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This study examines the spatiotemporal dynamics of Bacillus anthracis, the
causative agent of anthrax, under climate change scenarios using advanced
machine learning techniques. Climate change is increasingly recognized as
a critical factor influencing the distribution and transmission dynamics of
infectious diseases, particularly those reliant on environmental reservoirs. Our
research employs Maximum Entropy (Maxent) modeling to forecast the current
global distribution of B. anthracis based on climatic factors and to predict future
habitat suitability under various Coupled Model Intercomparison Project Phase
5 (CMIP5) scenarios (RCP-2.6 and RCP-8.5) for the 2050's and 2070’s. We
identify high-risk areas where climate change may enhance the suitability for
B. anthracis, emphasizing the need for proactive monitoring and early-warning
systems. The findings indicate potential shifts in anthrax-endemic zones, with
new regions becoming conducive to the establishment of B. anthracis due to the
changing climate. Our results demonstrate the applicability of machine learning
in predicting disease risk, providing a framework for public health preparedness
in light of evolving environmental challenges. These insights are critical for
developing targeted surveillance strategies and mitigating the introduction of
zoonotic diseases in a warming environment.

KEYWORDS

Bacillus anthracis, species distribution modeling, climate change, ecological niche,
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Introduction

Climate change is widely acknowledged as a significant factor influencing the
distribution and transmission dynamics of infectious illnesses, especially those reliant
on environmental reservoirs or vector-dependent routes (Rocklov and Dubrow, 2020;
Franklinos et al., 2019). Anthrax, caused by the spore-forming bacterium Bacillus anthracis,
constitutes a considerable zoonotic risk with intricate ecological interdependencies. The
spore is the infectious form and its ability to survive in soil, along with its need on particular
climatic and soil conditions, renders its epidemiology acutely responsive to environmental
alterations (Hugh-Jones and Blackburn, 2009; Carlson et al., 2019). Emerging anthrax cases
in regions previously considered non-endemic have raised concerns about climate-driven
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range expansion of B. anthracis, necessitating advanced predictive
models to anticipate future distribution shifts (Mullins et al., 2021;
Waits et al., 2018).

The ecological niche of B. anthracis is influenced by various
biotic and abiotic variables, such as soil pH, organic carbon
content, temperature, and precipitation patterns (Dragon and
Rennie, 1995; Blackburn et al., 2017). These variables affect spore
viability, host exposure, and outbreak prevalence, resulting in
specific spatial hotspots where environmental conditions promote
disease persistence (Fasanella et al., 2013; Kracalik et al, 2017).
As global temperatures increase and precipitation patterns change
due to climate change, classic anthrax-endemic zones may undergo
modified transmission dynamics, while new areas may become
conducive to the establishment of B. anthracis (Elith and Leathwick,
2009; Escobar and Craft, 2016). Comprehending these transitions
is essential for proactive monitoring and reducing spillover into
human and animal populations.

Species distribution models (SDMs) are essential instruments
in epidemiology for forecasting habitat appropriateness amid
evolving environmental variables (Peterson et al., 2011; Franklin,
2013). Maximum Entropy (Maxent) modeling has acquired
recognition for its efficacy in managing presence-only occurrence
data and incorporating intricate environmental factors (Phillips
et al, 2006; Merow et al, 2013). Maxent’s machine learning
framework facilitates accurate predictions despite sparse
occurrence records, rendering it especially useful for modeling
diseases such as anthrax, which frequently exhibit uneven and
underreported dispersion data (Elith et al., 2011; Sofaer et al,
2019). Recent utilizations of Maxent in disease ecology have
effectively forecasted range shifts for vector-borne and soil-borne
diseases, underscoring its applicability in climate change impact
assessments (Escobar et al., 2016; Carlson et al., 2022).
these
has utilized machine learning techniques to predict the future

Notwithstanding advancements, limited research
distribution of B. anthracis in the context of climate change
scenarios. Prior endeavors predominantly depended on static
ecological niche models or concentrated on regional-scale
dynamics (Blackburn et al, 2007; Mullins et al, 2015). The
rapid progression of climate change necessitates high-resolution,
global-scale forecasts to guide public health preparedness (IPCC,
2021; Mora et al, 2022). The Coupled Model Intercomparison
Project Phase 5 (CMIP5) offers revised climate forecasts based
on Representative Concentration Pathways (RCPs), enabling
the evaluation of B. anthracis distribution across several future
scenarios (Eyring et al., 2016; Warszawski et al., 2021). Combining
these data with machine learning methodologies can produce more
precise and actionable forecasts for disease risk mapping.

