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Introduction: Human microbiota is a major factor contributing to the immune
system, offering an opportunity to develop non-invasive methods for disease
diagnosis. In some research on Autoimmune Diseases (AIDs), gut microbiota
variation has been observed. However, there remains a paucity of research
that explores the potential of gut microbiota as a microbial signature for the
classification and diagnosis of multi-AlDs.

Methods: In this study, we analyzed 1,954 gut microbiota sequencing datasets
from public databases collected from 1,043 patients with 10 AIDs to identify
common or unique microbial signatures for AIDs through differential abundance
testing and machine learning techniques. We evaluated five popular algorithms:
Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
Multilayer Perceptron (MLP), and eXtreme Gradient Boosting (XGBoost) models.
Five-fold cross-validation and grid search were used to select the model
parameters.

Results: After comparing the performance of five models, the XGBoost model
showed superior performance and achieved an area under the receiver operating
characteristic curve (AUROC) ranging from 0.75 to 0.99 when predicting different
diseases in the test set. At a specificity of 0.7 to 0.96, the sensitivity ranged
from 0.66 to 1. By correlating the top 77 microbiota genera with the disease
phenotypes, 126 significant associations were identified [false discovery rate
(FDR) < 0.05]. We improved the detection accuracy and disease specificity for
AlIDs and revealed microbiota features specific to 10 different AIDs. Moreover,
we found changing trends in shared microbiota features across some AID
phenotypes, such as Crohn's Disease (CD) and Ulcerative Colitis (UC). At the
same time, opposite changing trends were observed in the shared microbial
signatures, such as Psoriasis and Myasthenia Gravis (MG). These results suggest
that specific gut microbiota genera may affect the host immunity and induce
different AID phenotypes.
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Discussion: This research holds potential for clinical application in the auxiliary
diagnostic evaluation and monitoring of treatment responses. Simultaneously,
it provides important clues for research on the characteristics of the intestinal
immune microenvironment for different AlDs.
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Introduction

The gut microbiota represents a highly intricate community of
microorganisms, encompassing bacteria, archaea, and eukaryotes,
that inhabit the intestine. It is estimated that in approximately
100 trillion cells (Ley et al, 2006), the symbiotic microbes
within the human gut exceed the number of host cells by
at least an order of magnitude and possess a substantially
larger repertoire of unique genes when compared to the
host genome. Overall, the intestinal microbiota is composed
of approximately 500-1,000 species, which belong to only a
limited number of known bacterial phyla (Zoetendal et al,
2008). Emerging research suggests that the gut microbiota
demonstrates vast enzymatic potential and plays a pivotal role in
modulating diverse aspects of host physiology, such as pathogen
resistance, host immunity, and metabolic processes (Sommer and
Biackhed, 2013; Belkaid and Hand, 2014; Blaser and Falkow,
2009).

The gut microbiota plays a crucial role in maintaining a
delicate equilibrium between host defense and immune tolerance
(Yang et al, 2021). The microenvironment within the gut
is shaped by complex and intricate interactions between the
gut microbiota and the local innate immune system (Piccioni
et al, 2022; Gensollen et al., 2016). Optimally, the interaction
between the immune system and microbiota functions in
harmony, integrating both the innate and adaptive components of
immunity to select, calibrate, and terminate immune responses,
thus preserving homeostasis. Nevertheless, this immune balance
between the gut flora and host is not invariably stable. A
variety of pathologies affecting humans, including allergies,
autoimmune disorders, and inflammatory conditions, stem from
the inability to regulate misdirected immune responses against self-
antigens, microbiota-derived antigens, or environmental antigens
(Zoetendal et al., 2008; Jiao et al., 2020; Mu et al., 2017; Wang et al.,
2015).

