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Background: Fecal and salivary microbiota dysbiosis play a crucial role in the 
pathogenesis of colorectal cancer (CRC). We investigated whether the fecal and 
salivary microbiota were altered during colorectal tumorigenesis and evaluated 
their diagnostic performance.
Methods: We enrolled 30 metastatic CRC patients, 30 nonmetastatic CRC 
patients, and 30 healthy controls between October 2023 and September 2024. 
Fecal and salivary samples were collected for microbial profiling via 16S rDNA 
sequencing and bioinformatics analysis.
Results: Fecal and salivary microbiota composition differed during CRC 
progression, with salivary microbiota progressively enriched in the gut. In 
addition, fecal and salivary microbial co-occurrence networks dynamically 
altered during CRC progression. The natural connectivity of fecal microbial 
community networks exhibited decreased stability, whereas salivary microbial 
community networks showed increased stability as CRC progressed. Finally, 
specific fecal microbial amplicon sequence variants (ASVs) associated with 
colorectal carcinogenesis enabled precise stage-specific diagnosis of CRC, 
outperforming salivary ASVs classifiers.
Conclusion: This study elucidates stage-specific microbial dynamics in CRC, 
providing novel insights into clinical diagnostic strategies.
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Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related death in both men 
and women, with an estimated 1.92 million new CRC cases and 0.90 million CRC-related 
deaths in 2022, of which approximately 0.24 million deaths occur in China (Bray et al., 2024). 
Screening for CRC among people aged 50–75 years has substantial net benefits (Patel and 
Dominitz, 2024). However, only 14% of high-risk population in China undergo CRC screening 
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due to the high cost, invasiveness, and cumbersome preparation 
required for colonoscopy (Chen et al., 2019). In addition, nonspecific 
symptoms and absence of clinical biomarkers hinder early CRC 
detection and intervention. Consequently, up to 60% of patients 
exhibit local or distant metastasis at the time of diagnosis, correlating 
with poor prognosis with a 5-year survival rate of less than 20% (Biller 
and Schrag, 2021). Therefore, a valuable means of predicting the onset 
of CRC and CRC metastasis is needed urgently.

Although the gut microbiota is not a static entity, it serves as a 
critical interface dynamically interacting with environmental factors 
and host health (Zmora et  al., 2019), contributing to disease 
pathogenesis through genetic toxicity, signal transduction, 
inflammation, immunity, and metabolism (Wong and Yu, 2023). 
CRC remains one of the most life-threatening malignancies, and 
unhealthily alterations in fecal microbiota composition in high-risk 
individuals have been proven to contribute to colorectal 
carcinogenesis (Cui et al., 2024; Liu et al., 2024; Zepeda-Rivera et al., 
2024). Fecal microbiota is highly dynamic, with substantial variation 
in taxonomic diversity across hosts and health states, reflecting 
intrahost microbial evolution driven by natural selection. For 
instance, convergent evidence confirms that specific alterations in 
fecal microbial composition occur in digestive system diseases, such 
as in CRC (Coker et al., 2022), gastric cancer (Yu et al., 2024), liver 
cancer (Rajapakse et al., 2023), and precancerous adenomas (Gao 
et al., 2023), as well as in other non-neoplastic diseases (Wu et al., 
2024), Currently, fecal microbiota has been implicated in the 
diagnosis of CRC. Coker et al. (2022) established a panel of six fecal 
bacterial species that distinguished CRC from colorectal adenomas 
(CRA) with satisfactory diagnostic performance upon validation, 
indicating the fecal microbial dynamics during CRC progression. The 
oral cavity acts as the entrance to the gastrointestinal tract and 
harbors a complex salivary microbiome that is closely linked to the 
fecal microbiota through oral-to-gut microbiota translocation 
(Schmidt et  al., 2019). Significant alterations in the salivary 
microbiota of CRC patients highlight its potential as a noninvasive 
biomarker (Zhang et al., 2020). This positions the readily accessible 
salivary microbiota as a powerful tool for understanding CRC 
pathogenesis and distinguishing CRC patients from the healthy 
population. Recent studies have identified that specific oral bacteria, 
enriched in the intestinal dysbiotic microbiota of CRC patients, can 
promote the carcinogenic process and possess significant potential 
for antitumor therapy (Bergsten et al., 2023; Chen L. et al., 2024; 
Zepeda-Rivera et  al., 2024). However, previous studies have 
overlooked the critical role of oral-to-gut microbiota translocation 
during CRC progression. Furthermore, the associations of fecal and 
salivary microbiota with metastatic CRC remain uninvestigated, 
along with their potential as diagnostic biomarkers for early 
metastasis detection.