The interaction between climate change and land-use
alterations may further influence anthrax transmission by
modifying wildlife-livestock-human interactions (Hansen et al,
2019; Walsh et al., 2022). Deforestation, agricultural development,
and urbanization may disturb soil ecosystems, thereby heightening
human exposure to B. anthracis spores in emerging hotspots (Barro
et al,, 2016; Bezymennyi et al., 2021). A spatially explicit modeling
technique that incorporates both climatic and anthropogenic
factors is needed for thorough risk assessment. This study seeks
to address significant gaps in comprehending the spatiotemporal
dynamics of anthrax under future warming conditions by utilizing
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high-resolution environmental datasets and sophisticated machine
learning methods.

This study utilizes Maxent modeling to (1) estimate the
present global distribution of B. anthracis based on climatic
factors; (2) anticipate future habitat suitability under CMIP5
climate scenarios (RCP-2.6 and RCP-8.5) for the 2050s and
2070%; and (3) pinpoint high-risk areas where climate change
may enhance anthrax suitability. Our findings will establish a
basis for focused surveillance and early-warning systems in at-risk
ecosystems, thereby enhancing One Health measures to mitigate
the introduction of zoonotic diseases in a warming environment.

Materials and methods

Occurrence data and preprocessing

The occurrence data for B. anthracis were aggregated from the
Global Biodiversity Information Facility (GBIF) and documented
anthrax outbreak records (Anonymous, 2025), resulting in an
initial dataset of 733 georeferenced sites. To guarantee data
integrity, duplicates were eliminated, and spatially ambiguous
records (more than 1 km uncertainty) were discarded. Spatial
rarefaction was implemented using ArcGIS Pro v3.1 to reduce
sampling bias and prevent clamping, yielding 105 high-confidence
occurrence sites. The filtered records were exported in CSV format
for future modeling (Figure 1 and Supplementary file 1).

Environmental factors and selection

Nineteen bioclimatic variables with a geographical resolution of
approximately 5 km? were sourced from WorldClim (version 2.1),
reflecting long-term climatic averages from 1970 to 2000 (Hijmans,
2017). To mitigate multicollinearity, a Pearson correlation analysis
(|r| > 0.8) was performed in R v4.3.0, preserving five biologically
pertinent predictors including evaluation of the 19 bioclimatic
variables using pre model to excluded the factors that have no or a
minimal effect on distribution of this species: BIO 2 (Mean Diurnal
Range), BIO 6 (Minimum Temperature of Coldest Month), BIO
7 (Temperature Annual Range), BIO 16 (Precipitation of Wettest
Quarter), and BIO 17 (Precipitation of Driest Quarter) were
finally selected. Future climate forecasts for 2050 and 2070 were
obtained from CMIP5 under two Representative Concentration
Pathway RCPs 2.6 & 8.5 and downscaled to align with WorldClim’s
resolution (Alkhalifah et al., 2022).

Ecological Niche Modeling Habitat appropriateness for
B. anthracis was assessed utilizing Maxent v3.4.4, a presence-
background machine learning approach (Phillips et al., 2006).
The model was trained on 75% of the occurrence data, while the
remaining 25% was allocated for testing. Essential parameters
comprised 10,000 background points, 1,000 iterations, and 10-fold
cross-validation to augment robustness (Merow et al, 2013).
Linear, quadratic, and hinge feature classes were utilized to
identify potential non-linear interactions between the species and
environmental variables. A BIOCLIM model was constructed in
DIVA-GIS v7.5 for comparative analysis (Hijmans et al., 2012),
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FIGURE 1
Sites of B. anthracis occurrence used in this study.

utilizing the same occurrence data and factors to produce an
environmental envelope-based prediction.

Model validation and performance
metrics

The model’s performance was assessed using the Area Under
the Curve (AUC) metric, with values exceeding 0.8 signifying
robust predictive accuracy (Booth et al., 2014; Hosni et al., 2020).
The influence of each bioclimatic variable was evaluated using a
jackknife test, and response curves were produced to illustrate the
species-environment interactions. The True Skill Statistic (TSS)
was computed to further assess model performance, with values
exceeding 0.6 being acceptable (Alkhalifah et al., 2023).

