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This study examines the spatiotemporal dynamics of Bacillus anthracis, the

causative agent of anthrax, under climate change scenarios using advanced

machine learning techniques. Climate change is increasingly recognized as

a critical factor influencing the distribution and transmission dynamics of

infectious diseases, particularly those reliant on environmental reservoirs. Our

research employs Maximum Entropy (Maxent) modeling to forecast the current

global distribution of B. anthracis based on climatic factors and to predict future

habitat suitability under various Coupled Model Intercomparison Project Phase

5 (CMIP5) scenarios (RCP-2.6 and RCP-8.5) for the 2050’s and 2070’s. We

identify high-risk areas where climate change may enhance the suitability for

B. anthracis, emphasizing the need for proactive monitoring and early-warning

systems. The findings indicate potential shifts in anthrax-endemic zones, with

new regions becoming conducive to the establishment of B. anthracis due to the

changing climate. Our results demonstrate the applicability of machine learning

in predicting disease risk, providing a framework for public health preparedness

in light of evolving environmental challenges. These insights are critical for

developing targeted surveillance strategies and mitigating the introduction of

zoonotic diseases in a warming environment.

KEYWORDS

Bacillus anthracis, species distribution modeling, climate change, ecological niche,
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Introduction

Climate change is widely acknowledged as a significant factor influencing the
distribution and transmission dynamics of infectious illnesses, especially those reliant
on environmental reservoirs or vector-dependent routes (Rocklöv and Dubrow, 2020;
Franklinos et al., 2019). Anthrax, caused by the spore-forming bacterium Bacillus anthracis,
constitutes a considerable zoonotic risk with intricate ecological interdependencies. The
spore is the infectious form and its ability to survive in soil, along with its need on particular
climatic and soil conditions, renders its epidemiology acutely responsive to environmental
alterations (Hugh-Jones and Blackburn, 2009; Carlson et al., 2019). Emerging anthrax cases
in regions previously considered non-endemic have raised concerns about climate-driven
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range expansion of B. anthracis, necessitating advanced predictive 
models to anticipate future distribution shifts (Mullins et al., 2021; 
Waits et al., 2018). 

The ecological niche of B. anthracis is influenced by various 
biotic and abiotic variables, such as soil pH, organic carbon 
content, temperature, and precipitation patterns (Dragon and 
Rennie, 1995; Blackburn et al., 2017). These variables aect spore 
viability, host exposure, and outbreak prevalence, resulting in 
specific spatial hotspots where environmental conditions promote 
disease persistence (Fasanella et al., 2013; Kracalik et al., 2017). 
As global temperatures increase and precipitation patterns change 
due to climate change, classic anthrax-endemic zones may undergo 
modified transmission dynamics, while new areas may become 
conducive to the establishment of B. anthracis (Elith and Leathwick, 
2009; Escobar and Craft, 2016). Comprehending these transitions 
is essential for proactive monitoring and reducing spillover into 
human and animal populations. 

Species distribution models (SDMs) are essential instruments 
in epidemiology for forecasting habitat appropriateness amid 
evolving environmental variables (Peterson et al., 2011; Franklin, 
2013). Maximum Entropy (Maxent) modeling has acquired 
recognition for its eÿcacy in managing presence-only occurrence 
data and incorporating intricate environmental factors (Phillips 
et al., 2006; Merow et al., 2013). Maxent’s machine learning 
framework facilitates accurate predictions despite sparse 
occurrence records, rendering it especially useful for modeling 
diseases such as anthrax, which frequently exhibit uneven and 
underreported dispersion data (Elith et al., 2011; Sofaer et al., 
2019). Recent utilizations of Maxent in disease ecology have 
eectively forecasted range shifts for vector-borne and soil-borne 
diseases, underscoring its applicability in climate change impact 
assessments (Escobar et al., 2016; Carlson et al., 2022). 

Notwithstanding these advancements, limited research 
has utilized machine learning techniques to predict the future 
distribution of B. anthracis in the context of climate change 
scenarios. Prior endeavors predominantly depended on static 
ecological niche models or concentrated on regional-scale 
dynamics (Blackburn et al., 2007; Mullins et al., 2015). The 
rapid progression of climate change necessitates high-resolution, 
global-scale forecasts to guide public health preparedness (IPCC, 
2021; Mora et al., 2022). The Coupled Model Intercomparison 
Project Phase 5 (CMIP5) oers revised climate forecasts based 
on Representative Concentration Pathways (RCPs), enabling 
the evaluation of B. anthracis distribution across several future 
scenarios (Eyring et al., 2016; Warszawski et al., 2021). Combining 
these data with machine learning methodologies can produce more 
precise and actionable forecasts for disease risk mapping. 

