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Background: Fecal and salivary microbiota dysbiosis play a crucial role in the
pathogenesis of colorectal cancer (CRC). We investigated whether the fecal and
salivary microbiota were altered during colorectal tumorigenesis and evaluated
their diagnostic performance.

Methods: We enrolled 30 metastatic CRC patients, 30 nonmetastatic CRC
patients, and 30 healthy controls between October 2023 and September 2024.
Fecal and salivary samples were collected for microbial profiling via 16S rDNA
sequencing and bioinformatics analysis.

Results: Fecal and salivary microbiota composition differed during CRC
progression, with salivary microbiota progressively enriched in the gut. In
addition, fecal and salivary microbial co-occurrence networks dynamically
altered during CRC progression. The natural connectivity of fecal microbial
community networks exhibited decreased stability, whereas salivary microbial
community networks showed increased stability as CRC progressed. Finally,
specific fecal microbial amplicon sequence variants (ASVs) associated with
colorectal carcinogenesis enabled precise stage-specific diagnosis of CRC,
outperforming salivary ASVs classifiers.

Conclusion: This study elucidates stage-specific microbial dynamics in CRC,
providing novel insights into clinical diagnostic strategies.

KEYWORDS

colorectal cancer, fecal microbiota, salivary microbiota, 16S rDNA gene sequencing,
microbial co-occurrence networks

Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related death in both men
and women, with an estimated 1.92 million new CRC cases and 0.90 million CRC-related
deaths in 2022, of which approximately 0.24 million deaths occur in China (Bray et al., 2024).
Screening for CRC among people aged 50-75 years has substantial net benefits (Patel and
Dominitz, 2024). However, only 14% of high-risk population in China undergo CRC screening
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due to the high cost, invasiveness, and cumbersome preparation
required for colonoscopy (Chen et al., 2019). In addition, nonspecific
symptoms and absence of clinical biomarkers hinder early CRC
detection and intervention. Consequently, up to 60% of patients
exhibit local or distant metastasis at the time of diagnosis, correlating
with poor prognosis with a 5-year survival rate of less than 20% (Biller
and Schrag, 2021). Therefore, a valuable means of predicting the onset
of CRC and CRC metastasis is needed urgently.

Although the gut microbiota is not a static entity, it serves as a
critical interface dynamically interacting with environmental factors
and host health (Zmora et al, 2019), contributing to disease
pathogenesis through genetic toxicity, signal transduction,
inflammation, immunity, and metabolism (Wong and Yu, 2023).
CRC remains one of the most life-threatening malignancies, and
unhealthily alterations in fecal microbiota composition in high-risk
individuals have been proven to contribute to colorectal
carcinogenesis (Cui et al., 2024; Liu et al., 2024; Zepeda-Rivera et al.,
2024). Fecal microbiota is highly dynamic, with substantial variation
in taxonomic diversity across hosts and health states, reflecting
intrahost microbial evolution driven by natural selection. For
instance, convergent evidence confirms that specific alterations in
fecal microbial composition occur in digestive system diseases, such
as in CRC (Coker et al., 2022), gastric cancer (Yu et al., 2024), liver
cancer (Rajapakse et al., 2023), and precancerous adenomas (Gao
et al., 2023), as well as in other non-neoplastic diseases (Wu et al.,
2024), Currently, fecal microbiota has been implicated in the
diagnosis of CRC. Coker et al. (2022) established a panel of six fecal
bacterial species that distinguished CRC from colorectal adenomas
(CRA) with satisfactory diagnostic performance upon validation,
indicating the fecal microbial dynamics during CRC progression. The
oral cavity acts as the entrance to the gastrointestinal tract and
harbors a complex salivary microbiome that is closely linked to the
fecal microbiota through oral-to-gut microbiota translocation
(Schmidt et al, 2019). Significant alterations in the salivary
microbiota of CRC patients highlight its potential as a noninvasive
biomarker (Zhang et al., 2020). This positions the readily accessible
salivary microbiota as a powerful tool for understanding CRC
pathogenesis and distinguishing CRC patients from the healthy
population. Recent studies have identified that specific oral bacteria,
enriched in the intestinal dysbiotic microbiota of CRC patients, can
promote the carcinogenic process and possess significant potential
for antitumor therapy (Bergsten et al., 2023; Chen L. et al., 2024;
Zepeda-Rivera et al., 2024). However, previous studies have
overlooked the critical role of oral-to-gut microbiota translocation
during CRC progression. Furthermore, the associations of fecal and
salivary microbiota with metastatic CRC remain uninvestigated,
along with their potential as diagnostic biomarkers for early
metastasis detection.