Visualization and thresholding

Habitat suitability maps were generated in ArcGIS Pro, with
suitability scores categorized using Jenks natural breaks into five
classifications: Unsuitable (< 0.2), Low (0.2-0.4), Moderate (0.4-
0.6), High (0.6-0.8), and Excellent (> 0.8). Future predictions
were transformed into binary presence/absence maps with a
threshold derived from the maximal training sensitivity combined
with specificity (Alqahtani et al., 2025). Maps illustrating changes
were produced to represent alterations in appropriateness under
prospective climatic scenarios, classified as gain, loss, or unchanged
(Khalaf et al., 2024).

Analysis of limiting factors and
ecological niches

A two-dimensional niche envelope test was conducted in
DIVA-GIS to ascertain the principal restrictions on B. anthracis
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distribution, concentrating on BIO 1 (Annual Mean Temperature)
and BIO 12 (Annual Precipitation). This investigation defined
the environmental limits within which the species is expected to
survive. A limiting factor map was generated to identify areas where
particular bioclimatic factors (e.g., BIO 6 or BIO 17) had the most
significant impact on habitat suitability (Peterson et al., 2011).

Results

Bioclimatic factor correlation analysis
and bioclimatic factor selection

To address multicollinearity concerns that may undermine
model efficacy and interpretation, we performed an extensive
Pearson correlation study of all 19 bioclimatic variables, employing
the criterion of |r] > 0.8 as advised for species distribution
modeling (Dormann et al., 2013). The correlation matrix indicated
significant multicollinearity among many bioclimatic variables,
requiring meticulous variable selection to preserve only ecologically
relevant and statistically independent predictors (Figure 2).

The correlation analysis revealed several clusters of highly
associated variables. BIO_1 (Annual Mean Temperature) had
robust positive correlations with BIO_6 (r = 0.93), BIO_9
(r=0.95), BIO_10 (r = 0.86), and BIO_11 (r = 0.97), suggesting that
these temperature-related variables mostly conveyed redundant
information. Likewise, precipitation variables demonstrated
significant intercorrelations, with BIO_13 (Precipitation of Wettest
Month) exhibiting a strong correlation with BIO16 (r = 0.99), while
BIO12 (Annual Precipitation) displayed considerable correlations
with several precipitation variables (BIO_16: r = 0.89, BIO17:
r=0.78, BIO18: r = 0.78, BIO19: r = 0.78).

Temperature
multicollinearity, as

seasonality ~variables exhibited significant
BIO_3  (Isothermality) and BIO4
(Temperature Seasonality) displayed a strong negative correlation
(r=—0.91), while both variables also showed high correlations with
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BIO_7 (Temperature Annual Range): BIO3 (r = 0.82) and BIO_4
(r = —0.81). Furthermore, the extreme temperature variables BIO5
(Maximum Temperature of the Warmest Month) and BIO_6
(Minimum Temperature of the Coldest Month) exhibited a strong
correlation with annual temperature metrics.

Subsequent to the multicollinearity evaluation, we employed
ecological relevance criteria pertinent to B. anthracis spore biology
to identify five bioclimatic factors that were both statistically
independent (|r| < 0.8) and biologically significant:

BIO_2 (Mean Diurnal Range) was retained because to its
relatively low correlations with other selected variables and
its representation of daily temperature swings essential for
spore survival and germination processes. Diurnal temperature
fluctuations influence spore metabolic activity and stress resilience,
rendering this variable crucial for forecasting viable spore longevity.

BIO_6 (Minimum Temperature of Coldest Month) was
chosen despite its association with temperature factors, as extreme
cold tolerance is a critical limiting factor for B. anthracis spore
survival. This variable denotes the essential lower temperature

Frontiers in Microbiology

threshold beneath which spore survival rates markedly decrease,
crucial for forecasting distribution limitations at elevated
latitudes and altitudes.

BIO_7
temperature variations, affecting spore dormancy cycles and
adequate

(Temperature Annual Range) denotes seasonal

germination timing. This variable demonstrated
correlation levels with our other chosen predictors while
encapsulating the annual temperature amplitude that influences
long-term spore persistence in soil conditions.

BIO_16 (Precipitation of Wettest Quarter) was selected to
signify moisture availability during peak precipitation periods,
influencing soil water content essential for spore germination in the
animal host, and host exposure risk. Although associated with some
precipitation variables, it retained statistical independence from
our chosen temperature predictors and reflects seasonal moisture
peaks pertinent to B. anthracis ecology.