The interaction between climate change and land-use 
alterations may further influence anthrax transmission by 
modifying wildlife-livestock-human interactions (Hansen et al., 
2019; Walsh et al., 2022). Deforestation, agricultural development, 
and urbanization may disturb soil ecosystems, thereby heightening 
human exposure to B. anthracis spores in emerging hotspots (Barro 
et al., 2016; Bezymennyi et al., 2021). A spatially explicit modeling 
technique that incorporates both climatic and anthropogenic 
factors is needed for thorough risk assessment. This study seeks 
to address significant gaps in comprehending the spatiotemporal 
dynamics of anthrax under future warming conditions by utilizing 

high-resolution environmental datasets and sophisticated machine 
learning methods. 

This study utilizes Maxent modeling to (1) estimate the 
present global distribution of B. anthracis based on climatic 
factors; (2) anticipate future habitat suitability under CMIP5 
climate scenarios (RCP-2.6 and RCP-8.5) for the 2050’s and 
2070’s; and (3) pinpoint high-risk areas where climate change 
may enhance anthrax suitability. Our findings will establish a 
basis for focused surveillance and early-warning systems in at-risk 
ecosystems, thereby enhancing One Health measures to mitigate 
the introduction of zoonotic diseases in a warming environment. 

Materials and methods 

Occurrence data and preprocessing 

The occurrence data for B. anthracis were aggregated from the 
Global Biodiversity Information Facility (GBIF) and documented 
anthrax outbreak records (Anonymous, 2025), resulting in an 
initial dataset of 733 georeferenced sites. To guarantee data 
integrity, duplicates were eliminated, and spatially ambiguous 
records (more than 1 km uncertainty) were discarded. Spatial 
rarefaction was implemented using ArcGIS Pro v3.1 to reduce 
sampling bias and prevent clamping, yielding 105 high-confidence 
occurrence sites. The filtered records were exported in CSV format 
for future modeling (Figure 1 and Supplementary file 1). 

Environmental factors and selection 

Nineteen bioclimatic variables with a geographical resolution of 
approximately 5 km2 were sourced from WorldClim (version 2.1), 
reflecting long-term climatic averages from 1970 to 2000 (Hijmans, 
2017). To mitigate multicollinearity, a Pearson correlation analysis 
(|r| > 0.8) was performed in R v4.3.0, preserving five biologically 
pertinent predictors including evaluation of the 19 bioclimatic 
variables using pre model to excluded the factors that have no or a 
minimal eect on distribution of this species: BIO 2 (Mean Diurnal 
Range), BIO 6 (Minimum Temperature of Coldest Month), BIO 
7 (Temperature Annual Range), BIO 16 (Precipitation of Wettest 
Quarter), and BIO 17 (Precipitation of Driest Quarter) were 
finally selected. Future climate forecasts for 2050 and 2070 were 
obtained from CMIP5 under two Representative Concentration 
Pathway RCPs 2.6 & 8.5 and downscaled to align with WorldClim’s 
resolution (Alkhalifah et al., 2022). 

Ecological Niche Modeling Habitat appropriateness for 
B. anthracis was assessed utilizing Maxent v3.4.4, a presence-
background machine learning approach (Phillips et al., 2006). 
The model was trained on 75% of the occurrence data, while the 
remaining 25% was allocated for testing. Essential parameters 
comprised 10,000 background points, 1,000 iterations, and 10-fold 
cross-validation to augment robustness (Merow et al., 2013). 
Linear, quadratic, and hinge feature classes were utilized to 
identify potential non-linear interactions between the species and 
environmental variables. A BIOCLIM model was constructed in 
DIVA-GIS v7.5 for comparative analysis (Hijmans et al., 2012), 
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FIGURE 1 

Sites of B. anthracis occurrence used in this study. 

utilizing the same occurrence data and factors to produce an 
environmental envelope-based prediction. 

Model validation and performance 
metrics 

The model’s performance was assessed using the Area Under 
the Curve (AUC) metric, with values exceeding 0.8 signifying 
robust predictive accuracy (Booth et al., 2014; Hosni et al., 2020). 
The influence of each bioclimatic variable was evaluated using a 
jackknife test, and response curves were produced to illustrate the 
species-environment interactions. The True Skill Statistic (TSS) 
was computed to further assess model performance, with values 
exceeding 0.6 being acceptable (Alkhalifah et al., 2023). 

Visualization and thresholding 

Habitat suitability maps were generated in ArcGIS Pro, with 
suitability scores categorized using Jenks natural breaks into five 
classifications: Unsuitable (< 0.2), Low (0.2–0.4), Moderate (0.4– 
0.6), High (0.6–0.8), and Excellent (> 0.8). Future predictions 
were transformed into binary presence/absence maps with a 
threshold derived from the maximal training sensitivity combined 
with specificity (Alqahtani et al., 2025). Maps illustrating changes 
were produced to represent alterations in appropriateness under 
prospective climatic scenarios, classified as gain, loss, or unchanged 
(Khalaf et al., 2024). 