Autoimmune diseases (AIDs) occur when an individual’s
immune system mistakenly attacks its own tissues, with an
estimated global incidence of approximately 3-5% (Miller et al.,
2012; Ramos-Casals et al., 2015). Human microbiota is thought
to be a crucial factor in the development of autoimmunity,
as alterations in the microbial composition can result in the
breakdown of immune tolerance (Belkaid and Hand, 2014; Shamriz
et al., 2016). Systematic analysis of the human gut microbiota
holds promise for developing non-invasive diagnostic methods for
major AIDs. With the emergence of next-generation sequencing
(NGS), novel strategies have been developed to investigate the
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association between gut microbiota dysregulation and AIDs.
These strategies entail bioinformatic analysis to characterize the
microbial compositions of samples, including the identification of
microbial taxa and their relative abundance. Moreover, in case—
control studies, researchers have attempted to identify differentially
abundant microbial taxa as potential disease biomarkers (Quince
et al, 2017; Liu et al., 2021; Knight et al., 2018). This approach
has been applied to a variety of AIDs, such as systemic lupus
erythematosus (SLE), rheumatoid arthritis (RA), inflammatory
bowel diseases (IBD), and systemic sclerosis (SS) (Hevia et al., 2014;
Chen et al., 2022; Volkmann et al., 2016; Andréasson et al., 2016; da
Silva Brito et al., 2022; Vich Vila et al., 2018; Vaahtovuo et al., 2008;
Chen et al., 2016).

However, the existence of shared microbial signatures across
diverse diseases and overlapping gut microbiota signatures among
most health states poses challenges for accurate diagnosis when
using single-disease models, which can result in misclassification
(Gacesa et al., 2022). To address this, multi-class diagnostic models
have been developed to predict disease-specific signatures across
the microbiota, enabling more accurate diagnostic purposes (Khan
and Kelly, 2020; Su et al., 2022; Li M. et al., 2023). Machine learning
(ML) classifiers are often employed for disease diagnosis, either
using gut microbiota data alone or in conjunction with clinically
relevant features, to differentiate patients from healthy controls
(Ghannam and Techtmann, 2021; Marcos-Zambrano et al., 2021;
Curry et al, 2021). ML-based gut microbiota classifiers have
been developed for a variety of diseases, including inflammatory
bowel disease (IBD), liver cirrhosis (LC), autism spectrum disorder
(ASD), Alzheimer’s disease (AD), and numerous others (Jiang
et al., 2021; Qin et al., 2014; Oh et al., 2020; Kartal et al., 2022;
Nagata et al., 2022; Dan et al., 2020; Liu et al.,, 2019; Li et al.,
2019).

In the present study, we conducted a comprehensive meta-
analysis of multiple AIDs. A total of 1,954 samples were
used in this study. These diseases spanned 10 major disease
categories. To comprehensively characterize the gut microbiota
in relation to 10 AIDs, namely rheumatoid arthritis (RA),
ankylosing spondylitis (SpA), multiple sclerosis (MS), psoriasis,
Crohn’s disease (CD), ulcerative colitis (UC), celiac disease (CeD),
myasthenia gravis (MG), systemic lupus erythematosus (SLE), and
type 1 diabetes (T1D), we utilized gut microbiota sequencing
data to evaluate the abundance of taxonomic units. Furthermore,
we developed a machine learning multi-classification model for
the diagnosis of multi-AIDs and identification of microbial
signatures that are either common across or specific to these
10 AIDs.
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Materials and methods

The main framework for dataset partitioning, model training,
and validation of this research was shown in Figure 1A.

Data collection

A comprehensive list of human autoimmune disease-related
case—control studies on gut microbiota was performed in public
databases, including NCBI BioProject (https://www.ncbi.nlm.nih.
gov/bioproject) and GMrepo (a curated database of human gut
metagenomes; https://gmrepo.humangutinfo) (Dai et al., 2022;
Wu et al,, 2020). A total of 1,954 gut microbiota sequences on 10
different autoimmune diseases (Supplementary Table S1, run-level
data including 1,043 cases and 911 controls) were collected.
AlIDs included RA, SpA, MS, Psoriasis, CD, UC, CeD, MG, SLE,
and TID. The specific inclusion and exclusion criteria are as
follows: our inclusion criteria included: (1) Study on 16S rRNA
amplicon sequencing of gut microbiota with complete disease
phenotype metadata. (2) Case-control studies with at least nine
valid samples in each case and control group. (3) No antibiotics
or probiotic supplements were administered in the past 3 months.
The exclusion criteria were as follows: (1) post-treatment follow-up
after medication. We divided these 10 diseases into 7 categories,
including 3 digestive system diseases, 2 AIDs of the nervous
system diseases, 2 musculoskeletal diseases, 1 endocrine system
disease, 1 connective tissue disease, and 1 skin disease, according
to the NCBI Medical Subject Headings (MeSH, https://meshb.nlm.
nih.gov/) database and Human Disease Ontology (DO) database
(Schriml et al., 2022).