We hypothesize that stage-specific fecal and salivary microbiota
signatures evolve during colorectal carcinogenesis, serving as
noninvasive biomarkers for detecting early resectable CRC and
monitoring metastasis progression. In addition, given the robust
evidence of specific oral bacteria colonizing intestinal dysbiotic
microbiota in CRC patients, we hypothesize that oral-to-gut
microbiota translocation intensifies throughout colorectal
carcinogenesis. Fecal and matching salivary samples were
concurrently collected from 30 metastatic CRC patients, 30
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nonmetastatic CRC patients, and 30 healthy adult volunteers to
characterize the microbial profiles using 16S v3v4 region sequencing
approach. We profiled fecal and salivary microbiota and constructed
co-occurrence networks to elucidate the ecological dynamics of
microbial dysbiosis during CRC progression. Simultaneously, Source
Tracker analysis was used to evaluate oral-gut microbial translocation
dynamics during CRC progression. Based on bioinformatics analysis,
we identified the fecal microbial signatures with acceptable
prediction accuracy.

Results
Participants

Based on strict inclusion criteria, 30 metastatic CRC patients (M
group), 30 nonmetastatic CRC patients (NM group), and 30 healthy
volunteers as normal controls (NC group) were included. Clinical
features involving sex; age; BMI; comorbidities; location of primary
tumor lesion; histological type; and serum CEA, CA-199, and CA-125
level were presented in the Table 1. The differences in demographic
characteristics among the three groups were statistically insignificant.
As for CRC patients, the specific distribution of their primary tumor
location was as follows: NM group: 7 left colon cancer (LCC), 10 right
colon cancer (RCC), and 13 rectal cancer (RC) as well as M group: 10
LCC, 7 RCC, and 13 RC. A total of 58 of patients were diagnosed with
adenocarcinoma in terms of pathological classification, while only two
of the M group patients were diagnosed with neuroendocrine
neoplasms, thus showing consistency with the distribution
characteristics of CRC histological types. In addition, serum tumor
markers exhibited a significant difference between the M group and
the NM group.

Fecal microbiota composition differed in
CRC patients with distinct disease stages

Intestinal dysbacteriosis is closely associated with colorectal
tumorigenesis. Therefore, healthy subjects as well as CRC patients
with and without metastasis were enrolled to mirror the specific fecal
microbial alterations during CRC progression. Principal coordinates
analysis (PCoA) (Figure 1a) and non-metric multidimensional scaling
(NMDS) (Figure 1b) analyses revealed significant -diversity shifts
(Bray-Curtis, p = 0.01) in fecal microbiota, with distinct clustering
among the three groups. Moreover, we performed an ASV-based
taxonomic analysis at the phylum and genus levels to identify
dominant fecal microbiota taxa. At the phylum level, Firmicutes,
Bacteroidota, Proteobacteria, Actinobacteriota, Verrucomicrobiota, and
Fusobacteria dominated the three groups. In addition, the stacked bar
plot of six predominant phyla indicated that the M group had a
considerably lower average Firmicute composition (45.68%) than the
NM (51.18%) and NC group (52.94%), accompanied by the increasing
proportion of the Actinobacteriota (NC 5.73% vs. NM 5.83% vs. M
12.05%) (Figure 1¢). The top 30 genera were plotted in the stacked bar
at the genus level, while the rest were merged as others. At the genus
level, Bacteroides accounted for an increasing proportion along the
NC-NM-M sequence (NC 10.92% vs. NM 11.44% vs. M 16.45%) and
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Clinical features NM (n = 30) NC (n = 30)

Demographics ns
Male/female 22/8 18/12 13/17

Ageyr 62.3000 + 7.1301 58.6333 + 11.8015 59.466 + 4.4079

BMI kg/m2 21.9492 + 2.4995 23.4668 + 3.6404 23.5621 + 3.1257

Comorbidities ns
Hypertension 7 12 10

Diabetes 7 5 3

Tumor location N/A ns
LCC 10 7

RCC 7 10

RC 13 13

Tumor type N/A ns
Adenocarcinoma 28 30

NN 2 0

Tumor markers N/A *
CEA

Normal 14 24

Elevated 16 6

CA19-9

Normal 24 30

Elevated 6 0

CA-125

Normal 21 29

Elevated 9 1

Three-line table showed the clinical features. *Represents p < 0.05 (CEA: p = 0.014; CA19-9: p = 0.023; CA-125: p = 0.012). NC, normal controls; NM, non-metastatic CRC; M, metastatic CRC;
BMI, body mass index; LCC, left colon cancer; RCC, right colon cancer; RC, rectal cancer; NN, neuroendocrine neoplasm; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen
19-9; CA-125, carbohydrate antigen 125; N/A, not applicable; N/I, no information; ns, no significant.