We hypothesize that stage-specific fecal and salivary microbiota 
signatures evolve during colorectal carcinogenesis, serving as 
noninvasive biomarkers for detecting early resectable CRC and 
monitoring metastasis progression. In addition, given the robust 
evidence of specific oral bacteria colonizing intestinal dysbiotic 
microbiota in CRC patients, we  hypothesize that oral-to-gut 
microbiota translocation intensifies throughout colorectal 
carcinogenesis. Fecal and matching salivary samples were 
concurrently collected from 30 metastatic CRC patients, 30 

nonmetastatic CRC patients, and 30 healthy adult volunteers to 
characterize the microbial profiles using 16S v3v4 region sequencing 
approach. We profiled fecal and salivary microbiota and constructed 
co-occurrence networks to elucidate the ecological dynamics of 
microbial dysbiosis during CRC progression. Simultaneously, Source 
Tracker analysis was used to evaluate oral–gut microbial translocation 
dynamics during CRC progression. Based on bioinformatics analysis, 
we  identified the fecal microbial signatures with acceptable 
prediction accuracy.

Results

Participants

Based on strict inclusion criteria, 30 metastatic CRC patients (M 
group), 30 nonmetastatic CRC patients (NM group), and 30 healthy 
volunteers as normal controls (NC group) were included. Clinical 
features involving sex; age; BMI; comorbidities; location of primary 
tumor lesion; histological type; and serum CEA, CA-199, and CA-125 
level were presented in the Table 1. The differences in demographic 
characteristics among the three groups were statistically insignificant. 
As for CRC patients, the specific distribution of their primary tumor 
location was as follows: NM group: 7 left colon cancer (LCC), 10 right 
colon cancer (RCC), and 13 rectal cancer (RC) as well as M group: 10 
LCC, 7 RCC, and 13 RC. A total of 58 of patients were diagnosed with 
adenocarcinoma in terms of pathological classification, while only two 
of the M group patients were diagnosed with neuroendocrine 
neoplasms, thus showing consistency with the distribution 
characteristics of CRC histological types. In addition, serum tumor 
markers exhibited a significant difference between the M group and 
the NM group.

Fecal microbiota composition differed in 
CRC patients with distinct disease stages

Intestinal dysbacteriosis is closely associated with colorectal 
tumorigenesis. Therefore, healthy subjects as well as CRC patients 
with and without metastasis were enrolled to mirror the specific fecal 
microbial alterations during CRC progression. Principal coordinates 
analysis (PCoA) (Figure 1a) and non-metric multidimensional scaling 
(NMDS) (Figure 1b) analyses revealed significant β-diversity shifts 
(Bray–Curtis, p = 0.01) in fecal microbiota, with distinct clustering 
among the three groups. Moreover, we  performed an ASV-based 
taxonomic analysis at the phylum and genus levels to identify 
dominant fecal microbiota taxa. At the phylum level, Firmicutes, 
Bacteroidota, Proteobacteria, Actinobacteriota, Verrucomicrobiota, and 
Fusobacteria dominated the three groups. In addition, the stacked bar 
plot of six predominant phyla indicated that the M group had a 
considerably lower average Firmicute composition (45.68%) than the 
NM (51.18%) and NC group (52.94%), accompanied by the increasing 
proportion of the Actinobacteriota (NC 5.73% vs. NM 5.83% vs. M 
12.05%) (Figure 1c). The top 30 genera were plotted in the stacked bar 
at the genus level, while the rest were merged as others. At the genus 
level, Bacteroides accounted for an increasing proportion along the 
NC-NM-M sequence (NC 10.92% vs. NM 11.44% vs. M 16.45%) and 
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dominated the NM and M groups. On the contrary, Prevotella_9 was 
significantly more abundant in the NC group compared with the CRC 
group (NC 13.24% vs. NM 0.97% vs. M 5.12%). Furthermore, 
we  observed a progressive decline in the relative abundance of 
Escherichia–Shigella along the NC-NM-M sequence (NC 4.70% vs. 
NM 4.58% vs. M 2.68%) (Figure 1d). We then shared the top 6 phyla 
and the top 30 genera in the form of bubble plot and Sankey plot. 
Bubble plot showed the microbial distribution and changes through 
the size and location of the bubble among the groups (Figure 1e). The 
Sankey plot intuitively revealed the branch association between 
phylum and genus of three groups with different colors (Figure 1f). 
The average composition of Bacteroides, Prevotella_9, Bifidobacterium, 
Faecalibacterium, Escherichia-Shigella, Akkermansia, Klebsiella, UCG-
002, Ruminococcus_gnavus_group, and Roseburia showed the 
statistically predominant abundance at the genus level, and 
Bacteroidota showed the largest proportion at the phylum level 
(Figures 1e,f).