Sequencing data extraction and microbiota
profiling

We extracted all SRA_ID (listed in Supplementary Table S1)
from the NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra)
(Katz et al, 2022) or European Nucleotide Archive (ENA)
(Harrison et al., 2021) and obtained related information on samples
from the NCBI BioSample database (https://www.ncbinlm.nih.
gov/biosample). Raw sequencing data (FATSQ files) were then
downloaded using the SRA toolkit, and metadata, including age,
gender, and country, were collected. Trimmomatic (Bolger et al.,
2014) was used to trim the reads and to remove sequencing vectors
and low-quality bases. Reads shorter than 50 base pairs were
discarded after trimming. To preprocess the sequences, we used
QIIME (2023.5) (Bolyen et al.,, 2019) to demultiplex and quality-
filter the data. Representative sequences and their abundances
were extracted using the feature table (McDonald et al., 2012a)
to generate tables containing amplicon sequence variants (ASVs).
Taxonomic assignment of the individual dataset was classified
against the Greengenes database (version 13.8123) (McDonald
et al., 2012b). Genus-level relative abundance results were retained
for subsequent analyses. Subsequently, samples with only two or
fewer taxa were excluded from subsequent analyses. Additionally,
to minimize the noise caused by low-abundance taxa, we filtered
out those with a relative abundance of <0.001 across all samples.
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Microbiota analysis

All statistical analyses were performed using R, version 4.2.2.
The ggpubr package (https://github.com/kassambara/ggpubr) was
used to perform non-parametric statistical testing between groups
and to account for multiple hypothesis testing corrections when
necessary. Significant differences in alpha diversity (Shannon
index and richness) were determined using the non-parametric
Kruskal-Wallis test. Differences in beta diversity (Bray-Curtis
distance matrix calculated using the relative abundances of
microbial genera) were determined by PERMANOVA using
distance matrices (adonis) in the adonis function of the vegan
R package with 999 permutations. Principal coordinate analysis
(PCoA) based on beta-diversity was used to visualize the clustering
of samples based on their genus-level compositional profiles.
To adjust these findings for other factors that may affect
microbiota, we used microbiota multivariable associations with
linear models (MaAsLin) to identify compositional differences
while adjusting for age, sex, and country. To account for
the sequencing batch effects of all samples treated at different
periods, we used the adjust_batch function implemented in the
“MMUPHIn” R package using project ID as the controlling
factor before model development. Detailed information on the
effectiveness of the batch effect removal in this study is shown in
Supplementary Figure S1.

Classification model for
multiple-autoimmune-diseases

Binary sub-cohorts were composed of one AID phenotype
and its corresponding healthy control, resulting in a total of 10
binary subgroups. The random forest (RF) model was chosen as
the binary classifier because its classification performance has been
shown to outperform other methods for microbiota data (Pasolli
et al, 2016). The RF model was first trained on a randomly
selected training set (5-fold stratified cross-validation) and then
applied to the withheld test set to assess the final performance.
This process was repeated 20 times to obtain a distribution of RF
prediction evaluations for the test set, and the mean AUROC value
was calculated.

Multi-class models can be implemented in Python 3.8
using standard libraries that are publicly available, including
(2.0.3), (1.3.1), and
matplotlib (3.7.3). For each phenotype, the samples were
randomly divided into training (70%, n = 1,368) and test (30%,
n = 586) sets. Random forest (RF), support vector machine

pandas numpy (1.22.4), scikit-learn

(SVM), K-nearest neighbors (KNN), multilayer perceptron
(MLP), and
used as classifier models to diagnose different phenotypes

eXtreme Gradient Boosting (XGBoost) were

based on the taxonomic profiles at the genus level of the gut
microbiota. We employed a 5-fold cross-validation and grid
search to select the optimal model parameters for the RF
SVM, KNN, and XGBoost models. For the MLP models, we
implemented the default settings provided by Scikit-learn.
Finally, we evaluated the performance of the five models
on the test dataset as the final performance for predicting
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different diseases. The highly ranked and frequently selected
microbiota features were considered predictive signatures for
further interpretation.