dominated the NM and M groups. On the contrary, Prevotella_9 was
significantly more abundant in the NC group compared with the CRC
group (NC 13.24% vs. NM 0.97% vs. M 5.12%). Furthermore,
we observed a progressive decline in the relative abundance of
Escherichia-Shigella along the NC-NM-M sequence (NC 4.70% vs.
NM 4.58% vs. M 2.68%) (Figure 1d). We then shared the top 6 phyla
and the top 30 genera in the form of bubble plot and Sankey plot.
Bubble plot showed the microbial distribution and changes through
the size and location of the bubble among the groups (Figure le). The
Sankey plot intuitively revealed the branch association between
phylum and genus of three groups with different colors (Figure 1f).
The average composition of Bacteroides, Prevotella_9, Bifidobacterium,
Faecalibacterium, Escherichia-Shigella, Akkermansia, Klebsiella, UCG-
002, Ruminococcus_gnavus_group, and Roseburia showed the
statistically predominant abundance at the genus level, and
Bacteroidota showed the largest proportion at the phylum level
(Figures le,f).

Specific fecal microbial taxa altered in CRC
patients with distinct disease stages

Particularly, the heatmap showed difference in microbial
distribution at the phylum level (Figure 2a). We observed that the M
group group, UGG-002,

featured  Eubacterium  eligens
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Bifidobacterium,  Bacteroides,  Sutterella,  Veillonella, and
Ruminococcus, while the NM group featured Streptococcus,
Akkermansia, Fusobacterium, Ruminococcus gnavus group,

Ruminococcus torques group, Collinsella, Phascolarctobacterium,
Fusicatenibacter, and Klebsiella at the genus level visualized by
heatmap (Figure 2b). Box-plots showed the top 10 specific taxa
decreased and increased constantly along the NC-NM-M sequence
at the genus (Figure 2c) and species (Figure 2d) levels. Specific
Shuttleworthia,
Parabacteroides, Leifsonia, Megasphaera, Catabacter, Gracilibacter,

genera, including  Proteus, Pelomonas,
Lactovum, and Prevotella_7 showed increased relative abundance
during CRC progression, while others including Megamonas,
Neisseria, Aggregatibacter, Lactiplantibacillus, Agathobacter, Erwinia,
Lachnospiraceae UCG—-004, CAG—56, Romboutsia, and UCG—003
decreased (Figure 2c¢). At the species level, Proteus mirabilis and

Bacteroides thetaiotaomicron exhibited an upward trend (Figure 2d).

Salivary microbiota composition differed in
CRC patients with distinct disease stages

A total of 90 salivary samples were available for 16S rDNA
sequencing-based taxonomic analysis. Both PCoA (Figure 3a) and
NMDS (Figure 3b) analyses demonstrated statistically significant
dissimilarities (Bray—Curtis, p =0.001) in microbial community
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Fecal microbiota composition differed in CRC patients with distinct disease stages. (a,b) PCoA (a) and NMDS (b) showed beta diversity of fecal
microbiota across groups with distinct disease stages. p-value was calculated by the analysis of similarities (ANOSIM) (weighted Unifrac, R = 0.049,

p = 0.01). (c,d) Stacked bar plot showed mean fecal microbiota proportions at the phylum (c) and genus (d) levels across groups with distinct disease
stages. (e) Bubble plot showed fecal microbial genera colored by phylum and sized by relative abundance across groups with distinct disease stages. (f)
Sankey plot indicated the fecal taxonomic flow with the breadth of the branch at the genus (right side) and corresponding phylum (middle side) levels
during the disease progression (left side). NC, normal controls; NM, non-metastatic CRC; M, metastatic CRC.
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FIGURE 3

Salivary microbiota composition differed in CRC patients with distinct disease stages. (a,b) PCoA (a) and NMDS (b) showed beta diversity of salivary
microbiota across groups with distinct disease stages (weighted Unifrac, R = 0.0797, p = 0.001). (c,d) Stacked bar plot showed mean salivary microbiota
proportions at the phylum (c) and genus (d) levels across groups with distinct disease stages. (e) Bubble plot showed salivary microbial genera across
groups with distinct disease stages. (f) Sankey plot indicated the salivary taxonomic flow across groups with distinct disease stages. NC, normal
controls; NM, non-metastatic CRC; M, metastatic CRC.
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composition among the groups. At the phylum level (Figure 3c),