BIO_17 (Precipitation of Driest Quarter) indicates water stress
circumstances during arid intervals, essential for comprehending

spore viability under moisture constraints. This measure enhances
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Maxent model validation and response curves for B. anthracis (a) Receiver Operating Characteristic (ROC) curve showing the average test sensitivity
versus 1-specificity for the Maxent model, with an Area Under the Curve (AUC) of 0.831 indicating strong predictive performance. (b)
Two-dimensional niche analysis illustrating the environmental envelope of B. anthracis occurrences, based on Annual Mean Temperature (BIO_1)
and Annual Precipitation (BIO_12). (c—g) Response curves depicting the relationship between logistic suitability for B. anthracis and five key
bioclimatic variables: (c) Mean Diurnal Range (BIO_2), (d) Minimum Temperature of Coldest Month (BIO_6), (e) Temperature Annual Range (BIO_7),
(f) Precipitation of Wettest Quarter (BIO_16), and (g) Precipitation of Driest Quarter (BIO_17). The red lines represent the mean response, and the
blue shaded areas indicate +/- one standard deviation. (h) Jackknife test of variable importance, showing the gain achieved by using each variable
alone, by excluding each variable, and by using all variables, highlighting their contribution to the model’s predictive power.

BIO16 by quantifying moisture availability and exhibited the
weakest relationships with our chosen temperature variables
(BIO_2: r = —0.41, BIO_6: r = 0.36, BIO_7: r = —0.50).

The conclusive correlation study of the five chosen variables
validated effective multicollinearity reduction, with all pairwise
0.8 threshold. The
most significant association among the chosen variables was
between BIO_6 and BIO_7 (r —0.69), followed by BIO_16
and BIO_17 (r 0.46), demonstrating adequate statistical
independence

correlations remaining beneath the |r|

while preserving biological significance for

B. anthracis ecological niche modeling.

Model validation and climatological
factors influence

The predictive power and ecological insights gleaned from
our Maxent model performance for B. anthracis was meticulously
validated using the Receiver Operating Characteristic (ROC) curve,
illustrated in Figure 3a, resulting in an Area Under the Curve
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(AUC) value of 0.831. The substantial AUC value, markedly above
random prediction (AUC = 0.5), demonstrates the model’s excellent
capacity to differentiate between the presence and absence of
B. anthracis sites, hence instilling high confidence in its predictive
accuracy. The TSS value was 0.78, which indicates the good
accuracy of the generated model.

A comprehensive understanding of the environmental niche of
B. anthracis was attained using a two-dimensional niche analysis,
illustrated in Figure 3b, which examines the correlation between
Annual Mean Temperature (BIO_1) and Annual Precipitation
(BIO_12). This scatter figure depicts the environmental conditions
in which B. anthracis occurrences are predominantly located inside
a designated envelope (The red color indicated occurrence of this
records outside the enveloped either for this two variables or when
test any other variables (red points inside the current enveloped),
while green points indicate occurrence of these records inside
enveloped either for these two variables or any other variables of
19 bioclim), implying certain ideal ranges for these two essential
climatic variables. The bulk of recorded instances are concentrated
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within a limited range of annual mean temperatures (about 5 °C-
28 °C) and yearly precipitation (from around 500 to 3,000 mm),
while some instances exceed these parameters, underscoring the
bacterium’s flexibility.

The response curves for the five most significant bioclimatic
variables affecting B. anthracis adaptability are illustrated in
Figures 3c-g. Figure 3c for BIO_2 (Mean Diurnal Range)
illustrates a complex correlation, indicating that appropriateness
often diminishes as the diurnal temperature range increases,
implying that B. anthracis favors habitats with more stable daily
temperatures. The response to BIO 6 (Minimum Temperature of
Coldest Month), illustrated in Figure 3d, demonstrates enhanced
suitability with elevated minimum temperatures during the coldest
month, affirming that extreme cold is a critical limiting factor.
Figure 3e, depicting the response to BIO_7 (Temperature Annual
Range), indicates that B. anthracis spore adaptability is maximized
at moderate levels of annual temperature variability, decreasing
in habitats characterized by either little or excessive annual
temperature swings. Figure 3f (BIO_16: Precipitation of Wettest
Quarter) illustrates that suitability first rises with precipitation
during the wettest quarter, but then either levels off or slightly
declines at elevated levels, possibly indicating a threshold for ideal
moisture. In contrast, Figure 3g (BIO_17: Precipitation of Driest
Quarter) illustrates that suitability is typically greater in regions
with some moisture during the driest quarter, while extremely low
precipitation levels are detrimental, underscoring the significance
of year-round moisture availability to a certain extent.