Model validation and performance
evaluation

The area under the receiver operating characteristic curve
(AUROC) is a widely used metric for evaluating the performance
of classification models and provides a comprehensive assessment
of the model’s sensitivity and specificity trade-off at different
thresholds. The range of AUROC values is typically explained
from 0.5 to 1, with a higher value indicating a better ability
to distinguish between different classes of samples. The area
under the precision-recall curve (AUPRC), as a complementary
assessment, considers the trade-offs between precision (or positive
predictive value) and recall (or sensitivity) and is more robust
for imbalanced datasets. The AUPRC ranges from 0 to 1, with a
value of 0 signifying no positive examples identified and a value
of 1 indicating perfect identification of all positive examples. In
addition, for a more comprehensive evaluation of the model’s
performance, we employed the F1 score. It is a metric that considers
the precision and recall of a model. The F1 score ranges from 0
to 1, with a higher value indicating better overall performance of
the model.

We employed the bootstrap method to address the data
imbalance and obtain more robust performance evaluations
for each model. The bootstrap method involves iteratively
resampling the training data, training a new model, and
evaluating the model 1,000 times (Wang et al, 2023; Ning
et al.,, 2025). The performance of the model was calculated as the
average performance of the individual models developed using
the bootstrap method. Bootstrap methods can considerably
To identify
among many bacterial

reduce overfitting in the developed models.

the most discriminative features
genus features, minimize model complexity, and enhance
computational efficiency and interpretability, we generated
a learning curve relating the number of features to the

model performance.

Sensitivity analysis

Considering the potential influence of the three factors,

» «

“gender,” “age,” and “geographical location,” on the gut microbiota,
we conducted the sensitivity analysis. For the factor “geographical
location,” >75% of the samples in this study were collected from
the United States (746) and China (724). We evaluated our model
using country-based stratification. For factors “gender” and “age,
the Kruskal-Wallis test was conducted to verify the significance
of the differences in the abundance of the corresponding genus
in the gut microbiota among different age groups and different
genders regarding the AID phenotype. Age groups: Juvenile (3-
20), Young Adult (21-45), Older Adult (46-65), and Elderly
(65+); Gender groups: Female and Male (Supplementary Table S1,
“Sensitivity analysis”).
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Results

Summary of available data

A total of 1,954 gut microbiota sequencing data (1,043 AIDs
cases and 911 non-disease controls; sequences based on Illumina
platforms) were collected from the NCBI database based on 19
case—control studies. These data could contain up to 127 cases and
247 controls; however, most studies were conducted on a limited
number of samples, with median sizes of 55 cases and 48 controls,
respectively. The fecal samples for the gut microbiota sequencing
data were mainly collected from five continents and 13 countries,
most of which were from the United States of America (38.18%),
China (32.44%), and Canada (11.36%) (related information was
shown in Supplementary Table S1, “Data availability”).

Gut microbiota features across different
phenotypes

Ecological indices may not be robust indicators for
distinguishing disease from healthy status, which results in
changes in the structure of the gut microbiota. First, we aimed
to determine the differences in the composition of the gut
microbiota among the different AIDs. Compared to healthy
controls, significant differences in bacterial diversity (Shannon)
and richness (number of genera) were observed in AIDs, except for
RA. The Shannon index of the digestive system AIDs decreased.
Moreover, we found that both indices (Shannon and richness)
varied across phenotypes (Figure 1B). The results of microbial
diversity among different phenotypes are consistent with a recent
study on multi-class disease diagnosis based on gut microbiota and
meta-analysis (Su et al., 2022; Gupta et al., 2020). Beta diversity
based on Bray-Curtis dissimilarity showed significant differences
in gut microbiota composition among individuals with different
phenotypes (R = 0.396; F = 36.057; p < 0.001) (Figure 1C). We
then used the linear model of MaALin2 after adjusting for age, sex,
country, and technical confounders to explore the associations of
microbial composition at the genus level with disease phenotypes.
We found 192 significant associations between the 11 phenotypes
and 62 bacterial taxa at the genus level (FDR < 0.05). Among
the 62 genera, > 67.7% were significantly associated with two or
more diseases. The genera Haemophilus, Veillonella, Eggerthella,
and Rothia were positively associated with AIDs in our results,
whereas the opposite was observed with the genera Paraprevotella,
SMB53, and Gemmiger (Figure 1D, Supplementary Table SI “Gut
microbiota data”).