Proteobacteria, Bacteroidota, Firmicutes, Fusobacteriota,
Actinobacteriota, and Campylobacterota dominated the three groups.
Statistically, Bacteroidota and Campylobacterota were enriched in the
M group relative to the NM and NC groups, whereas phyla such as
Proteobacteria showed high abundance in the NC group. Furthermore,
Neisseria, Haemophilus, Prevotella_7, Porphyromonas, Fusobacterium,
Prevotella, Veillonella, Streptococcus, Leptotrichia, and Alloprevotella
dominated the three groups at the genus level (Figure 3d). The stacked
bar plot depicting the top 30 genera revealed a progressive decline in
Neisseria abundance during CRC progression, contrasting with
increased relative abundances of Fusobacterium and Prevotella
(Figure 3d). To compressively visualize 16S rDNA sequencing data,
bubble and Sankey plots were employed to reveal the six most
abundant phyla and 30 most abundant genera across the three groups

(Figures 3e,f).

Specific salivary microbial taxa altered in
CRC patients with distinct disease stages

Particularly, heatmaps illustrated the microbial distribution
differences at the phylum (Figure 4a) and genus levels (Figure 4b).
Box-plots revealed the top 10 specific taxa that decreased or increased
consistently along the NC-NM-M sequence at the genus (Figure 4c)
and species (Figure 4d) levels. The relative abundance of specific
genera, including Prevotella, Atopobium, Lactobacillus, Escherichia—
Shigella, Akkermansia, Klebsiella, Solobacterium, Lachnospiraceae
NK4A136 group, Subdoligranulum, and Scardovia increased during
CRC progression, while others including Vibrio, Bosea, Simonsiella,
Succinivibrionaceae UCG—001, and F0332 decreased (Figure 4c).

Microbiota co-occurrence networks
dynamically altered in CRC patients with
distinct disease stages

To assess CRC stage-related changes in gut/oral network
complexity, we identified 139 fecal and 281 salivary ASVs (shared by
>1/3 of samples across groups) and analyzed community structure via
SparCC correlation coefficients. We analyzed the interactions among
fecal and salivary microorganisms along the NC-NM-M sequence,
across 6 networks. Fecal and salivary microbial networks exhibited
stage-specific co-occurrence patterns during CRC progression
(Figure 5a). In addition, we calculated the natural connectivity to
evaluate the resilience in complex networks. Fecal microbial networks
demonstrated reduced constancy when the disease progressed, while
salivary microbial networks demonstrated increased constancy
(Figure 5b). Relative enrichment of oral bacteria in fecal samples has
been linked to several digestive system diseases, including Crohn’s
disease, ulcerative colitis, irritable bowel syndrome, and even CRC. To
investigate whether CRC-induced fecal microbiota changes resulted
from oral-to-gut microbiota translocation and intensified with disease
progression, we linked salivary and fecal microbiota via Venn
diagrams and Source Tracker analysis based on 16S rDNA sequencing.
Compared to the NC group, the NM group had more shared ASV's
between the salivary and fecal samples as shown in the Venn diagram,
suggesting that its salivary and fecal microbiota were more similar
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(Supplementary Figure S1b). Interestingly, shared ASVs were fewer in
the M group than in the NM group (Supplementary Figure Sic). To
explore whether oral microbiota colonize the gut during CRC
progression, we performed Source Tracker analysis. Source Tracker
analysis detected salivary bacteria in the fecal microbiota of 63.3% of
M group patients, 50.0% of NM group patients, and 46.7% of NC
group patients (Figure 5¢), with the highest detection rate observed in
the CRC group, particularly the M group. Salivary bacteria constituted
14.9% of the fecal microbiota in the M group, progressively decreasing
to 3.2% in the NM group and 1.7% in the NC group (Figure 5d),
indicating relative enrichment of salivary bacteria in the gut during
CRC progression. Source Tracker details were provided in
Supplementary Figures S2a-c. A conceivable circumstance was that
oral-to-gut microbiota translocation could drive gut dysbiosis during
thereby fecal microbial

CRC  progression, exacerbating

network instability.