Specific fecal microbial taxa altered in CRC 
patients with distinct disease stages

Particularly, the heatmap showed difference in microbial 
distribution at the phylum level (Figure 2a). We observed that the M 
group featured Eubacterium eligens group, UGG-002, 

Bifidobacterium, Bacteroides, Sutterella, Veillonella, and 
Ruminococcus, while the NM group featured Streptococcus, 
Akkermansia, Fusobacterium, Ruminococcus gnavus group, 
Ruminococcus torques group, Collinsella, Phascolarctobacterium, 
Fusicatenibacter, and Klebsiella at the genus level visualized by 
heatmap (Figure  2b). Box-plots showed the top  10 specific taxa 
decreased and increased constantly along the NC-NM-M sequence 
at the genus (Figure  2c) and species (Figure  2d) levels. Specific 
genera, including Proteus, Shuttleworthia, Pelomonas, 
Parabacteroides, Leifsonia, Megasphaera, Catabacter, Gracilibacter, 
Lactovum, and Prevotella_7 showed increased relative abundance 
during CRC progression, while others including Megamonas, 
Neisseria, Aggregatibacter, Lactiplantibacillus, Agathobacter, Erwinia, 
Lachnospiraceae UCG−004, CAG−56, Romboutsia, and UCG−003 
decreased (Figure 2c). At the species level, Proteus mirabilis and 
Bacteroides thetaiotaomicron exhibited an upward trend (Figure 2d).

Salivary microbiota composition differed in 
CRC patients with distinct disease stages

A total of 90 salivary samples were available for 16S rDNA 
sequencing-based taxonomic analysis. Both PCoA (Figure 3a) and 
NMDS (Figure  3b) analyses demonstrated statistically significant 
dissimilarities (Bray–Curtis, p  = 0.001) in microbial community 

TABLE 1  Participants.

Clinical features M (n = 30) NM (n = 30) NC (n = 30) P value*
Demographics ns

Male/female

Age yr

BMI kg/m2

Comorbidities

Hypertension

Diabetes

Tumor location

22/8

62.3000 ± 7.1301

21.9492 ± 2.4995

7

7

18/12

58.6333 ± 11.8015

23.4668 ± 3.6404

12

5

13/17

59.466 ± 4.4079

23.5621 ± 3.1257

10

3

N/A

ns

ns

LCC

RCC

RC

10

7

13

7

10

13

Tumor type

Adenocarcinoma

NN

Tumor markers

28

2

30

0

N/A

N/A

ns

*

CEA

Normal

Elevated

CA19-9

14

16

24

6

Normal

Elevated

CA-125

Normal

Elevated

24

6

21

9

30

0

29

1

Three-line table showed the clinical features. *Represents p < 0.05 (CEA: p = 0.014; CA19-9: p = 0.023; CA-125: p = 0.012). NC, normal controls; NM, non-metastatic CRC; M, metastatic CRC; 
BMI, body mass index; LCC, left colon cancer; RCC, right colon cancer; RC, rectal cancer; NN, neuroendocrine neoplasm; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 
19-9; CA-125, carbohydrate antigen 125; N/A, not applicable; N/I, no information; ns, no significant.
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FIGURE 1

Fecal microbiota composition differed in CRC patients with distinct disease stages. (a,b) PCoA (a) and NMDS (b) showed beta diversity of fecal 
microbiota across groups with distinct disease stages. p-value was calculated by the analysis of similarities (ANOSIM) (weighted Unifrac, R = 0.049, 
p = 0.01). (c,d) Stacked bar plot showed mean fecal microbiota proportions at the phylum (c) and genus (d) levels across groups with distinct disease 
stages. (e) Bubble plot showed fecal microbial genera colored by phylum and sized by relative abundance across groups with distinct disease stages. (f) 
Sankey plot indicated the fecal taxonomic flow with the breadth of the branch at the genus (right side) and corresponding phylum (middle side) levels 
during the disease progression (left side). NC, normal controls; NM, non-metastatic CRC; M, metastatic CRC.
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FIGURE 2

Specific fecal microbial taxa altered in CRC patients with distinct disease stages. (a,b) Heatmaps showed fecal microbial phyla (a) and genera (b) 
enriched in CRC patients with distinct disease stages. Color gradient indicated relative abundance. (c,d) Box plots depicted the specific fecal microbial 
taxa at the genus (c) and species (d) levels with progressive relative abundance changes along the NC-NM-M sequence (p < 0.05). Species named as 
unclassified indicated no further classification available. p-values were calculated using the Kruskal–Wallis test. The box represented the interquartile 
range (IQR) between the first and the third quartiles, and the midline represented the median. Whiskers extended to values within 1.5 times IQR. Circles 
indicated outliers beyond the whiskers. NC, normal controls; NM, non-metastatic CRC; M, metastatic CRC.
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FIGURE 3