Development of a gut microbiota-based
diagnosis model

The binary classifier of the RF model based on the microbiota
could significantly distinguish between healthy and most AIDs
(Figure 2A), which indicated that AIDs had different degrees
of intestinal flora disturbance compared with the control. To
further investigate the discriminatory ability of the gut microbiota
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FIGURE 1

Gut microbiota features of healthy individuals and those with diseases. (A) Framework for dataset partitioning, model training, and validation. (B)
Alpha diversity metrics for Shannon diversity and richness (number of microbial genera) in different phenotypes. The centerline represents the
median, and the boundaries of the box represent the upper and lower quartiles. Kruskal-Wallis test. (C) Bray—Curtis dissimilarity-based principal
coordinate analysis (PCoA) of genus-level. Each data point represented an individual sample. The F-, R-, and P-values were calculated using
PERMANOVA with 999 permutations. (D) Heat map of microbial genera associated with different phenotypes. The top 50 microbial genera with the
highest numbers of associations were identified. The significance (p-value) of the associations was calculated using MaAsLin 2, and FDR was
determined using the Benjamini—Hochberg correction. Associations are colored by direction of effect (red, positive; blue, negative), with associations
significant at FDR <0.05, marked with a plus (positive correlations) or negative (negative correlations), respectively. RA, Rheumatoid Arthritis; SpA,
Spondylitis ankylosing; CD, Crohn'’s disease; UC, Ulcerative colitis; CeD, Celiac disease; MS, Multiple sclerosis; MG, Myasthenia gravis; SLE, Systemic
lupus erythematosus; T1D, Type 1 diabetes. For all the P-values in the figure, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Comparison of different classifiers for phenotype classification using fecal microbiota data at the genus level. (A) Area under the receiver operating
characteristic curve (AUROC) of random forest binary classifiers for disease vs. healthy control discrimination. (B) Performance across models was
measured using the AUROC and area under the precision-recall curve (AUPRC) for predicting one phenotype vs. all others in the test set. (C) Mean
AUROC, AUPRC, and F1-score, along with their corresponding 95% confidence intervals (95% Cl), were calculated for the five machine learning
models using the bootstrap method. (D) Learning curve of the relationship between the number of microbial genera and AUROC values. RA,
Rheumatoid Arthritis; SpA, Spondylitis ankylosing; CD, Crohn’s disease; UC, Ulcerative colitis; CeD, Celiac disease; MS, Multiple sclerosis; MG,
Myasthenia gravis; SLE, Systemic lupus erythematosus; T1D, Type 1 diabetes; RF, Random forest; SVM, support vector machine; KNN, K-nearest
neighbors; MLP, multilayer perception; XGBoost, eXtreme Gradient Boosting.

in various AIDs and to distinguish between AIDs and healthy

controls, we constructed multi-class classifiers.

To select the best multi-class machine learning algorithm,
we evaluated five popular algorithms: RE, SVM, KNN, MLP,
and XGBoost models. Five models achieved a mean AUROC
of all phenotypes of 0.72-0.89 (Figure2B), suggesting that
muti-class disease classification based on the gut microbiota was
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feasible. Amongst them, the XGBoost multi-class model had
an optimal performance and achieved a mean AUROC of 0.89
[interquartile range, IQR (0.87-0.90)], a mean AUPRC of 0.48
[interquartile range, IQR (0.44-0.51)], and a mean Fl-score of
0.538 [interquartile range, IQR (0.51-0.57)] for different disease
phenotypes in the test set (Figure 2C). Therefore, the XGBoost
multi-class classifier was used for further analysis.
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The XGBoost model is constructed using a complete training
set. The importance rankings of all features at the genus level
were obtained by leveraging this model. Subsequently, the features
were incorporated in descending order of importance. For each
step of adding a feature, the AUROC value of the model was
computed, thereby generating a learning curve that depicted
the relationship between the number of features and model
performance (Figure 2D). The results indicate that the model
performance reached a plateau when 77 features were employed.
At this stage, a further increase in the number of features did not
lead to a significant improvement in performance. Consequently,
the first 77 features were selected as the input variables for the
final model. The AUROC values for most phenotypes exceed
0.9 (Figure 3A). The macro-AUROC value was 0.9 [IQR (0.88-
0.91)], indicating superior performance compared to the binary
classifier we trained. This classifier proved to be valuable for
effectively distinguishing AIDs based on features derived from
the gut microbiota. At the optimal Youden’s index threshold,
the sensitivities of our XGBoost multi-class model range from
0.66 to 1 at specificities of 0.70 to 0.95 for different diseases
with accuracy from 0.74 to 0.94, highlighting good diagnostic
performance (Figure 3B). For example, our model achieved an
AUROC of 0.95, CD with a sensitivity of 0.94, and a specificity of
0.89 (Figures 3A, B). To better characterize the XGBoost model, we
compared its performance on datasets with different split ratios and
obtained similar results, which indicated that the model exhibited
high stability and good predictive capability without the risk of
overfitting (Figure 3C).