Analysis of limiting factors and 
ecological niches 

A two-dimensional niche envelope test was conducted in 
DIVA-GIS to ascertain the principal restrictions on B. anthracis 

distribution, concentrating on BIO 1 (Annual Mean Temperature) 
and BIO 12 (Annual Precipitation). This investigation defined 
the environmental limits within which the species is expected to 
survive. A limiting factor map was generated to identify areas where 
particular bioclimatic factors (e.g., BIO 6 or BIO 17) had the most 
significant impact on habitat suitability (Peterson et al., 2011). 

Results 

Bioclimatic factor correlation analysis 
and bioclimatic factor selection 

To address multicollinearity concerns that may undermine 
model eÿcacy and interpretation, we performed an extensive 
Pearson correlation study of all 19 bioclimatic variables, employing 
the criterion of |r| > 0.8 as advised for species distribution 
modeling (Dormann et al., 2013). The correlation matrix indicated 
significant multicollinearity among many bioclimatic variables, 
requiring meticulous variable selection to preserve only ecologically 
relevant and statistically independent predictors (Figure 2). 

The correlation analysis revealed several clusters of highly 
associated variables. BIO_1 (Annual Mean Temperature) had 
robust positive correlations with BIO_6 (r = 0.93), BIO_9 
(r = 0.95), BIO_10 (r = 0.86), and BIO_11 (r = 0.97), suggesting that 
these temperature-related variables mostly conveyed redundant 
information. Likewise, precipitation variables demonstrated 
significant intercorrelations, with BIO_13 (Precipitation of Wettest 
Month) exhibiting a strong correlation with BIO16 (r = 0.99), while 
BIO12 (Annual Precipitation) displayed considerable correlations 
with several precipitation variables (BIO_16: r = 0.89, BIO17: 
r = 0.78, BIO18: r = 0.78, BIO19: r = 0.78). 

Temperature seasonality variables exhibited significant 
multicollinearity, as BIO_3 (Isothermality) and BIO4 
(Temperature Seasonality) displayed a strong negative correlation 
(r = −0.91), while both variables also showed high correlations with 
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FIGURE 2 

Correlation matrix and scatter plot analysis of 19 bioclimatic variables used in species distribution modeling for B. anthracis. The upper triangle 
shows Pearson correlation coefficients with color coding (red, positive correlation; blue, negative correlation), while the lower triangle displays 
scatter plots illustrating pairwise relationships between variables. Diagonal elements show frequency distributions for each bioclimatic variable. 
Circle size and color intensity indicate correlation strength, with larger, more intensely colored circles representing stronger correlations (|r| > 0.8 
threshold used for variable selection). 

BIO_7 (Temperature Annual Range): BIO3 (r = 0.82) and BIO_4 
(r = −0.81). Furthermore, the extreme temperature variables BIO5 
(Maximum Temperature of the Warmest Month) and BIO_6 
(Minimum Temperature of the Coldest Month) exhibited a strong 
correlation with annual temperature metrics. 

Subsequent to the multicollinearity evaluation, we employed 
ecological relevance criteria pertinent to B. anthracis spore biology 
to identify five bioclimatic factors that were both statistically 
independent (|r| < 0.8) and biologically significant: 

BIO_2 (Mean Diurnal Range) was retained because to its 
relatively low correlations with other selected variables and 
its representation of daily temperature swings essential for 
spore survival and germination processes. Diurnal temperature 
fluctuations influence spore metabolic activity and stress resilience, 
rendering this variable crucial for forecasting viable spore longevity. 

BIO_6 (Minimum Temperature of Coldest Month) was 
chosen despite its association with temperature factors, as extreme 
cold tolerance is a critical limiting factor for B. anthracis spore 
survival. This variable denotes the essential lower temperature 

threshold beneath which spore survival rates markedly decrease, 
crucial for forecasting distribution limitations at elevated 
latitudes and altitudes. 

BIO_7 (Temperature Annual Range) denotes seasonal 
temperature variations, aecting spore dormancy cycles and 
germination timing. This variable demonstrated adequate 
correlation levels with our other chosen predictors while 
encapsulating the annual temperature amplitude that influences 
long-term spore persistence in soil conditions. 

BIO_16 (Precipitation of Wettest Quarter) was selected to 
signify moisture availability during peak precipitation periods, 
influencing soil water content essential for spore germination in the 
animal host, and host exposure risk. Although associated with some 
precipitation variables, it retained statistical independence from 
our chosen temperature predictors and reflects seasonal moisture 
peaks pertinent to B. anthracis ecology. 