Salivary microbiota composition differed in CRC patients with distinct disease stages. (a,b) PCoA (a) and NMDS (b) showed beta diversity of salivary 
microbiota across groups with distinct disease stages (weighted Unifrac, R = 0.0797, p = 0.001). (c,d) Stacked bar plot showed mean salivary microbiota 
proportions at the phylum (c) and genus (d) levels across groups with distinct disease stages. (e) Bubble plot showed salivary microbial genera across 
groups with distinct disease stages. (f) Sankey plot indicated the salivary taxonomic flow across groups with distinct disease stages. NC, normal 
controls; NM, non-metastatic CRC; M, metastatic CRC.
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composition among the groups. At the phylum level (Figure  3c), 
Proteobacteria, Bacteroidota, Firmicutes, Fusobacteriota, 
Actinobacteriota, and Campylobacterota dominated the three groups. 
Statistically, Bacteroidota and Campylobacterota were enriched in the 
M group relative to the NM and NC groups, whereas phyla such as 
Proteobacteria showed high abundance in the NC group. Furthermore, 
Neisseria, Haemophilus, Prevotella_7, Porphyromonas, Fusobacterium, 
Prevotella, Veillonella, Streptococcus, Leptotrichia, and Alloprevotella 
dominated the three groups at the genus level (Figure 3d). The stacked 
bar plot depicting the top 30 genera revealed a progressive decline in 
Neisseria abundance during CRC progression, contrasting with 
increased relative abundances of Fusobacterium and Prevotella 
(Figure 3d). To compressively visualize 16S rDNA sequencing data, 
bubble and Sankey plots were employed to reveal the six most 
abundant phyla and 30 most abundant genera across the three groups 
(Figures 3e,f).

Specific salivary microbial taxa altered in 
CRC patients with distinct disease stages

Particularly, heatmaps illustrated the microbial distribution 
differences at the phylum (Figure 4a) and genus levels (Figure 4b). 
Box-plots revealed the top 10 specific taxa that decreased or increased 
consistently along the NC-NM-M sequence at the genus (Figure 4c) 
and species (Figure  4d) levels. The relative abundance of specific 
genera, including Prevotella, Atopobium, Lactobacillus, Escherichia−
Shigella, Akkermansia, Klebsiella, Solobacterium, Lachnospiraceae 
NK4A136 group, Subdoligranulum, and Scardovia increased during 
CRC progression, while others including Vibrio, Bosea, Simonsiella, 
Succinivibrionaceae UCG−001, and F0332 decreased (Figure 4c).

Microbiota co-occurrence networks 
dynamically altered in CRC patients with 
distinct disease stages

To assess CRC stage-related changes in gut/oral network 
complexity, we identified 139 fecal and 281 salivary ASVs (shared by 
≥1/3 of samples across groups) and analyzed community structure via 
SparCC correlation coefficients. We analyzed the interactions among 
fecal and salivary microorganisms along the NC-NM-M sequence, 
across 6 networks. Fecal and salivary microbial networks exhibited 
stage-specific co-occurrence patterns during CRC progression 
(Figure 5a). In addition, we calculated the natural connectivity to 
evaluate the resilience in complex networks. Fecal microbial networks 
demonstrated reduced constancy when the disease progressed, while 
salivary microbial networks demonstrated increased constancy 
(Figure 5b). Relative enrichment of oral bacteria in fecal samples has 
been linked to several digestive system diseases, including Crohn’s 
disease, ulcerative colitis, irritable bowel syndrome, and even CRC. To 
investigate whether CRC-induced fecal microbiota changes resulted 
from oral-to-gut microbiota translocation and intensified with disease 
progression, we  linked salivary and fecal microbiota via Venn 
diagrams and Source Tracker analysis based on 16S rDNA sequencing. 
Compared to the NC group, the NM group had more shared ASVs 
between the salivary and fecal samples as shown in the Venn diagram, 
suggesting that its salivary and fecal microbiota were more similar 

(Supplementary Figure S1b). Interestingly, shared ASVs were fewer in 
the M group than in the NM group (Supplementary Figure S1c). To 
explore whether oral microbiota colonize the gut during CRC 
progression, we performed Source Tracker analysis. Source Tracker 
analysis detected salivary bacteria in the fecal microbiota of 63.3% of 
M group patients, 50.0% of NM group patients, and 46.7% of NC 
group patients (Figure 5c), with the highest detection rate observed in 
the CRC group, particularly the M group. Salivary bacteria constituted 
14.9% of the fecal microbiota in the M group, progressively decreasing 
to 3.2% in the NM group and 1.7% in the NC group (Figure 5d), 
indicating relative enrichment of salivary bacteria in the gut during 
CRC progression. Source Tracker details were provided in 
Supplementary Figures S2a–c. A conceivable circumstance was that 
oral-to-gut microbiota translocation could drive gut dysbiosis during 
CRC progression, thereby exacerbating fecal microbial 
network instability.

