2018; Martinez et al., 2022). This finding aligns with the 
results of our study, which showed significant upregulation of 
Enterococcus and Enterococcaceae in the gut microbiota of UC and 
PPI-treated mice. The pathogenic potential of enterococci has 
become increasingly recognized in recent years, particularly for 
multidrug-resistant strains of Enterococcus faecium (E. faecium), 
which have been implicated in various infections. Barnett et al. (2010) 
and Li et al. (2024) reported that the inoculation of Enterococcus in 
IL-10−/− mice exacerbated colonic inflammation. Sequencing analyses 
further revealed that Enterococcus-induced colitis closely resembled 
the changes in gene expression observed in human IBD. Similarly, 
Seishima et al. (2019) conducted whole-genome shotgun sequencing 
of stool samples from patients with UC and healthy individuals and 
identified E. faecium as the most differentially abundant species 
between the two groups. Moreover, fecal transplants, E. faecium 
isolates from UC patients, and exogenous inflammatory E. faecium 
strains (ATCC 19434) promoted pathological inflammation and 
upregulated inflammatory cytokine expression in the colons of 
IL-10−/− mice (Steck et al., 2011; Ocvirk et al., 2015). These findings 
suggest that E. faecium within enterococci may be  an important 
contributor to UC pathogenesis and may serve as a key bacterial 
mediator in PPI-induced UC. However, the precise molecular 
mechanisms remain unclear and require further investigation.

Functional enrichment analysis and previous studies indicate 
that E.faecium, Escherichia/Shigella, and other Gammaproteobacteria 
possess unique peptidoglycan structures in their cell walls (Griffin 
et  al., 2021; Ago et  al., 2023). These microbes undergo extensive 
peptidoglycan remodeling and turnover, generating abundant, 
smaller, non-crosslinked fragments that play essential roles in host 
defense against intestinal pathogens (Rangan et al., 2016; Tian and 
Han, 2022; Abramov et  al., 2023). For example, peptidoglycan 
recognition proteins (PGLYRPs) have been shown to be significantly 
associated with UC, suggesting a potential role in IBD pathogenesis 
(Zulfiqar et al., 2013). Peptidoglycan remodeling is also closely linked 
to the activity of secreted antigen A (SagA) in E. faecium (Kim et al., 
2019; Teng et al., 2003). SagA, a peptidoglycan hydrolase containing 
an NlpC/p60 domain, preferentially hydrolyzes cross-linked Lys-type 
peptidoglycan fragments and generates immunologically active 
non-crosslinked fragments such as muramyl dipeptide (MDP) and 
GlcNAc-MDP (Rangan et al., 2016; Espinosa et al., 2020; Kim et al., 
2020). MDP and GlcNAc-MDP are classical ligands and intracellular 
sensor of the NOD2 receptor (Gao et al., 2022; Okai et al., 2024). 
Previous studies have shown that gram-positive bacteria promote the 
occurrence of colitis by upregulating the MDP-NOD2 pathway (Luo 
et al., 2021). In the Portuguese population, NOD2 mutations do not 
increase the risk of UC but are associated with a more aggressive 
course (Freire et  al., 2014). In parallel, Escherichia/Shigella are 
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characterized by virulence factors such as Shiga toxin, 
lipopolysaccharide (LPS), and adhesins, which disrupt epithelial 
integrity and promote bacterial translocation, thereby contributing 
to immune activation and inflammation in UC (O'Brien et al., 1984; 
Lu et al., 2025).

This study had several limitations that warrant discussion. First, 
it was based solely on fecal samples from 20 mice, representing a 
relatively small sample size. This limitation may not adequately 
capture the heterogeneity of gut microbiota within the population, 
potentially affecting the generalizability of our conclusions. Second, 
the study inferred the relationships between the microbiota, host 
immunity, and intestinal diseases through microbial abundance and 
functional enrichment analyses of fecal samples. However, these 
studies did not incorporate direct measurements of host immune 
parameters or histological analyses of the intestinal tissues, making 
it challenging to establish causal relationships between microbial 
changes and inflammatory states. Third, this study focused exclusively 
on changes in gut microbiota in fecal samples without considering 
microbial variations in other regions of the gastrointestinal tract, 
such as the small intestine or colon, and their potential roles in PPI 
exposure and UC pathogenesis. In addition, although our findings 
suggest a potential involvement of the NOD2–NLRP3 inflammasome 
pathway, we  did not perform direct molecular or functional 
validation, and this remains an important direction for future 
research. Finally, as an exploratory study, our work was primarily 
intended to provide preliminary laboratory evidence on the effects of 
chronic PPI exposure on gut microbiota and intestinal inflammation. 
While the findings complement existing epidemiological 
observations, they should not be  interpreted as definitive causal 
conclusions. Regarding dose selection, although the chosen 
omeprazole regimen is clinically plausible based on human-
equivalent scaling, it was not directly validated through 
pharmacokinetic or exposure–response studies and therefore may 
not fully reflect human outcomes.