BIO_17 (Precipitation of Driest Quarter) indicates water stress 
circumstances during arid intervals, essential for comprehending 
spore viability under moisture constraints. This measure enhances 
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FIGURE 3 

Maxent model validation and response curves for B. anthracis (a) Receiver Operating Characteristic (ROC) curve showing the average test sensitivity 
versus 1-specificity for the Maxent model, with an Area Under the Curve (AUC) of 0.831 indicating strong predictive performance. (b) 
Two-dimensional niche analysis illustrating the environmental envelope of B. anthracis occurrences, based on Annual Mean Temperature (BIO_1) 
and Annual Precipitation (BIO_12). (c–g) Response curves depicting the relationship between logistic suitability for B. anthracis and five key 
bioclimatic variables: (c) Mean Diurnal Range (BIO_2), (d) Minimum Temperature of Coldest Month (BIO_6), (e) Temperature Annual Range (BIO_7), 
(f) Precipitation of Wettest Quarter (BIO_16), and (g) Precipitation of Driest Quarter (BIO_17). The red lines represent the mean response, and the 
blue shaded areas indicate +/– one standard deviation. (h) Jackknife test of variable importance, showing the gain achieved by using each variable 
alone, by excluding each variable, and by using all variables, highlighting their contribution to the model’s predictive power. 

BIO16 by quantifying moisture availability and exhibited the 
weakest relationships with our chosen temperature variables 
(BIO_2: r = −0.41, BIO_6: r = 0.36, BIO_7: r = −0.50). 

The conclusive correlation study of the five chosen variables 
validated eective multicollinearity reduction, with all pairwise 
correlations remaining beneath the |r| = 0.8 threshold. The 
most significant association among the chosen variables was 
between BIO_6 and BIO_7 (r = −0.69), followed by BIO_16 
and BIO_17 (r = 0.46), demonstrating adequate statistical 
independence while preserving biological significance for 
B. anthracis ecological niche modeling. 

Model validation and climatological 
factors influence 

The predictive power and ecological insights gleaned from 
our Maxent model performance for B. anthracis was meticulously 
validated using the Receiver Operating Characteristic (ROC) curve, 
illustrated in Figure 3a, resulting in an Area Under the Curve 

(AUC) value of 0.831. The substantial AUC value, markedly above 

random prediction (AUC = 0.5), demonstrates the model’s excellent 
capacity to dierentiate between the presence and absence of 
B. anthracis sites, hence instilling high confidence in its predictive 

accuracy. The TSS value was 0.78, which indicates the good 

accuracy of the generated model. 
A comprehensive understanding of the environmental niche of 

B. anthracis was attained using a two-dimensional niche analysis, 
illustrated in Figure 3b, which examines the correlation between 

Annual Mean Temperature (BIO_1) and Annual Precipitation 

(BIO_12). This scatter figure depicts the environmental conditions 
in which B. anthracis occurrences are predominantly located inside 

a designated envelope (The red color indicated occurrence of this 
records outside the enveloped either for this two variables or when 

test any other variables (red points inside the current enveloped), 
while green points indicate occurrence of these records inside 

enveloped either for these two variables or any other variables of 
19 bioclim), implying certain ideal ranges for these two essential 
climatic variables. The bulk of recorded instances are concentrated 
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FIGURE 4 

(a) Predicted global suitability for B. anthracis using the Maxent ecological niche model. (b) Predicted global suitability for B. anthracis using the 
BIOCLIM model from DIVA-GIS. (c) Comparison map showing areas of agreement and disagreement between the Maxent and BIOCLIM models. 

within a limited range of annual mean temperatures (about 5 ◦C– 
28 ◦C) and yearly precipitation (from around 500 to 3,000 mm), 
while some instances exceed these parameters, underscoring the 
bacterium’s flexibility. 

The response curves for the five most significant bioclimatic 
variables aecting B. anthracis adaptability are illustrated in 
Figures 3c–g. Figure 3c for BIO_2 (Mean Diurnal Range) 
illustrates a complex correlation, indicating that appropriateness 
often diminishes as the diurnal temperature range increases, 
implying that B. anthracis favors habitats with more stable daily 
temperatures. The response to BIO 6 (Minimum Temperature of 
Coldest Month), illustrated in Figure 3d, demonstrates enhanced 
suitability with elevated minimum temperatures during the coldest 
month, aÿrming that extreme cold is a critical limiting factor. 
Figure 3e, depicting the response to BIO_7 (Temperature Annual 
Range), indicates that B. anthracis spore adaptability is maximized 
at moderate levels of annual temperature variability, decreasing 
in habitats characterized by either little or excessive annual 
temperature swings. Figure 3f (BIO_16: Precipitation of Wettest 
Quarter) illustrates that suitability first rises with precipitation 
during the wettest quarter, but then either levels o or slightly 
declines at elevated levels, possibly indicating a threshold for ideal 
moisture. In contrast, Figure 3g (BIO_17: Precipitation of Driest 
Quarter) illustrates that suitability is typically greater in regions 
with some moisture during the driest quarter, while extremely low 
precipitation levels are detrimental, underscoring the significance 
of year-round moisture availability to a certain extent. 