ASVs-based fecal biomarkers achieved
precise stage-specific diagnosis of CRC,
outperforming salivary ASV classifiers

Differential analysis revealed the number of differential fecal and
salivary bacterial species in pairwise group comparisons. Compared
to the NC group, the NM group exhibited 39 differential fecal species
(16 enriched, 23 depleted) (Figure 6a), while the M group exhibited
128 differential fecal species (77 enriched, 51 depleted) (Figure 6b).
Moreover, compared to the M group, the NM group exhibited 109
differential fecal species (43 enriched, 66 depleted) (Figure 6c).
Compared to the NC group, the NM group demonstrated 34
differential salivary species (15 enriched, 19 depleted) (Figure 6d),
whereas the M group demonstrated 179,179 differential salivary
species (14lenriched, 38 depleted) (Figure 6e). Furthermore,
compared to the M group, the NM group exhibited 180 differential
salivary species (33 enriched, 147 depleted) (Figure 6f). Notably, the
differences between the M group and the NC group were greater than
those between the NM group and the NC group. The results indicated
distinct fecal and salivary microbiota differences between CRC
patients at different disease stages.

Using the random forest model with five-fold cross-validation,
we next ranked fecal (Figure 6g) and salivary (Figure 6h) bacterial
ASVs by their diagnostic importance for NC/NM/M three-class
discrimination. We observed substantial overlap between the top 30
fecal and salivary ASV biomarkers selected by Mean Decrease Gini
score and Mean Decrease Accuracy score. Subsequently,
we constructed three-class random forest models using the top 8
fecal and salivary ASV biomarkers (selected by Mean Decrease
Gini) to discriminate among NC, NM, and M groups. The fecal
model achieved robust discrimination, attaining an overall test
accuracy of 78.95%, Cohen’s Kappa statistic of 0.68, Log Loss of
0.18, Macro-averaged Fl-score of 0.80, and Micro-averaged
F1-score of 0.78. Notably, receiver operating characteristic (ROC)
analysis (one-vs-rest) yielded a macro-averaged area under curve
(AUC) of 93.16% (NC-specific AUC =92.71%, NM-specific
AUC = 90.15%, M-specific AUC = 96.63%) and a micro-averaged
AUC of 93.40% (Figure 6i), confirming balanced performance
across classes. The salivary model attained an overall test accuracy
of 61.54%, Cohen’s Kappa statistic of 0.41, Log Loss of 0.52,
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FIGURE 4

Specific salivary microbial taxa altered in CRC patients with distinct disease stages. (a,b) Heatmaps showed salivary microbial phyla (a) and genera (b)
enriched in CRC patients with distinct disease stages. (c,d) Box plots depicted the specific salivary microbial taxa at the genus (c) and species (d) levels
with progressive relative abundance changes along the NC-NM-M sequence. NC, normal controls; NM, non-metastatic CRC; M, metastatic CRC.
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Microbiota co-occurrence networks dynamically altered in CRC patients with distinct disease stages. (a) Co-occurrence networks of fecal (n = 139)
and salivary (n = 281) ASVs of CRC patients with distinct disease stages, with edges denoting significant correlations (p < 0.05) between co-abundant
ASVs. The SparCC algorithm was used to examine statistical significance. (b) The network natural connectivity test assessed the robustness changes in
two network topologies during node removal. (c,d) The source tracker analysis showed both the detection rate and detailed proportion of saliva-
derived microbiota in the fecal samples of CRC patients with distinct disease stages. In the pie diagrams of detection rate (c), “Saliva (+)" represented

(Continued)

Frontiers in Microbiology 09 frontiersin.org


https://doi.org/10.3389/fmicb.2025.1658693
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Wu et al.

10.3389/fmicb.2025.1658693

FIGURE 5 (Continued)

the positive proportion of each group that detected saliva-derived bacteria in their fecal microbiota. “Saliva (—)" represented the negative proportion of
each group that did not detect saliva-derived bacteria in their fecal microbiota. In the pie diagrams of the detailed proportion of saliva-derived
microbiota in the fecal samples (d), “Saliva” implied the percentage of saliva-derived bacteria in the fecal samples and “unknown” implied the
percentage of other bacteria except saliva-derived bacteria (n = 30 in the NC, NM, and M groups). NC, normal controls; NM, non-metastatic CRC; M,

metastatic CRC.

Macro-averaged F1-score of 0.65, and Micro-averaged F1-score of
0.61. ROC analysis (One-vs-Rest) yielded a macro-averaged AUC
0f 76.15% (NC-specific AUC = 67.92%, NM-specific AUC = 67.43%,
M-specific AUC = 93.10%) and a micro-averaged AUC of 81.30%
(Figure 6j).