5 Conclusion

This study revealed the significant impact of long-term PPI 
exposure on the gut microbiota. The findings demonstrated that both 
PPIs and DSS significantly reduced the diversity and richness of the gut 
microbiota while promoting the enrichment of pro-inflammatory taxa, 
such as Enterococcaceae and Escherichia_Shigella. While these results 
provide preliminary insights into the potential role of PPIs in gut 
microbiota dysbiosis and the pathogenesis of UC, further validation is 
warranted. Future studies might consider integrating host immune 
profiling, histological assessment, and multi-omics approaches to 
strengthen the understanding of microbiota–host interactions and to 
inform the development of more targeted intervention strategies.
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SUPPLEMENTARY FIGURE S1

Sequencing depth and species diversity. (A) Rarefaction curve. The horizontal 
axis represents the number of sequences randomly selected from the 
sample, and the vertical axis represents the number of OTUs/ASVs to which 
the sequence belongs. Each curve represents a sample, and different colors 
represent different samples or groups. (B) Species accumulation curves. The 
horizontal axis represents the number of random samples, and the vertical 
axis represents the total number of OTUs included in the sampled samples. 
(C) Rank-abundance curves. The horizontal axis represents OTUs ranked 
from most to least in terms of the number of sequences it contains. For 
example, “500” represents OTUs with the 500th abundance in the sample. 
The vertical axis represents the relative abundance of each OTU. Each curve 
represents a sample, and different colors represent different groups. (D) Venn 
diagram of OUTs. Different groups are represented by different colors, and 
the overlapping areas of different color circles indicate the number of 
common species. (E) Indicator analysis (the top 100 OTUs with the highest 
relative abundance, FDR-corrected p < 0.05). The vertical axis represents 
OTUs, the horizontal axis represents the different groups, and the bubble size 
represents the indicator value of each species.

SUPPLEMENTARY FIGURE S2

Beta diversity analysis among control (n = 5), PPI (n = 5), and UC (n = 10) 
groups based on Bray-Curtis distance. (A) Two-dimensional diagram of 
principal component analysis (PCA) based on OTU abundance. (B) Three-
dimensional diagram of PCA based on OTU abundance. (C) Two-
dimensional diagram of nonmetric multidimensional scaling (NMDS) based 
on OTU abundance. (D) Three-dimensional diagram of NMDS based on OTU 
abundance. Each dot represents a sample, and each color represents a 
group: blue for control, orange for PPI, and red for UC.

SUPPLEMENTARY FIGURE S3

Structure analysis of gut microbiota among control (n = 5), PPI (n = 5), and 
UC (n = 10) groups at the phylum level. (A) Barplot of species composition. 
(B) Bubble plot of abundance distribution. (C) Heatmap of sample clustering. 
(D) Proportions of main bacteria of the control group. (E) Proportions of 
main bacteria of the PPI group. (F) Proportions of main bacteria of the UC 
group. Barplot: Each bar represents a group; the vertical axis represents the 
relative abundance value. The average relative abundance of all species in 
each group adds up to 1, and each color corresponds to one species. 
Bubble: The horizontal axis represents the groups, the vertical axis represents 
the high-abundance species, and the size of the dots represents the relative 
abundance of the species in the sample. Heatmap: The horizontal axis 
represents the sample, the vertical axis represents the top 100 species with 
the highest abundance at the taxonomic level, and the color gradient from 
blue to red indicates the species abundance from small to large. Pie plot: 
Different colors represent different species, and the larger the fan area, the 
higher the abundance of that species.

SUPPLEMENTARY FIGURE S4

Structure analysis of gut microbiota among control (n = 5), PPI (n = 5), and 
UC (n = 10) groups at the class level. (A) Barplot of species composition. 
(B) Bubble plot of abundance distribution. (C) Heatmap of sample clustering. 