The Jackknife test (Figure 3h) elucidated the relative 
significance of each environmental variable to the model’s 
eÿcacy. This investigation indicates that the variables BIO_17 
(Precipitation of Driest Quarter), BIO_2 (Mean Diurnal Range), 
and BIO_6 (Minimum Temperature of Coldest Month) each 
significantly enhance the model’s performance when utilized 
independently, demonstrating their robust predictive capability. 

Moreover, the exclusion of each variable reveals a decline 
in regularization training gain, underscoring their distinct 
informational value and aÿrming that these variables contribute 
essential and non-redundant insights for the precise modeling 
of B. anthracis distribution. These results collectively validate 
the robustness of our Maxent model and reveal the principal 
environmental factors influencing the worldwide ecological niche 
of B. anthracis. 

Current situation modeling 

The current spread of B. anthracis was evaluated with 
two separate species distribution modeling techniques: Maxent 
and BIOCLIM, with the resultant suitability maps and their 
discrepancies illustrated in Figure 4. The Maxent model (Figure 4a) 
defined a global distribution of B. anthracis suitability, indicating 
“Excellent” and “Very High” suitability in particular biological 
zones. The zones notably encompass the center and southern 
United States, especially the Great Plains, vast expanses of South 
America (e.g., Brazil, Argentina), substantial swaths of sub-
Saharan Africa, and considerable parts of center Asia, India, and 
Southeast Asia. In contrast, regions at elevated latitudes, extensive 
deserts, and high-altitude landscapes repeatedly shown unfavorable 
or inadequate circumstances for the bacterium. This pattern 
corresponds with established environmental parameters aecting 
B. anthracis spore longevity, including alkaline, calcium-rich soils 
and particular climatic conditions typically seen in savanna-like or 
temperate grassland ecosystems. 

Conversely, the BIOCLIM model (Figure 4b), executed 
via DIVA-GIS, typically forecasted a more limited range of 
appropriate habitat, identifying extensive areas as “Unsuitable” 
in northern latitudes and certain tropical forest regions such as 
the Amazon. Although BIOCLIM detected “Excellent” and “Very 
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FIGURE 5 

Global suitability maps for B. anthracis projected for different future climate scenarios: (a) 2050 under Representative Concentration Pathway (RCP) 
2.6, (b) 2050 under RCP 8.5, (c) 2070 under RCP 2.6, and (d) 2070 under RCP 8.5. 

High” suitability zones, these zones seemed more fragmented 
compared to those produced by Maxent, suggesting a more 
restricted definition of the environmental envelope favorable 
to B. anthracis. Notwithstanding these discrepancies, significant 
regions of high suitability consistently appeared in both models, 
including areas such as the center and southern United States, 
portions of South America, and dierent sites across Africa and 
Asia. The prevalent areas indicate a robust consensus on the 
essential environmental conditions that facilitate the persistence of 
B. anthracis spores in these places. 

The direct comparison of the two models (Figure 4c) clearly 
delineates regions of agreement and disagreement. The most 
notable discovery is the extensive “Suitable in Both” category 
(green zones), which indicates habitats where both Maxent and 
BIOCLIM agree on the appropriateness for spores of B. anthracis. 
These regions signify the most reliable forecasts for the bacterium’s 
ecological niche, closely aligning with established anthrax endemic 
areas worldwide, including the central United States, some South 
American plains, extensive sub-Saharan Africa, and portions of 
Central and South Asia. The existence of “Maxent Model Only” 
(red) and “BIOCLIM Model Only” (blue) regions, however, 
limited in scope, highlights the fundamental algorithmic disparities 
between the two models. Maxent, a presence-background machine 
learning algorithm, is recognized for its capacity to elucidate 
intricate non-linear correlations between species occurrences 
and environmental variables, perhaps revealing appropriate 
locations overlooked by the more simplistic, climate-envelope-
based BIOCLIM model. In contrast, BIOCLIM, by establishing 
suitability according to the spectrum of environmental variables 
at occurrence locations, may occasionally encompass wider 
appropriate areas or exhibit more sensitivity to anomalies in 
occurrence data. The significant overlap in forecasted appropriate 
areas among these several modeling methodologies enhances 
confidence in pinpointing high-risk zones for B. anthracis spores 
persistence and related anthrax outbreaks. 