ASVs-based fecal biomarkers achieved 
precise stage-specific diagnosis of CRC, 
outperforming salivary ASV classifiers

Differential analysis revealed the number of differential fecal and 
salivary bacterial species in pairwise group comparisons. Compared 
to the NC group, the NM group exhibited 39 differential fecal species 
(16 enriched, 23 depleted) (Figure 6a), while the M group exhibited 
128 differential fecal species (77 enriched, 51 depleted) (Figure 6b). 
Moreover, compared to the M group, the NM group exhibited 109 
differential fecal species (43 enriched, 66 depleted) (Figure  6c). 
Compared to the NC group, the NM group demonstrated 34 
differential salivary species (15 enriched, 19 depleted) (Figure 6d), 
whereas the M group demonstrated 179,179 differential salivary 
species (141enriched, 38 depleted) (Figure  6e). Furthermore, 
compared to the M group, the NM group exhibited 180 differential 
salivary species (33 enriched, 147 depleted) (Figure 6f). Notably, the 
differences between the M group and the NC group were greater than 
those between the NM group and the NC group. The results indicated 
distinct fecal and salivary microbiota differences between CRC 
patients at different disease stages.

Using the random forest model with five-fold cross-validation, 
we next ranked fecal (Figure 6g) and salivary (Figure 6h) bacterial 
ASVs by their diagnostic importance for NC/NM/M three-class 
discrimination. We observed substantial overlap between the top 30 
fecal and salivary ASV biomarkers selected by Mean Decrease Gini 
score and Mean Decrease Accuracy score. Subsequently, 
we constructed three-class random forest models using the top 8 
fecal and salivary ASV biomarkers (selected by Mean Decrease 
Gini) to discriminate among NC, NM, and M groups. The fecal 
model achieved robust discrimination, attaining an overall test 
accuracy of 78.95%, Cohen’s Kappa statistic of 0.68, Log Loss of 
0.18, Macro-averaged F1-score of 0.80, and Micro-averaged 
F1-score of 0.78. Notably, receiver operating characteristic (ROC) 
analysis (one-vs-rest) yielded a macro-averaged area under curve 
(AUC) of 93.16% (NC-specific AUC = 92.71%, NM-specific 
AUC = 90.15%, M-specific AUC = 96.63%) and a micro-averaged 
AUC of 93.40% (Figure  6i), confirming balanced performance 
across classes. The salivary model attained an overall test accuracy 
of 61.54%, Cohen’s Kappa statistic of 0.41, Log Loss of 0.52, 
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FIGURE 4

Specific salivary microbial taxa altered in CRC patients with distinct disease stages. (a,b) Heatmaps showed salivary microbial phyla (a) and genera (b) 
enriched in CRC patients with distinct disease stages. (c,d) Box plots depicted the specific salivary microbial taxa at the genus (c) and species (d) levels 
with progressive relative abundance changes along the NC-NM-M sequence. NC, normal controls; NM, non-metastatic CRC; M, metastatic CRC.
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FIGURE 5

Microbiota co-occurrence networks dynamically altered in CRC patients with distinct disease stages. (a) Co-occurrence networks of fecal (n = 139) 
and salivary (n = 281) ASVs of CRC patients with distinct disease stages, with edges denoting significant correlations (p < 0.05) between co-abundant 
ASVs. The SparCC algorithm was used to examine statistical significance. (b) The network natural connectivity test assessed the robustness changes in 
two network topologies during node removal. (c,d) The source tracker analysis showed both the detection rate and detailed proportion of saliva-
derived microbiota in the fecal samples of CRC patients with distinct disease stages. In the pie diagrams of detection rate (c), “Saliva (+)” represented 

(Continued)

https://doi.org/10.3389/fmicb.2025.1658693
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wu et al.� 10.3389/fmicb.2025.1658693

Frontiers in Microbiology 10 frontiersin.org

Macro-averaged F1-score of 0.65, and Micro-averaged F1-score of 
0.61. ROC analysis (One-vs-Rest) yielded a macro-averaged AUC 
of 76.15% (NC-specific AUC = 67.92%, NM-specific AUC = 67.43%, 
M-specific AUC = 93.10%) and a micro-averaged AUC of 81.30% 
(Figure 6j).

Discussion

As an aggressive malignancy characterized by insidious onset, 
rapid metastasis, and high mortality, CRC urgently requires early 
detection biomarkers to alleviate the disease burden. Recent research 
has deepened our understanding about the intrinsic links between 
oral/gut microbiota and digestive tract diseases, particularly CRC 
(Chen et al., 2022; Baker et al., 2024; Kunath et al., 2024).