(D) Proportions of main bacteria of the control group. (E) Proportions of 
main bacteria of the PPI group. (F) Proportions of main bacteria of the 
UC group.

SUPPLEMENTARY FIGURE S5

Structure analysis of gut microbiota among control (n = 5), PPI (n = 5) and 
UC (n = 10) groups at the order level. (A) Barplot of species composition. 
(B) Bubble plot of abundance distribution. (C) Heatmap of sample clustering. 
(D) Proportions of main bacteria of the control group. (E) Proportions of 
main bacteria of the PPI group. (F) Proportions of main bacteria of the 
UC group.

SUPPLEMENTARY FIGURE S6

Structure analysis of gut microbiota among control (n = 5), PPI (n = 5), and 
UC (n = 10) groups at the family level. (A) Barplot of species composition. 
(B) Bubble plot of abundance distribution. (C) Heatmap of sample clustering. 
(D) Proportions of main bacteria of the control group. (E) Proportions of 
main bacteria of the PPI group. (F) Proportions of main bacteria of the 
UC group.

SUPPLEMENTARY FIGURE S7

Structure analysis of gut microbiota among control (n = 5), PPI (n = 5), and 
UC (n = 10) groups at the genus level. (A) Barplot of species composition. 
(B) Bubble plot of abundance distribution. (C) Heatmap of sample clustering. 
(D) Proportions of main bacteria of the control group. (E) Proportions of 
main bacteria of the PPI group. (F) Proportions of main bacteria of the 
UC group.

SUPPLEMENTARY FIGURE S8

Structure analysis of gut microbiota among control (n = 5), PPI (n = 5), and 
UC (n = 10) groups at the species level. (A) Barplot of species composition. 
(B) Bubble plot of abundance distribution. (C) Heatmap of sample clustering. 
(D) Proportions of main bacteria of the control group. (E) Proportions of 
main bacteria of the PPI group. (F) Proportions of main bacteria of the 
UC group.

SUPPLEMENTARY FIGURE S9

Difference in composition of gut microbiota among control (n = 5), PPI 
(n = 5), and UC (n = 10) groups. (A) Barplot of differential microbial taxa at 
the order level. (B) Heatmap of differential microbial taxa at the order level.

SUPPLEMENTARY FIGURE S10

Difference in composition of gut microbiota among control (n = 5), PPI 
(n = 5), and UC (n = 10) groups. (A) Barplot of differential microbial taxa at 
the family level. (B) Heatmap of differential microbial taxa at the family level.

SUPPLEMENTARY FIGURE S11

Difference in composition of gut microbiota among control (n = 5), PPI 
(n = 5), and UC (n = 10) groups. (A) Barplot of differential microbial taxa at 
the genus level. (B) Heatmap of differential microbial taxa at the genus level.

SUPPLEMENTARY FIGURE S12

Difference in composition of gut microbiota among control (n = 5), PPI 
(n = 5), and UC (n = 10) groups. (A) Barplot of differential microbial taxa at 
the species level. (B) Heatmap of differential microbial taxa at the 
species level.

SUPPLEMENTARY FIGURE S13

Functional annotation and classification of samples from the control (n = 5), 
PPI (n = 5), and UC (n = 10) groups. (A) Control group. (B) PPI group. (C) UC 
group. The horizontal axis represents the Clusters of Orthologous Groups 
(COG) function, and the vertical axis represents the COG 
function abundance.

SUPPLEMENTARY FIGURE S14

Heatmap and clustering analyses of differences and similarities in the 
top 30 functions with the highest relative abundances among control 
(n = 5), PPI (n = 5), and UC (n = 10) groups. (A) Enrichment of functions 
annotated by Clusters of Orthologous Groups of proteins (COG). 
(B) Enrichment of functions annotated by clusters of Kyoto Encyclopedia 
of Genes and Genomes (KEGG). (C) Enrichment of functions annotated by 
clusters of KEGG Orthology (KO). (D) Enrichment of functions annotated 
by clusters of metabolic pathway database (MetaCyc). The horizontal axis 
represents the different sample, the vertical axis represents the top 30 
functions with the highest abundance, and the gradient color from light to 
dark indicates the relative abundance of the functions from small to large.
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