Future prediction for B. anthracis under 
different climate change scenarios 

The results of the MaxEnt modeling of four dierent climate 

change scenarios indicate changes in the overall habitat suitability 

of this bacterium. These forecasts are derived from several 
Representative Concentration Pathways (RCPs) and temporal 
frameworks, providing insights into the fluctuating characteristics 
of B. anthracis’s probable ecological niche. Figure 5 illustrates the 

anticipated global distribution of B. anthracis adaptability across 
four future climate change scenarios: (a) 2050 RCP 2.6, (b) 2050 

RCP 8.5, (c) 2070 RCP 2.6, and (d) 2070 RCP 8.5. In all scenarios, 
a uniform pattern of high appropriateness, denoted by “Very 

High” and “Excellent” in orange and red, respectively, is evident 
in regions that predominantly correspond with the currently 

known suitable locations depicted in Figure 3. This encompasses 
substantial regions of the central and southern United States, South 

America (notably Brazil and Argentina), vast territories throughout 
sub-Saharan Africa, as well as sections of Central Asia, India, and 

Southeast Asia. 
However, distinctions become apparent when contrasting the 

instances. In the more optimistic RCP 2.6 scenarios (Figures 5a, c), 
which presuppose a comparatively lower trajectory of greenhouse 

gas emissions, the spatial extent of highly appropriate places 
is largely analogous to the current distribution, with certain 

localized expansions or contractions. In contrast, the more 

gloomy RCP 8.5 scenarios (Figures 5b, d), indicative of elevated 

emission pathways, suggest a marginal shift or intensification 

of high suitability in certain places, alongside probable declines 
in others. Certain regions in Europe and Asia exhibit diering 

levels of appropriateness alterations across circumstances. The 

ongoing existence of extensive “Unsuitable” (light green) regions 
in northern latitudes, deserts, and high-altitude zones across 
all future scenarios indicates that these essential environmental 
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FIGURE 6 

Global maps illustrating the projected changes in B. anthracis distribution compared to the current situation under future climate change scenarios: 
(a) 2050 under Representative Concentration Pathway (RCP) 2.6, (b) 2050 under RCP 8.5, (c) 2070 under RCP 2.6, and (d) 2070 under RCP 8.5. 

limitations on B. anthracis distribution are expected to endure 
despite climate change. 

On the other hand, Figure 6 clearly depicts the anticipated 
alterations in the acceptable habitat for B. anthracis under four 
distinct climate change scenarios: (a) 2050 RCP 2.6, (b) 2050 RCP 
8.5, (c) 2070 RCP 2.6, and (d) 2070 RCP 8.5. This diagram classifies 
regions as “Loss” (blue), “Gain” (red), “Unsuitable” (gray), and 
“Unchanged” (yellow). A notable observation in all scenarios is the 
extensive prevalence of “Unchanged” (yellow) areas, especially in 
the central and southern sections of continents where B. anthracis 
is presently prevalent. This indicates that a significant fraction of 
the already suitable habitat is anticipated to remain constant under 
forthcoming climate circumstances, highlighting the durability of 
the pathogen’s niche in these established endemic regions. 

Nonetheless, substantial “Gain” (red) in appropriate habitat 
is consistently anticipated in several critical regions across all 
scenarios, particularly in portions of North America (e.g., the 
western United States), southern South America, sections of 
southern and eastern Africa, and dispersed areas in Central Asia 
and Australia. These increases suggest a possible expansion of 
the B. anthracis ecological niche into places that were previously 
less appropriate or unsuitable. The magnitude and distribution of 
these improvements exhibit variability among RCPs and temporal 
frameworks, with the RCP 8.5 scenarios (Figures 5b, d) frequently 
demonstrating more significant gains in comparison to the RCP 
2.6 scenarios. This indicates that elevated emission trajectories 
may facilitate increased opportunities for niche development. 
Conversely, the “Loss” (blue) of appropriate habitat is anticipated, 
but often in smaller and more isolated areas relative to gains. These 
losses are predominantly noted in places including portions of 
northern North America, some areas in Europe, and several sites 
in Asia. The occurrence of losses suggests that certain currently 
acceptable regions may become less viable under future climatic 
conditions, maybe due to alterations in precipitation patterns 
or temperature extremes surpassing the pathogen’s tolerance 

thresholds. Areas deemed “unsuitable” (gray), indicating regions 
unfit under both present and future conditions, predominantly 
align with extreme northern and southern latitudes, in addition to 
significant desert and mountainous terrains. 

Limitation factors map 

Figure 7 depicts the primary bioclimatic conditions that 
substantially restrict the global distribution of B. anthracis. 
This map highlights the key environmental variables that, when 
deviating from ideal ranges, limit the bacterium’s distribution 
within its prospective geographic range. The map classifies 
locations according to the bioclimatic variable that has the most 
significant limiting eect. The regional variability of limiting 
bioclimatic parameters highlights the intricate interaction 
of environmental variables in determining the global spread 
of B. anthracis. Extreme cold and generally inhospitable 
circumstances delineate the boundaries of polar and desert 
regions, but temperate and tropical areas are constrained by 
more intricate criteria, including diurnal temperature range, 
annual temperature variations, and precipitation extremes. 
Comprehending these particular limiting criteria is essential for 
enhancing ecological niche models, forecasting future distribution 
changes due to climate change, and guiding focused surveillance 
and control measures for anthrax. 