Associations between microbiota features
and phenotypes

Next, we correlated the top 77 bacterial genera that contributed
to the model with the different disease phenotypes. Among the
77 genera, 126 significant associations were found between 42
genera and the different disease phenotypes. These 42 genera
belonged to the phyla Firmicutes (28 genera), Actinobacteria
(6 genera), Proteobacteria (5 genera), Fusobacteria (1 genus), and
Bacteroidetes (3 genera) (Figure 3D). Among the selected bacterial
genera, significant associations were found between the phenotypes
and several genera, except for T1D (genera only). From the
perspective of AID phenotypes, CD (23 genera), RA (21 genera),
and psoriasis (20 genera) were the three phenotypes with the
highest number of related genera (FDR < 0.05). However, in SpA
and CeD, fewer related genera were found (n < 5). From the
perspective of the gut microbiota, the genera Actinobacteria and
Ruminococcaceae II correlated with the largest number of AID
phenotypes (six AID phenotypes). The genera Shigella, Clostridium,
and Eggerthella also correlated with many AID phenotypes (five
AID phenotypes). These genera could serve as shared microbiota
features, which may suggest an association with AID phenotypes
except for T1D. The genus Dorea, Lachnobacterium, WAL_1855D,
Bulleidia, Pseudomonas, and the special genus Prevotella are only
associated with one AID phenotype. This may imply that specific
changes in the gut microbiota are related to the corresponding
AID phenotype. The genera Clostridium, Eggerthella, Haemophilus,
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Fusobacterium, Subdoligranulum, and Rothia positively correlated
with several AID phenotypes. However, Paraprevotella, SMB53,
Clostridium II, Gemmiger, and Slackia were negatively correlated
with several AID phenotypes. Only Fusobacterium, which belongs
to Fusobacteria, was positively correlated with two inflammatory
bowel diseases (CD and UC), indicating a potential microbiota
feature of inflammatory bowel diseases.

Interestingly, we noted a higher degree of similarity in
microbial alterations between diseases within the same system, such
as inflammatory bowel diseases (CD and UC). Among these two
phenotypes, 11 genera (approximately 50%) were shared between
these two phenotypes, exhibiting similar trends in microbial
changes. CeD, also an autoimmune disease of the digestive system,
presents a completely distinct profile of related genera. Analogous
results have also been reported in Psoriasis and SLE. Although
shared microbiota features were relatively scarce, eight genera with
similar trends in microbial changes were identified. In autoimmune
diseases of the nervous system (MS and MG) and musculoskeletal
system (RA and SpA), such similarities in microbial changes
were not observed. On the other hand, in some AID phenotypes,
alterations in the microbiota showed an opposite trend compared
to the healthy group. For example, in Psoriasis and MG, ten
microbiota features were shared between the two AID phenotypes,
including the genera Actinobacteria, Butyricicoccus, Clostridium
IV, Blautia, Lactonifactor, Shigella, Anaerostipes, Clostridium I,
Parabacteroides, and Ruminococcus II. However, opposite trends
were observed. Similar findings were obtained in a comparison
of psoriasis and RA. These results suggest that, in different AIDs,
the gut microbiota microenvironment may possess completely
opposing characteristics.

Sensitivity analysis

The data collected for this study were sourced from multiple
countries. More than 70% of the study participants were from the
United States and China. The model’s performance was evaluated
using country-based stratification, revealing consistent results
(Figure 4). Moreover, the model attained a mean Area Under
the Receiver Operating Characteristic Curve (AUROC) of 0.90
(Interquartile Range, IQR: 0.88-0.93) in the United States and 0.91
(0.88-0.93) in China, respectively. Given the potential influence of
“gender” and “age” on the gut microbiota, we performed a stratified
analysis based on age and gender (Supplementary Table S1,
“Sensitivity analyses”). The sensitivity analysis results indicated that

» «

“Geographic location,” “Age,” and “Sex” are not the primary factors

affecting classification outcomes.