The Jackknife test (Figure 3h) elucidated the relative
significance of each environmental variable to the model’s
efficacy. This investigation indicates that the variables BIO_17
(Precipitation of Driest Quarter), BIO_2 (Mean Diurnal Range),
and BIO_6 (Minimum Temperature of Coldest Month) each
significantly enhance the model’s performance when utilized
independently, demonstrating their robust predictive capability.
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Moreover, the exclusion of each variable reveals a decline
in regularization training gain, underscoring their distinct
informational value and affirming that these variables contribute
essential and non-redundant insights for the precise modeling
of B. anthracis distribution. These results collectively validate
the robustness of our Maxent model and reveal the principal
environmental factors influencing the worldwide ecological niche
of B. anthracis.

Current situation modeling

The current spread of B. anthracis was evaluated with
two separate species distribution modeling techniques: Maxent
and BIOCLIM, with the resultant suitability maps and their
discrepancies illustrated in Figure 4. The Maxent model (Figure 4a)
defined a global distribution of B. anthracis suitability, indicating
“Excellent” and “Very High” suitability in particular biological
zones. The zones notably encompass the center and southern
United States, especially the Great Plains, vast expanses of South
America (e.g., Brazil, Argentina), substantial swaths of sub-
Saharan Africa, and considerable parts of center Asia, India, and
Southeast Asia. In contrast, regions at elevated latitudes, extensive
deserts, and high-altitude landscapes repeatedly shown unfavorable
or inadequate circumstances for the bacterium. This pattern
corresponds with established environmental parameters affecting
B. anthracis spore longevity, including alkaline, calcium-rich soils
and particular climatic conditions typically seen in savanna-like or
temperate grassland ecosystems.

Conversely, the BIOCLIM model (Figure 4b), executed
via DIVA-GIS, typically forecasted a more limited range of
appropriate habitat, identifying extensive areas as “Unsuitable”
in northern latitudes and certain tropical forest regions such as
the Amazon. Although BIOCLIM detected “Excellent” and “Very
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FIGURE 5

Global suitability maps for B. anthracis projected for different future climate scenarios: (a) 2050 under Representative Concentration Pathway (RCP)
2.6, (b) 2050 under RCP 8.5, (c) 2070 under RCP 2.6, and (d) 2070 under RCP 8.5.

High” suitability zones, these zones seemed more fragmented
compared to those produced by Maxent, suggesting a more
restricted definition of the environmental envelope favorable
to B. anthracis. Notwithstanding these discrepancies, significant
regions of high suitability consistently appeared in both models,
including areas such as the center and southern United States,
portions of South America, and different sites across Africa and
Asia. The prevalent areas indicate a robust consensus on the
essential environmental conditions that facilitate the persistence of
B. anthracis spores in these places.

The direct comparison of the two models (Figure 4c) clearly
delineates regions of agreement and disagreement. The most
notable discovery is the extensive “Suitable in Both” category
(green zones), which indicates habitats where both Maxent and
BIOCLIM agree on the appropriateness for spores of B. anthracis.
These regions signify the most reliable forecasts for the bacterium’s
ecological niche, closely aligning with established anthrax endemic
areas worldwide, including the central United States, some South
American plains, extensive sub-Saharan Africa, and portions of
Central and South Asia. The existence of “Maxent Model Only”
(red) and “BIOCLIM Model Only” (blue) regions, however,
limited in scope, highlights the fundamental algorithmic disparities
between the two models. Maxent, a presence-background machine
learning algorithm, is recognized for its capacity to elucidate
intricate non-linear correlations between species occurrences
and environmental variables, perhaps revealing appropriate
locations overlooked by the more simplistic, climate-envelope-
based BIOCLIM model. In contrast, BIOCLIM, by establishing
suitability according to the spectrum of environmental variables
at occurrence locations, may occasionally encompass wider
appropriate areas or exhibit more sensitivity to anomalies in
occurrence data. The significant overlap in forecasted appropriate
areas among these several modeling methodologies enhances
confidence in pinpointing high-risk zones for B. anthracis spores
persistence and related anthrax outbreaks.
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Future prediction for B. anthracis under
different climate change scenarios

The results of the MaxEnt modeling of four different climate
change scenarios indicate changes in the overall habitat suitability
of this bacterium. These forecasts are derived from several
Representative Concentration Pathways (RCPs) and temporal
frameworks, providing insights into the fluctuating characteristics
of B. anthracis’s probable ecological niche. Figure 5 illustrates the
anticipated global distribution of B. anthracis adaptability across
four future climate change scenarios: (a) 2050 RCP 2.6, (b) 2050
RCP 8.5, (c) 2070 RCP 2.6, and (d) 2070 RCP 8.5. In all scenarios,
a uniform pattern of high appropriateness, denoted by “Very
High” and “Excellent” in orange and red, respectively, is evident
in regions that predominantly correspond with the currently
known suitable locations depicted in Figure 3. This encompasses
substantial regions of the central and southern United States, South
America (notably Brazil and Argentina), vast territories throughout
sub-Saharan Africa, as well as sections of Central Asia, India, and
Southeast Asia.