Discussion

As an aggressive malignancy characterized by insidious onset,
rapid metastasis, and high mortality, CRC urgently requires early
detection biomarkers to alleviate the disease burden. Recent research
has deepened our understanding about the intrinsic links between
oral/gut microbiota and digestive tract diseases, particularly CRC
(Chen et al., 2022; Baker et al., 2024; Kunath et al., 2024).

Our study identified fecal genera implicated in CRC pathogenesis,
including Bacteroides (Zafar and Saier, 2021), Megasphaera (Chen
Q. et al,, 2024), Veillonella (Ubachs et al., 2021), and Alistipes (Gu
et al., 2023). In addition, opportunistic pathobionts (e.g., toxigenic
Bacteroides strains) progressively expanded along the NC-NM-M
sequence, whereas commensal probiotics like Agathobacter showed
significant depletion (Lavelle et al., 2022). Bacteroides promoted
intestinal barrier permeability in metastatic CRC, thereby shaping a
premetastatic niche (Genua et al, 2021). Moreover, Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis identified key
metabolic pathways in the M group, notably AA biosynthesis and
metabolism (Supplementary Figure S3). This finding was consistent
with the prior evidence that AA metabolism accelerated CRC
progression (Tian et al., 2020; Tran et al., 2020; Liu et al., 2021).
Specifically, western diets depleted beneficial bacteria that produced
anti-inflammatory metabolites. In contrast, Mediterranean diet
interventions promoted the abundance of Agathobacter and enhanced
intestinal barrier function via increased production of short chain
fatty acids (SCFAs) (Tan et al., 2023; Merra et al., 2020). Intriguingly,
these microbial shifts also presented potential therapeutic targets for
traditional Chinese medicine. For instance, berberine inhibited
pathogenic species such as Alistipes and increased the abundance of
SCFA-producing bacteria (Yang et al., 2023). We therefore speculated
that CRC-associated dysbiosis is both a consequence of deleterious
dietary patterns and a malleable “therapeutic interface” that can
be modulated through precision interventions. Further research into
intervening these microbial imbalances to halt or reverse disease
progression holds significant clinical potential.

We tracked CRC stage-dependent co-occurrence network
dynamics of fecal and salivary microbiota. Consistent with prior
evidence, microbial co-occurrence networks in healthy population
exhibited higher stability and complexity than diseased cohorts
(Cheng et al, 2022). Structurally integrated networks confer
functional robustness and ecosystem resilience (Wagg et al., 2019; Du
etal., 2025). Based on the concepts of connectivity and robustness in
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network theory (Shi et al., 2020), we calculated the natural connectivity
of microbial networks. We observed that fecal microbiota networks
showed progressive decline in natural connectivity during CRC
progression, whereas salivary networks exhibited increasing
connectivity. Undoubtedly, an increasing fragility of the fecal
microbial network during CRC progression was observed (Figure 5b).
However, what we did not expect was that salivary microbial networks
exhibited strengthening co-occurrence stability over the same
progression (Figure 5b). The results indicated that tumor progression
not only altered microbial diversity and composition but also the
interaction network stability of both fecal and salivary microbiota.
We hypothesized that enhanced robustness in salivary microbiota
networks may contribute to fecal network destabilization through
oral-to-gut microbiota translocation, potentially influencing host
metabolism and tumor promotion. The Source Tracker analysis
demonstrated increasing relative abundance of salivary microbiota in
feces during CRC progression (Figure 5d), indicating oral-to-gut
microbiota translocation-induced dysbiosis. Oral-to-gut microbiota
translocation drives colorectal carcinogenesis through pathobiont-
mediated barrier disruption and metabolic dysregulation (Park et al.,
2021), while simultaneously offering novel theranostic opportunities:
stage-specific translocation signatures enable noninvasive liquid
biopsy for early metastasis risk stratification, and targeted
interventions against key oral pathobionts may halt CRC progression
by restoring gut ecological balance.