Discussion 

This study highlights the essential function of ecological 
niche modeling in comprehending the spatiotemporal dynamics of 
B. anthracis in the context of climate change scenarios. Our Maxent 
modeling clarifies the present and future habitat appropriateness 
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FIGURE 7 

Limiting bioclimatic factors governing B. anthracis distribution. 

for this bacterium, indicating substantial alterations in regional 
distribution that align with evolving climatic circumstances. These 
findings correspond with prior studies on other microorganisms 
that employed species distribution models (SDMs) to forecast 
habitat alterations resulting from climatic variability. Research on 
vector-borne diseases, including malaria and dengue fever, has 
illustrated that elevated temperatures and modified precipitation 
patterns can extend the geographic distribution of disease-carrying 
vectors, consequently heightening the risk of human exposure 
(Rocklöv and Dubrow, 2020; Franklinos et al., 2019). Our 
data suggest that classic anthrax-endemic areas may undergo 
changes in transmission dynamics, while new places could become 
conducive to B. anthracis, reflecting the adaptive responses seen in 
other diseases. 

Moreover, the ecological niche of B. anthracis is shaped 
by numerous biotic and abiotic factors, as evidenced by our 
examination of bioclimatic variables. This aligns with prior studies 
that have recognized soil pH, temperature, and moisture as essential 
factors influencing pathogen survival and spread (Hugh-Jones 
and Blackburn, 2009; Carlson et al., 2019). The identification of 
high-risk locations for anthrax, especially in regions with evolving 
land-use patterns, highlights the need for integrated strategies 
that account for both climatic and human factors. Prior research 
has underscored analogous connections between alterations in 
land use and the introduction of diseases, suggesting that habitat 
fragmentation and intensified agriculture may heighten the risks 
of zoonotic spillover (Hansen et al., 2019; Walsh et al., 2022). 
Consequently, our findings augment the expanding corpus of 
literature that promotes proactive strategies in public health 
planning and surveillance to address these emerging hazards. 

The predicted accuracy of our models, confirmed by stringent 
statistical approaches, aligns with the results of earlier studies 
employing machine learning techniques in epidemiology. Studies 
utilizing Maxent and other species distribution models (SDMs) 
have eectively predicted the distribution of several zoonotic 

diseases, including those causing Lyme disease and West Nile virus 
(Peterson et al., 2011; Merow et al., 2013). Our investigation reveals 
that the elevated AUC values demonstrate the model’s eÿcacy in 
dierentiating appropriate habitats for B. anthracis spores, hence 
aÿrming the dependability of machine learning methodologies 
in forecasting pathogen distributions. Furthermore, the response 
curves generated by our model oer critical insights into the 
environmental thresholds aecting anthrax viability, similar to 
conclusions drawn in other microbial research that highlights the 
significance of species-environment interactions (Elith et al., 2011; 
Sofaer et al., 2019). 

The ramifications of our findings are significant, especially 
considering the growing evidence connecting climate change to 
alterations in infectious disease patterns. The observed increases 
in habitat appropriateness for B. anthracis in certain regions 
reflect patterns identified in other research that have recorded 
analogous phenomena. The dissemination of Borrelia burgdorferi, 
the pathogen responsible for Lyme disease, has been strongly linked 
to climate-induced alterations in habitat suitability, resulting in 
heightened incidence rates in previously unaected regions (Mora 
et al., 2022). Our research validates these findings, indicating that 
if climatic conditions enhance the survival of B. anthracis, the 
likelihood of anthrax outbreaks may increase, especially in areas 
that are presently ill-equipped to address such threats. 

Furthermore, our work underscores the necessity of 
amalgamating ecological modeling with socio-economic variables 
to formulate thorough risk evaluations. The Coupled Model 
Intercomparison Project Phase 5 (CMIP) data we employed 
highlights the necessity for dynamic models that incorporate 
both climate and socio-economic trajectories, as demonstrated 
in other research evaluating the eects of climate change on 
infectious diseases (Eyring et al., 2016; Warszawski et al., 2021). 
Our research establishes a vital framework for targeted surveillance 
and intervention techniques by identifying prospective “gain” 
locations where habitat suitability for B. anthracis may augment. 
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This proactive strategy is crucial for alleviating the dangers 
associated with zoonotic diseases, particularly in light of evolving 
land-use patterns that may exacerbate disease dynamics (Barro 
et al., 2016; Bezymennyi et al., 2021). 