Our study identified fecal genera implicated in CRC pathogenesis, 
including Bacteroides (Zafar and Saier, 2021), Megasphaera (Chen 
Q. et al., 2024), Veillonella (Ubachs et al., 2021), and Alistipes (Gu 
et al., 2023). In addition, opportunistic pathobionts (e.g., toxigenic 
Bacteroides strains) progressively expanded along the NC-NM-M 
sequence, whereas commensal probiotics like Agathobacter showed 
significant depletion (Lavelle et  al., 2022). Bacteroides promoted 
intestinal barrier permeability in metastatic CRC, thereby shaping a 
premetastatic niche (Genua et  al., 2021). Moreover, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis identified key 
metabolic pathways in the M group, notably AA biosynthesis and 
metabolism (Supplementary Figure S3). This finding was consistent 
with the prior evidence that AA metabolism accelerated CRC 
progression (Tian et  al., 2020; Tran et  al., 2020; Liu et  al., 2021). 
Specifically, western diets depleted beneficial bacteria that produced 
anti-inflammatory metabolites. In contrast, Mediterranean diet 
interventions promoted the abundance of Agathobacter and enhanced 
intestinal barrier function via increased production of short chain 
fatty acids (SCFAs) (Tan et al., 2023; Merra et al., 2020). Intriguingly, 
these microbial shifts also presented potential therapeutic targets for 
traditional Chinese medicine. For instance, berberine inhibited 
pathogenic species such as Alistipes and increased the abundance of 
SCFA-producing bacteria (Yang et al., 2023). We therefore speculated 
that CRC-associated dysbiosis is both a consequence of deleterious 
dietary patterns and a malleable “therapeutic interface” that can 
be modulated through precision interventions. Further research into 
intervening these microbial imbalances to halt or reverse disease 
progression holds significant clinical potential.

We tracked CRC stage-dependent co-occurrence network 
dynamics of fecal and salivary microbiota. Consistent with prior 
evidence, microbial co-occurrence networks in healthy population 
exhibited higher stability and complexity than diseased cohorts 
(Cheng et  al., 2022). Structurally integrated networks confer 
functional robustness and ecosystem resilience (Wagg et al., 2019; Du 
et al., 2025). Based on the concepts of connectivity and robustness in 

network theory (Shi et al., 2020), we calculated the natural connectivity 
of microbial networks. We observed that fecal microbiota networks 
showed progressive decline in natural connectivity during CRC 
progression, whereas salivary networks exhibited increasing 
connectivity. Undoubtedly, an increasing fragility of the fecal 
microbial network during CRC progression was observed (Figure 5b). 
However, what we did not expect was that salivary microbial networks 
exhibited strengthening co-occurrence stability over the same 
progression (Figure 5b). The results indicated that tumor progression 
not only altered microbial diversity and composition but also the 
interaction network stability of both fecal and salivary microbiota. 
We hypothesized that enhanced robustness in salivary microbiota 
networks may contribute to fecal network destabilization through 
oral-to-gut microbiota translocation, potentially influencing host 
metabolism and tumor promotion. The Source Tracker analysis 
demonstrated increasing relative abundance of salivary microbiota in 
feces during CRC progression (Figure  5d), indicating oral-to-gut 
microbiota translocation-induced dysbiosis. Oral-to-gut microbiota 
translocation drives colorectal carcinogenesis through pathobiont-
mediated barrier disruption and metabolic dysregulation (Park et al., 
2021), while simultaneously offering novel theranostic opportunities: 
stage-specific translocation signatures enable noninvasive liquid 
biopsy for early metastasis risk stratification, and targeted 
interventions against key oral pathobionts may halt CRC progression 
by restoring gut ecological balance.

We elucidated the fecal and salivary microbiota associated with 
different CRC stages. In addition, we developed a three-classification 
diagnostic model based on fecal bacterial ASV biomarkers to 
distinguish among the NC, NM, and M groups, which demonstrated 
excellent performance. The model achieved AUC values exceeding 
90% across all classifications (NC-specific AUC = 92.71%, NM-specific 
AUC = 90.15%, M-specific AUC = 96.63%, macro-averaged 
AUC = 93.16%, micro-averaged AUC = 93.40%) (Figure 6i). These 
results indicated that fecal microbial communities harbored highly 
informative biomarkers capable of achieving high discrimination 
accuracy among the three groups, suggesting strong potential for 
clinical application as a noninvasive auxiliary diagnostic tool. The 
salivary bacterial ASV-based model showed acceptable but 
comparatively lower discriminatory power, with a macro-averaged 
AUC of 76.15% (NC-specific AUC = 67.92%, NM-specific 
AUC = 67.43%, M-specific AUC = 93.10%) and a micro-averaged 
AUC of 81.30% (Figure 6j). Notably, the model exhibited relatively low 
discriminatory power between the NC and NM groups, while 
performing better in identifying the M group. This suggested that 
although salivary microbiota may be indicative of advanced or overt 
pathological states, it held limited value for detecting early or subtle 
differences. From a clinical inference perspective, the fecal microbiome 
demonstrated clear advantages over salivary microbiota in this specific 
classification task, indicating that gut microbial biomarkers may 
be more suitable for early screening and stratified management of the 