We elucidated the fecal and salivary microbiota associated with
different CRC stages. In addition, we developed a three-classification
diagnostic model based on fecal bacterial ASV biomarkers to
distinguish among the NC, NM, and M groups, which demonstrated
excellent performance. The model achieved AUC values exceeding
90% across all classifications (NC-specific AUC = 92.71%, NM-specific
AUC =90.15%, M-specific AUC =96.63%, macro-averaged
AUC = 93.16%, micro-averaged AUC = 93.40%) (Figure 6i). These
results indicated that fecal microbial communities harbored highly
informative biomarkers capable of achieving high discrimination
accuracy among the three groups, suggesting strong potential for
clinical application as a noninvasive auxiliary diagnostic tool. The
salivary Dbacterial ASV-based model showed acceptable but
comparatively lower discriminatory power, with a macro-averaged
AUC of 76.15% (NC-specific AUC=67.92%, NM-specific
AUC = 67.43%, M-specific AUC =93.10%) and a micro-averaged
AUC of 81.30% (Figure 6j). Notably, the model exhibited relatively low
discriminatory power between the NC and NM groups, while
performing better in identifying the M group. This suggested that
although salivary microbiota may be indicative of advanced or overt
pathological states, it held limited value for detecting early or subtle
differences. From a clinical inference perspective, the fecal microbiome
demonstrated clear advantages over salivary microbiota in this specific
classification task, indicating that gut microbial biomarkers may
be more suitable for early screening and stratified management of the
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FIGURE 6 (Continued)

“Enriched:" specific fecal/salivary species were significantly enriched in the front group relative to the rear group; "Depleted:” specific fecal/salivary
species were significantly depleted in the front group relative to the rear group; (g,h) ASV-based fecal (g) and salivary (h) biomarkers importance
ranking based on random forest scores. (i,j) ROC analysis of top eight ASVs-based fecal (i) and salivary (j) ASVs biomarkers (selected by
MeandecreaseGini) for distinguishing among NC, NM, and M groups. NC, normal controls; NM, non-metastatic CRC; M, metastatic CRC; FC, fold
change; ASV, amplicon sequence variant; ROC, receiver operating characteristic; AUC, area under the curve.

disease. Although saliva sampling is noninvasive and convenient, its
moderate classification performance suggested that it may be better
utilized as a supplementary approach or in combination with other
biomarkers to enhance overall diagnostic efficacy. Future studies could
focus on developing multimodal integrated models that combine
microbial information from diverse sources, such as feces and saliva,
to build more robust and generalizable clinical prediction tools.

As a preliminary exploratory study, this research identified CRC
progression-associated fecal/salivary microbiota biomarkers and
established foundational groundwork for future larger scale research.
Although the Source Tracker analysis provided insight into potential
oral-gut microbiota translocation, the study did not track specific
salivary taxa colonizing the gut and lacked direct experimental
validation, as it was not originally designed to examine salivary—-fecal
microbiota associations during CRC progression. In addition,
limitation included the relatively small sample size and lack of external
validation for predictive models because of the stringent inclusion
criteria and the single-center recruitment. We have implemented five-
fold cross-validation to enhance model performance and will conduct
external validation in multicenter cohorts and prospective studies to
assess clinical utility in the future.

Materials and methods
Subjects and specimen collection

From March 2024 to January 2025, we recruited 90 participants (30
patients with metastatic CRC, 30 patients with nonmetastatic CRC,
and 30 normal control participants) from the First Affiliated Hospital
of Zhejiang Chinese Medical University. All metastatic CRC and
nonmetastatic CRC subjects were diagnosed by standard colorectal
surgery and the control individuals were considered without
CRC-related high-risk factors. The inclusion and exclusion criteria for
all patients and healthy control participants were the same as described
in detail in Supplementary materials. The 16S rDNA gene amplicon of
fecal and salivary microbiota and clinical features were obtained. All
fecal samples were further analyzed by metagenomic sequencing to
acquire fecal microbiota information comprehensively. Fresh fecal and
matching salivary samples were collected from 90 participants in sterile
plastic pots containing DNA-stabilizing buffer (DNA Shield; LC-Bio
Technology Co., Ltd). Participants were strictly refrained from eating,
drinking, smoking, or chewing gum for 30 min before saliva collection.
The samples were stored at —20 °C for 4 h and subsequently were
stored at —80 °C for 24 h for long-term storage until DNA extraction
and taxonomic analysis. In addition, clinical data pertaining to age, sex,
BMI, and follow-up information were acquired from the same hospital-
structured questionnaires. All subjects provided written informed
consent. The Clinical Research Ethics Committee of the First Affiliated
Hospital of Zhejiang Chinese Medical University approved the study
protocol (2024-KLS-015-01).
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DNA extraction, amplification, sequence
procession, library construction, and 16S
rDNA sequencing analysis