However, distinctions become apparent when contrasting the
instances. In the more optimistic RCP 2.6 scenarios (Figures 5a, c),
which presuppose a comparatively lower trajectory of greenhouse
gas emissions, the spatial extent of highly appropriate places
is largely analogous to the current distribution, with certain
localized expansions or contractions. In contrast, the more
gloomy RCP 8.5 scenarios (Figures 5b, d), indicative of elevated
emission pathways, suggest a marginal shift or intensification
of high suitability in certain places, alongside probable declines
in others. Certain regions in Europe and Asia exhibit differing
levels of appropriateness alterations across circumstances. The
ongoing existence of extensive “Unsuitable” (light green) regions
in northern latitudes, deserts, and high-altitude zones across
all future scenarios indicates that these essential environmental
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Global maps illustrating the projected changes in B. anthracis distribution compared to the current situation under future climate change scenarios:
(a) 2050 under Representative Concentration Pathway (RCP) 2.6, (b) 2050 under RCP 8.5, (c) 2070 under RCP 2.6, and (d) 2070 under RCP 8.5.

limitations on B. anthracis distribution are expected to endure
despite climate change.

On the other hand, Figure 6 clearly depicts the anticipated
alterations in the acceptable habitat for B. anthracis under four
distinct climate change scenarios: (a) 2050 RCP 2.6, (b) 2050 RCP
8.5, (¢) 2070 RCP 2.6, and (d) 2070 RCP 8.5. This diagram classifies
regions as “Loss” (blue), “Gain” (red), “Unsuitable” (gray), and
“Unchanged” (yellow). A notable observation in all scenarios is the
extensive prevalence of “Unchanged” (yellow) areas, especially in
the central and southern sections of continents where B. anthracis
is presently prevalent. This indicates that a significant fraction of
the already suitable habitat is anticipated to remain constant under
forthcoming climate circumstances, highlighting the durability of
the pathogen’s niche in these established endemic regions.

Nonetheless, substantial “Gain” (red) in appropriate habitat
is consistently anticipated in several critical regions across all
scenarios, particularly in portions of North America (e.g., the
western United States), southern South America, sections of
southern and eastern Africa, and dispersed areas in Central Asia
and Australia. These increases suggest a possible expansion of
the B. anthracis ecological niche into places that were previously
less appropriate or unsuitable. The magnitude and distribution of
these improvements exhibit variability among RCPs and temporal
frameworks, with the RCP 8.5 scenarios (Figures 5b, d) frequently
demonstrating more significant gains in comparison to the RCP
2.6 scenarios. This indicates that elevated emission trajectories
may facilitate increased opportunities for niche development.
Conversely, the “Loss” (blue) of appropriate habitat is anticipated,
but often in smaller and more isolated areas relative to gains. These
losses are predominantly noted in places including portions of
northern North America, some areas in Europe, and several sites
in Asia. The occurrence of losses suggests that certain currently
acceptable regions may become less viable under future climatic
conditions, maybe due to alterations in precipitation patterns
or temperature extremes surpassing the pathogen’s tolerance

Frontiers in Microbiology

thresholds. Areas deemed “unsuitable” (gray), indicating regions
unfit under both present and future conditions, predominantly
align with extreme northern and southern latitudes, in addition to
significant desert and mountainous terrains.

Limitation factors map

Figure 7 depicts the primary bioclimatic conditions that
substantially restrict the global distribution of B. anthracis.
This map highlights the key environmental variables that, when
deviating from ideal ranges, limit the bacterium’s distribution
within its prospective geographic range. The map classifies
locations according to the bioclimatic variable that has the most
significant limiting effect. The regional variability of limiting
highlights the
of environmental variables in determining the global spread
of B.
circumstances delineate the boundaries of polar and desert

bioclimatic parameters intricate interaction

anthracis. Extreme cold and generally inhospitable

regions, but temperate and tropical areas are constrained by
more intricate criteria, including diurnal temperature range,
annual temperature variations, and precipitation extremes.
Comprehending these particular limiting criteria is essential for
enhancing ecological niche models, forecasting future distribution
changes due to climate change, and guiding focused surveillance

and control measures for anthrax.