the positive proportion of each group that detected saliva-derived bacteria in their fecal microbiota. “Saliva (−)” represented the negative proportion of 
each group that did not detect saliva-derived bacteria in their fecal microbiota. In the pie diagrams of the detailed proportion of saliva-derived 
microbiota in the fecal samples (d), “Saliva” implied the percentage of saliva-derived bacteria in the fecal samples and “unknown” implied the 
percentage of other bacteria except saliva-derived bacteria (n = 30 in the NC, NM, and M groups). NC, normal controls; NM, non-metastatic CRC; M, 
metastatic CRC.
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FIGURE 6

ASVs-based fecal biomarkers achieved precise stage-specific diagnosis of CRC, outperforming salivary ASV classifiers. (a–f) Volcano plots revealed 
significantly altered fecal (a–c) and salivary (d–f) bacterial species (p < 0.05, |log2 FC| > 1) in pairwise comparisons among the NM, M, and NC groups. 

(Continued)
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disease. Although saliva sampling is noninvasive and convenient, its 
moderate classification performance suggested that it may be better 
utilized as a supplementary approach or in combination with other 
biomarkers to enhance overall diagnostic efficacy. Future studies could 
focus on developing multimodal integrated models that combine 
microbial information from diverse sources, such as feces and saliva, 
to build more robust and generalizable clinical prediction tools.

As a preliminary exploratory study, this research identified CRC 
progression-associated fecal/salivary microbiota biomarkers and 
established foundational groundwork for future larger scale research. 
Although the Source Tracker analysis provided insight into potential 
oral–gut microbiota translocation, the study did not track specific 
salivary taxa colonizing the gut and lacked direct experimental 
validation, as it was not originally designed to examine salivary–fecal 
microbiota associations during CRC progression. In addition, 
limitation included the relatively small sample size and lack of external 
validation for predictive models because of the stringent inclusion 
criteria and the single-center recruitment. We have implemented five-
fold cross-validation to enhance model performance and will conduct 
external validation in multicenter cohorts and prospective studies to 
assess clinical utility in the future.

Materials and methods

Subjects and specimen collection

From March 2024 to January 2025, we recruited 90 participants (30 
patients with metastatic CRC, 30 patients with nonmetastatic CRC, 
and 30 normal control participants) from the First Affiliated Hospital 
of Zhejiang Chinese Medical University. All metastatic CRC and 
nonmetastatic CRC subjects were diagnosed by standard colorectal 
surgery and the control individuals were considered without 
CRC-related high-risk factors. The inclusion and exclusion criteria for 
all patients and healthy control participants were the same as described 
in detail in Supplementary materials. The 16S rDNA gene amplicon of 
fecal and salivary microbiota and clinical features were obtained. All 
fecal samples were further analyzed by metagenomic sequencing to 
acquire fecal microbiota information comprehensively. Fresh fecal and 
matching salivary samples were collected from 90 participants in sterile 
plastic pots containing DNA-stabilizing buffer (DNA Shield; LC-Bio 
Technology Co., Ltd). Participants were strictly refrained from eating, 
drinking, smoking, or chewing gum for 30 min before saliva collection. 
The samples were stored at −20 °C for 4 h and subsequently were 
stored at −80 °C for 24 h for long-term storage until DNA extraction 
and taxonomic analysis. In addition, clinical data pertaining to age, sex, 
BMI, and follow-up information were acquired from the same hospital-
structured questionnaires. All subjects provided written informed 
consent. The Clinical Research Ethics Committee of the First Affiliated 
Hospital of Zhejiang Chinese Medical University approved the study 
protocol (2024-KLS-015-01).

DNA extraction, amplification, sequence 
procession, library construction, and 16S 
rDNA sequencing analysis