Fecal microbial DNA was extracted using Fecal Genome DNA
Extraction Kit (AU46111-96, BioTeke, China) and salivary DNA was
extracted using Salivary Genome DNA Extraction Kit (AU46111-96,
BioTeke, China),
instructions. The DNA integrity, sizes, and concentrations were
generated by Qubit (Invitrogen, United States). The 16S rDNA gene
V3-V4 region was amplified using TransStart FastPfu Polymerase
with barcode-indexed primers (341F5’-CCTACGGGNGGCWGCAG-
3;805R:5-GACTACHVGGG TATCTAATCC-3') in a two-step PCR
protocol. The amplification products were then purified by AMPure
XT Beads (Beckman Coulter Genomics, Danvers, MA, United States)
and were quantified using Qubit (Invitrogen, United States). Quality-

respectively, according to manufacturer’s

filtered reads were obtained and then evaluated using an Agilent 2100
Bioanalyzer (Agilent, United States) and Illumina library quantitative
kits (Kapa Biosciences, Woburn, MA, United States), which were
further sequenced on the Illumina NovaSeq 6000 (PE250) platform
with the default settings for paired-end reads supported by Lc-Bio
Technologies Co., Ltd. (Hangzhou, China). Sequencing primer were
removed from de-multiplexed raw sequences using cutadapt (v_1.9).
Subsequently, paired end reads were merged using FLASH (v_1.2.8).
Low-quality reads (quality scores<20), short reads (<100 bp), and
reads containing more than 5% “N” records were trimmed by using
the sliding-window algorithm method in fqtrim (v_0.94). Quality
filtering was performed to obtain high-quality clean tags according to
fqtrim. Chimeric sequences were filtered using Vsearch software
(v_2.3.4). DADA2 was applied for denoising and generating ASVs.

Co-abundance ASVs

The ASVs present in one-third of fecal or salivary samples were
considered as key ASVs. The correlations among 139 key ASVs of fecal
samples and 281 key ASVs of salivary samples were identified by Sparse
Correlations for Compositional Data (SparCC) algorithm (p-value <
0.05 was considered statistically significant) using R package SpiecEasi
(v_1.1.3). Weak correlations (correlation coefficient <0.3 or >—0.3,
p-value < 0.05) were removed. After filtering, Gephi (v_0.9.2) was used
for the visualization of significant co-occurrence interactions.

Natural connectivity

Co-abundance ASVs in the corresponding networks, represented as
the N nodes, were removed one by one. The natural connectivity statistics
(y axis) reflect to invulnerability were calculated when each node (x axis)

was removed. The natural connectivity value (1) was calculated by R
package igraph (v_4.4.3), it is related to a function /; , which represents
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the eigenvalues of the network adjacency matrix and can be used to
calculate the decrease in redundancy of alternative pathways as nodes are
removed, i.e.:

_ AN
A=In| —=>Ye~
v
i=1
Where i represented the ith co-abundance ASVs.

Random forest classifier

The machine learning analysis utilized the normalized relative
abundance of fecal and salivary ASVs. We implemented a three-class
Random Forest Classifier, with model performance rigorously quantified
through five-fold cross-validation. Evaluation metrics included:
classification accuracy, Cohen’s Kappa statistic, logarithmic loss (Log
Loss), macro-averaged F1-score, and micro-averaged F1-score. Feature
selection and model optimization were performed using R packages
randomForest (v_4.4.3) and caret (v_4.4.3) packages. Only the top eight
ASVs ranked by meandecreaseGini impurity were retained as predictive
features. Diagnostic efficacy was further evaluated using ROC analysis
(one-vs-rest) implemented in the R package pROC (v_4.4.3). Model
performance was assessed by macro-averaged area under the curve
(macro-AUC) and micro-averaged area under the curve (micro-AUC).

Statistical analysis

Statistical analyses were carried out in R version 4.4.2 to identify
microbial differences among groups. Wilcoxon rank-sum test was
performed in the pairwise comparisons, while Kruskal-Wallis test was
used for multiple group comparisons. Benjamini-Hochberg false-
discovery rate (FDR) was used to control the false positive rate in multiple
comparisons and ensure the credibility of the statistical results. Analysis
of variance (ANOVA) was used to compare age and BMI among M, NM,
and NC groups; Pearson’s chi-squared test was used to compare gender
distribution differences among the three groups. Fisher’s exact test was
used to compare the distribution difference of tumor location, tumor type,
and tumor markers between the M group and the NM group. p < 0.05 was
considered significant.
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