Discussion

The human gut microbiota has assumed growing significance
as a biomarker for non-invasive disease screening and as a target
for disease intervention owing to its profound association with
human diseases. In this study, we comprehensively aggregated
publicly available datasets of gut microbiota sequencing. Moreover,
we integrated microbiota features among diverse AIDs and utilized
advanced and reproducible machine learning approaches that are
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erythematosus; T1D, Type 1 diabetes.

Gut microbiota-based XGBoost model for multi-class disease diagnosis. (A) Receiver operating characteristic curve of the XGBoost multi-class
model, including 77 microbial genera. (B) Performance metric details of the trained XGBoost multi-class classifier for classifying one phenotype from
all others using genus-level fecal microbiota data in the test set. (C) AUROC of the XGBoost multi-class model across different split ratios. (D)
Microbial genera associated with different phenotypes. The top 77 microbial genera that contributed to the XGBoost multi-class classifier were
clustered by taxonomy. The significance (p-value) of the associations was calculated using MaAsLin 2, and FDR was determined using the
Benjamini—-Hochberg correction. Associations are colored by direction of effect (red, positive; blue, negative; p < 0.05), with associations significant
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highly relevant to clinical practice. Overall, this study demonstrated
the feasibility of using a multi-classifier based on gut microbiota
for the identification of AIDs. We propose that this multi-class
model shows great potential for clinical applications in auxiliary
diagnosis evaluation and assessment of the efficacy of interventions.

Simultaneously, it offers crucial clues for the investigation of
the characteristics of the intestinal immune microenvironment in
different AIDs that primarily affect various body sites.

Our analysis of the gut microbiota revealed microbiota features
associated with the 10 AIDs. Most of these findings are consistent
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with previous research on the correlation between the gut
microbiota and AIDs. For example, Actinomyces spp., which act as
both pathogens and constituents of human microbiota, have been
reported to be enriched in patients with IBD or colorectal cancer
(Yachida et al, 2019; Pittayanon et al.,, 2020). Bifidobacterium
spp. are important probiotics, particularly during infancy. In the
infant gut microbiota, a relationship between Bifidobacterium
spp. and allergies has been identified, which plays a vital role
in immune modulation and tolerance (Cukrowska et al., 2020;
Gavzy et al., 2023; Derrien et al., 2022). Adlercreutzia spp. and
Clostridium spp. were decreased in the gut microbiota of patients
with CD (Leibovitzh et al., 2022). Haemophilus spp., a type of
gut microbiota, has been reported to be associated with several
immune-related disorders, including RA, IBD, and Hashimoto’s
thyroiditis (Liu et al., 2022; Zhang et al., 2015; Dunalska et al., 2023).
Similarly, in our study, we also detected significant enrichment
of this bacterial genus in patients with RA and IBD. Meanwhile,
in studies exploring the gut microbiota of patients with type
2 diabetes (T2D), Parkinson’s disease, and Alzheimer’s disease,
differences in the genus Haemophilus were observed between the
disease groups and healthy control groups (Li Z. et al, 2023;
Letchumanan et al., 2022). Eggerthella spp. and Prevotella spp., as
typical gut microbiota signatures, were reported to be enriched
in SLE, which is consistent with our results (Bixio et al., 2024;
Yao et al., 2023). Genus Eggerthella levels have been implicated in
inflammatory diseases, especially human gut Eggerthella lenta in
AIDs and other conditions (Plichta et al., 2021; Xiang et al., 2021;
Chang and Choi, 2023). Veillonella spp. are closely related to the
genus Clostridiales, which are recognized as probiotic organisms
in the host (Furusawa et al,, 2013). Other studies have indicated
that Veillonella spp. act as inflammophilic pathobionts, thriving
in an inflammatory milieu, and possess the inherent ability to
stimulate IL-6-mediated inflammation (van den Bogert et al,
2014). Notably, in a study of the gut microbiota in autoimmune
hepatitis (AIH), the genus Veillonella was identified as the key
genus strongly associated with the disease (Wei et al., 2020; Yuming
et al., 2024). The genus Fusobacterium was significantly increased
in IBD in our study, and previous research has found a similar
association (Volkmann et al., 2016; de Paiva et al., 2016; Hong et al.,
2023; Cornejo-Pareja et al., 2020; Islam et al., 2022). In particular,
Fusobacterium nucleatum exhibits a wide range of characteristics
under certain conditions. It can adhere to a large number of
phylogenetically unrelated bacterial species, potentially leading to
the translocation of non-invasive, yet pro-inflammatory species
across the compromised intestinal epithelium, thereby exacerbating
the disease state (Uitto et al., 2005; Strauss et al., 2011). Given
that the AIDs included in this study preferentially targeted distinct
body organs, it is unsurprising that we detected differences, as prior
studies have reported analogous conclusions (Forbes et al., 2016).
In our study, the number of microbiota features corresponding
to each AID phenotype was lower than the number of significant
differential microbiota abundances found in existing studies based
on basic case-control studies. This is attributable to the fact
that our model was constructed using data from 10 AIDs. In
addition to considering the differences between AIDs and controls,
it also accounts for potential disparities among the various AID
phenotypes. Consequently, the selected microbiota features are
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relatively fewer. However, some of our findings deviated from those
of previous studies. For example, previous studies have indicated
that Prevotella spp. are more abundant in the early/preclinical
stages of RA, whereas Bifidobacterium spp. are less abundant.
Nevertheless, our study did not yield similar results (Ajith and
Anita, 2025). Our findings also identified several bacterial genera
that were scarcely observed in previous investigations of the 10
AlIDs. Rothia spp. have been mentioned in research on treatable
periodontitis, endocarditis, and joint infections (Michels et al,
2007; Verrall et al., 2010; Colombo et al., 2012). Our study revealed
a potential association between the genus Rothia and SLE, RA, and
IBD, which has not been previously reported. Paraprevotella spp.,
encompassing numerous opportunistic pathogens, has only been
reported in the fecal samples of patients with rare AIDs, such as
Behcet’s disease (BD), Vogt-Koyanagi-Harada (VKH) disease, and
the dextran sulfate sodium-induced IBD model (Ye et al., 2020,
2018; Sabater et al., 2022). In our study, there was a significant
reduction in Paraprevotella in MS, CD, UC, and CeD. In the
colorectal cancer mouse model, the Paraprevotella spp.-derived
metabolite agmatine triggered inflammation to promote colorectal
tumorigenesis through the Wnt signaling pathway (Lu et al., 2024).
This might be the key mechanism by which Paraprevotella spp.
regulates the gut immune microenvironment in various AIDs.
Although disease phenotypes were not observed in this study, the
genus Slackia was found to be more abundant in patients with
APECED-associated hepatitis (APAH) (Chascsa et al., 2021). The
discovery of these bacterial genera suggests that multi-classifiers
based on deep machine learning are more conducive to uncovering
gut microbiota features that have not been easily discerned in
previous studies across a broader range of data.