Discussion

This study highlights the essential function of ecological
niche modeling in comprehending the spatiotemporal dynamics of
B. anthracis in the context of climate change scenarios. Our Maxent
modeling clarifies the present and future habitat appropriateness
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FIGURE 7
Limiting bioclimatic factors governing B. anthracis distribution.

for this bacterium, indicating substantial alterations in regional
distribution that align with evolving climatic circumstances. These
findings correspond with prior studies on other microorganisms
that employed species distribution models (SDMs) to forecast
habitat alterations resulting from climatic variability. Research on
vector-borne diseases, including malaria and dengue fever, has
illustrated that elevated temperatures and modified precipitation
patterns can extend the geographic distribution of disease-carrying
vectors, consequently heightening the risk of human exposure
(Rocklov and Dubrow, 2020; Franklinos et al., 2019). Our
data suggest that classic anthrax-endemic areas may undergo
changes in transmission dynamics, while new places could become
conducive to B. anthracis, reflecting the adaptive responses seen in
other diseases.

Moreover, the ecological niche of B. anthracis is shaped
by numerous biotic and abiotic factors, as evidenced by our
examination of bioclimatic variables. This aligns with prior studies
that have recognized soil pH, temperature, and moisture as essential
factors influencing pathogen survival and spread (Hugh-Jones
and Blackburn, 2009; Carlson et al., 2019). The identification of
high-risk locations for anthrax, especially in regions with evolving
land-use patterns, highlights the need for integrated strategies
that account for both climatic and human factors. Prior research
has underscored analogous connections between alterations in
land use and the introduction of diseases, suggesting that habitat
fragmentation and intensified agriculture may heighten the risks
of zoonotic spillover (Hansen et al, 2019; Walsh et al., 2022).
Consequently, our findings augment the expanding corpus of
literature that promotes proactive strategies in public health
planning and surveillance to address these emerging hazards.

The predicted accuracy of our models, confirmed by stringent
statistical approaches, aligns with the results of earlier studies
employing machine learning techniques in epidemiology. Studies
utilizing Maxent and other species distribution models (SDMs)
have effectively predicted the distribution of several zoonotic
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diseases, including those causing Lyme disease and West Nile virus
(Peterson et al., 2011; Merow et al., 2013). Our investigation reveals
that the elevated AUC values demonstrate the model’s efficacy in
differentiating appropriate habitats for B. anthracis spores, hence
affirming the dependability of machine learning methodologies
in forecasting pathogen distributions. Furthermore, the response
curves generated by our model offer critical insights into the
environmental thresholds affecting anthrax viability, similar to
conclusions drawn in other microbial research that highlights the
significance of species-environment interactions (Elith et al., 2011;
Sofaer et al., 2019).

The ramifications of our findings are significant, especially
considering the growing evidence connecting climate change to
alterations in infectious disease patterns. The observed increases
in habitat appropriateness for B. anthracis in certain regions
reflect patterns identified in other research that have recorded
analogous phenomena. The dissemination of Borrelia burgdorferi,
the pathogen responsible for Lyme disease, has been strongly linked
to climate-induced alterations in habitat suitability, resulting in
heightened incidence rates in previously unaffected regions (Mora
et al., 2022). Our research validates these findings, indicating that
if climatic conditions enhance the survival of B. anthracis, the
likelihood of anthrax outbreaks may increase, especially in areas
that are presently ill-equipped to address such threats.

Furthermore, our work underscores the necessity of
amalgamating ecological modeling with socio-economic variables
to formulate thorough risk evaluations. The Coupled Model
Intercomparison Project Phase 5 (CMIP) data we employed
highlights the necessity for dynamic models that incorporate
both climate and socio-economic trajectories, as demonstrated
in other research evaluating the effects of climate change on
infectious diseases (Eyring et al., 2016; Warszawski et al., 2021).
Our research establishes a vital framework for targeted surveillance
and intervention techniques by identifying prospective “gain”
locations where habitat suitability for B. anthracis may augment.
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This proactive strategy is crucial for alleviating the dangers
associated with zoonotic diseases, particularly in light of evolving
land-use patterns that may exacerbate disease dynamics (Barro
et al,, 2016; Bezymennyi et al., 2021).