Fecal microbial DNA was extracted using Fecal Genome DNA 
Extraction Kit (AU46111-96, BioTeke, China) and salivary DNA was 
extracted using Salivary Genome DNA Extraction Kit (AU46111-96, 
BioTeke, China), respectively, according to manufacturer’s 
instructions. The DNA integrity, sizes, and concentrations were 
generated by Qubit (Invitrogen, United States). The 16S rDNA gene 
V3–V4 region was amplified using TransStart FastPfu Polymerase 
with barcode-indexed primers (341F5′-CCTACGGGNGGCWGCAG-
3′;805R:5′-GACTACHVGGG TATCTAATCC-3′) in a two-step PCR 
protocol. The amplification products were then purified by AMPure 
XT Beads (Beckman Coulter Genomics, Danvers, MA, United States) 
and were quantified using Qubit (Invitrogen, United States). Quality-
filtered reads were obtained and then evaluated using an Agilent 2100 
Bioanalyzer (Agilent, United States) and Illumina library quantitative 
kits (Kapa Biosciences, Woburn, MA, United  States), which were 
further sequenced on the Illumina NovaSeq 6000 (PE250) platform 
with the default settings for paired-end reads supported by Lc-Bio 
Technologies Co., Ltd. (Hangzhou, China). Sequencing primer were 
removed from de-multiplexed raw sequences using cutadapt (v_1.9). 
Subsequently, paired end reads were merged using FLASH (v_1.2.8). 
Low-quality reads (quality scores<20), short reads (<100 bp), and 
reads containing more than 5% “N” records were trimmed by using 
the sliding-window algorithm method in fqtrim (v_0.94). Quality 
filtering was performed to obtain high-quality clean tags according to 
fqtrim. Chimeric sequences were filtered using Vsearch software 
(v_2.3.4). DADA2 was applied for denoising and generating ASVs.

Co-abundance ASVs

The ASVs present in one-third of fecal or salivary samples were 
considered as key ASVs. The correlations among 139 key ASVs of fecal 
samples and 281 key ASVs of salivary samples were identified by Sparse 
Correlations for Compositional Data (SparCC) algorithm (p-value < 
0.05 was considered statistically significant) using R package SpiecEasi 
(v_1.1.3). Weak correlations (correlation coefficient <0.3 or >−0.3, 
p-value < 0.05) were removed. After filtering, Gephi (v_0.9.2) was used 
for the visualization of significant co-occurrence interactions.

Natural connectivity

Co-abundance ASVs in the corresponding networks, represented as 
the N nodes, were removed one by one. The natural connectivity statistics 
(y axis) reflect to invulnerability were calculated when each node (x axis) 
was removed. The natural connectivity value (λ) was calculated by R 
package igraph (v_4.4.3), it is related to a function λi , which represents 

“Enriched:” specific fecal/salivary species were significantly enriched in the front group relative to the rear group; “Depleted:” specific fecal/salivary 
species were significantly depleted in the front group relative to the rear group; (g,h) ASV-based fecal (g) and salivary (h) biomarkers importance 
ranking based on random forest scores. (i,j) ROC analysis of top eight ASVs-based fecal (i) and salivary (j) ASVs biomarkers (selected by 
MeandecreaseGini) for distinguishing among NC, NM, and M groups. NC, normal controls; NM, non-metastatic CRC; M, metastatic CRC; FC, fold 
change; ASV, amplicon sequence variant; ROC, receiver operating characteristic; AUC, area under the curve.

FIGURE 6 (Continued)
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the eigenvalues of the network adjacency matrix and can be used to 
calculate the decrease in redundancy of alternative pathways as nodes are 
removed, i.e.:

	

λλ
=

 
 =
 
 
∑
1

1In i

N

i
e

N

Where i represented the ith co-abundance ASVs.

Random forest classifier

The machine learning analysis utilized the normalized relative 
abundance of fecal and salivary ASVs. We implemented a three-class 
Random Forest Classifier, with model performance rigorously quantified 
through five-fold cross-validation. Evaluation metrics included: 
classification accuracy, Cohen’s Kappa statistic, logarithmic loss (Log 
Loss), macro-averaged F1-score, and micro-averaged F1-score. Feature 
selection and model optimization were performed using R packages 
randomForest (v_4.4.3) and caret (v_4.4.3) packages. Only the top eight 
ASVs ranked by meandecreaseGini impurity were retained as predictive 
features. Diagnostic efficacy was further evaluated using ROC analysis 
(one-vs-rest) implemented in the R package pROC (v_4.4.3). Model 
performance was assessed by macro-averaged area under the curve 
(macro-AUC) and micro-averaged area under the curve (micro-AUC).

Statistical analysis

Statistical analyses were carried out in R version 4.4.2 to identify 
microbial differences among groups. Wilcoxon rank-sum test was 
performed in the pairwise comparisons, while Kruskal–Wallis test was 
used for multiple group comparisons. Benjamini–Hochberg false-
discovery rate (FDR) was used to control the false positive rate in multiple 
comparisons and ensure the credibility of the statistical results. Analysis 
of variance (ANOVA) was used to compare age and BMI among M, NM, 
and NC groups; Pearson’s chi-squared test was used to compare gender 
distribution differences among the three groups. Fisher’s exact test was 
used to compare the distribution difference of tumor location, tumor type, 
and tumor markers between the M group and the NM group. p < 0.05 was 
considered significant.
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