Our methodology and findings correspond with contemporary 
species distribution modeling research on fungal pathogens, 
including Fusarium oxysporum (Alkhalifah et al., 2023), Aspergillus 
niger (Alkhalifah et al., 2022), and Phytophthora infestans (Wang 
et al., 2023), all of which utilized MaxEnt modeling to forecast 
climate-induced distribution alterations. Consistent with our 
findings about the northward expansion potential of B. anthracis, 
research on Pseudomonas syringae (Khalaf et al., 2024) and 
other soil-borne bacterial diseases has revealed analogous range 
changes into higher latitudes in response to warmer scenarios. The 
alignment of our AUC values (0.831) with those documented in 
other microbial SDM investigations (often 0.80–0.90) substantiates 
our modeling methodology (Hosni et al., 2020; Chakraborty et al., 
2022). Moreover, our recognition of temperature and precipitation 
thresholds as key limiting factors aligns with findings from vector-
borne illness research, where analogous climatic variables influence 
pathogen viability and transmission dynamics (Kraemer et al., 
2020; Carlson et al., 2022). The similarities among many pathogen 
types indicate that our climate-driven methodology encompasses 
essential ecological principles that regulate microbial dispersal 
amid global climatic change, hence enhancing the reliability of our 
forecast framework for B. anthracis. 

The regions we identified as future climate suitability 
hotspots—including the Great Plains of North America, the 
Pampas of South America, and extensive pastoral areas of 
sub-Saharan Africa—are also major global livestock production 
centers where cattle density, grazing practices, and carcass 
management significantly modulate B. anthracis transmission risk 
(Barro et al., 2016; Kracalik et al., 2017). Intensive livestock 
production systems can create localized hotspots of anthrax risk 
through soil contamination from improperly disposed carcasses, 
concentrated animal feeding operations that facilitate rapid disease 
spread, and disrupted natural grazing patterns that alter soil-
spore dynamics (Bezymennyi et al., 2021; Fasanella et al., 
2013). Additionally, vaccination policies, surveillance capacity, and 
veterinary infrastructure vary dramatically across regions, creating 
disparities in actual disease risk that our climate-only models 
cannot capture (Hugh-Jones and Blackburn, 2009; Blackburn 
et al., 2017). Future integrated modeling eorts should incorporate 
livestock density data, production system classifications, and 
socioeconomic variables aecting disease control capacity to 
provide more actionable risk assessments. While our study 
establishes the foundational understanding of climatic suitability 
for B. anthracis, the translation of environmental suitability 
into actual outbreak risk requires explicit consideration of 
the complex livestock-soil-human interfaces that define modern 
anthrax epidemiology (Hansen et al., 2019; Walsh et al., 2022). 

A notable downside of our work is the inherent limits of 
utilizing GBIF occurrence data for pathogen risk assessment, 
which may substantially influence the interpretation of our results. 
GBIF records for B. anthracis predominantly rely on molecular 
detection techniques, such as 16S rRNA gene sequencing, which 
verify the existence of bacterial genetic material but do not yield 
information about spore viability, concentration, or pathogenic 
potential (Turnbull, 2008; Carlson et al., 2019). Importantly, 

these records are unable to dierentiate between viable, infectious 
spores that can induce disease and non-viable genetic material 
from dead spores or avirulent environmental isolates that lack 
the critical virulence plasmids pXO1 and pXO2 (Mock and 
Fouet, 2001; Koehler, 2009). This distinction holds epidemiological 
significance as the environmental persistence of B. anthracis DNA 
does not inherently correlate with the risk of active infection, 
which may result in an overestimation of disease threat in regions 
where genetic remnants exist without viable pathogen populations. 
Moreover, GBIF data are deficient in temporal information 
concerning spore persistence time and the environmental context 
of detection conditions, hence constraining our capacity to evaluate 
the sustainability of pathogen populations in forecasted suitable 
environments (Hugh-Jones and Blackburn, 2009). 

Despite these data limitations, our study provides essential 
foundational knowledge for understanding the climate-driven 
environmental suitability patterns of B. anthracis on a global scale. 
The identification of climate-suitable regions remains crucial for 
guiding proactive surveillance strategies and resource allocation 
in the context of changing environmental conditions. These 
limitations underscore the importance of our modeling approach as 
a first step toward comprehensive risk assessment frameworks that 
can be refined through integration with more specific biological and 
epidemiological data on regional scale. 

Conclusion 

In summary, our research enhances the comprehension 
of B. anthracis spread in a shifting environment, consistent 
with worldwide patterns in infectious disease ecology. Utilizing 
sophisticated machine learning methodologies and high-resolution 
climatic data, we oer critical insights that can guide public health 
policies and environmental management measures to mitigate 
the eects of anthrax and analogous zoonotic hazards in a 
warming climate. 
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