Our methodology and findings correspond with contemporary
species distribution modeling research on fungal pathogens,
including Fusarium oxysporum (Alkhalifah et al., 2023), Aspergillus
niger (Alkhalifah et al., 2022), and Phytophthora infestans (Wang
et al,, 2023), all of which utilized MaxEnt modeling to forecast
climate-induced distribution alterations. Consistent with our
findings about the northward expansion potential of B. anthracis,
research on Pseudomonas syringae (Khalaf et al, 2024) and
other soil-borne bacterial diseases has revealed analogous range
changes into higher latitudes in response to warmer scenarios. The
alignment of our AUC values (0.831) with those documented in
other microbial SDM investigations (often 0.80-0.90) substantiates
our modeling methodology (Hosni et al., 2020; Chakraborty et al.,
2022). Moreover, our recognition of temperature and precipitation
thresholds as key limiting factors aligns with findings from vector-
borne illness research, where analogous climatic variables influence
pathogen viability and transmission dynamics (Kraemer et al,
20205 Carlson et al., 2022). The similarities among many pathogen
types indicate that our climate-driven methodology encompasses
essential ecological principles that regulate microbial dispersal
amid global climatic change, hence enhancing the reliability of our
forecast framework for B. anthracis.

The regions we identified as future climate suitability
hotspots—including the Great Plains of North America, the
Pampas of South America, and extensive pastoral areas of
sub-Saharan Africa—are also major global livestock production
centers where cattle density, grazing practices, and carcass
management significantly modulate B. anthracis transmission risk
(Barro et al., 2016; Kracalik et al, 2017). Intensive livestock
production systems can create localized hotspots of anthrax risk
through soil contamination from improperly disposed carcasses,
concentrated animal feeding operations that facilitate rapid disease
spread, and disrupted natural grazing patterns that alter soil-
spore dynamics (Bezymennyi et al, 2021; Fasanella et al,
2013). Additionally, vaccination policies, surveillance capacity, and
veterinary infrastructure vary dramatically across regions, creating
disparities in actual disease risk that our climate-only models
cannot capture (Hugh-Jones and Blackburn, 2009; Blackburn
etal, 2017). Future integrated modeling efforts should incorporate
livestock density data, production system classifications, and
socioeconomic variables affecting disease control capacity to
provide more actionable risk assessments. While our study
establishes the foundational understanding of climatic suitability
for B. anthracis, the translation of environmental suitability
into actual outbreak risk requires explicit consideration of
the complex livestock-soil-human interfaces that define modern
anthrax epidemiology (Hansen et al., 2019; Walsh et al., 2022).

A notable downside of our work is the inherent limits of
utilizing GBIF occurrence data for pathogen risk assessment,
which may substantially influence the interpretation of our results.
GBIF records for B. anthracis predominantly rely on molecular
detection techniques, such as 16S rRNA gene sequencing, which
verify the existence of bacterial genetic material but do not yield
information about spore viability, concentration, or pathogenic
potential (Turnbull, 2008; Carlson et al, 2019). Importantly,
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these records are unable to differentiate between viable, infectious
spores that can induce disease and non-viable genetic material
from dead spores or avirulent environmental isolates that lack
the critical virulence plasmids pXOl and pXO2 (Mock and
Fouet, 2001; Koehler, 2009). This distinction holds epidemiological
significance as the environmental persistence of B. anthracis DNA
does not inherently correlate with the risk of active infection,
which may result in an overestimation of disease threat in regions
where genetic remnants exist without viable pathogen populations.
Moreover, GBIF data are deficient in temporal information
concerning spore persistence time and the environmental context
of detection conditions, hence constraining our capacity to evaluate
the sustainability of pathogen populations in forecasted suitable
environments (Hugh-Jones and Blackburn, 2009).

Despite these data limitations, our study provides essential
foundational knowledge for understanding the climate-driven
environmental suitability patterns of B. anthracis on a global scale.
The identification of climate-suitable regions remains crucial for
guiding proactive surveillance strategies and resource allocation
in the context of changing environmental conditions. These
limitations underscore the importance of our modeling approach as
a first step toward comprehensive risk assessment frameworks that
can be refined through integration with more specific biological and
epidemiological data on regional scale.

Conclusion

In summary, our research enhances the comprehension
of B. anthracis spread in a shifting environment, consistent
with worldwide patterns in infectious disease ecology. Utilizing
sophisticated machine learning methodologies and high-resolution
climatic data, we offer critical insights that can guide public health
policies and environmental management measures to mitigate
the effects of anthrax and analogous zoonotic hazards in a
warming climate.
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