As described in the “Results” section, we observed a higher
degree of similarity in microbial alterations among the two
inflammatory bowel diseases (CD and UC). Among these two
phenotypes, 11 shared genera exhibited similar trends in terms
of microbial changes. Analogous findings were also noted in
Psoriasis and SLE, where eight shared genera with similar trends
in microbial changes were identified. In contrast, in the nervous
system, AIDs (MS and MG) and musculoskeletal system (RA
and SpA) AIDs, such similarities in microbial changes were
not detected. IBD is a consequence of the interaction between
the host and microorganisms, encompassing intestinal microbial
factors, abnormal immune responses, and a damaged intestinal
mucosal barrier. CD and UC are two subtypes of IBD that may
have similar intestinal immune microenvironments, leading to
numerous shared microbiota features with comparable trends of
microbial changes (Danne et al, 2024; Anderson et al., 2021).
Psoriasis and SLE are chronic autoimmune diseases that affect
multiple organs. Although their specific pathogenic mechanisms
differ, they all involve abnormal activation of immune cells,
abnormal secretion of cytokines, and T cell-mediated inflammation
(Griffiths et al., 2021; Durcan et al, 2019). In our results, eight
genera, Eggerthella, Subdoligranulum, Ruminococcus, Lactonifactor,
Anaerotruncus, Clostridium, Parabacteroides, and Shigella, shared
microbiota features with similar trends. Eggerthella spp. can
induce intestinal Thl7 activation by lifting inhibition of the
Th17 transcription factor Roryt through cell- and antigen-
independent mechanisms (Bixio et al., 2024). Subdoligranulum spp.
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are arthritogenic strains that trigger RA and can stimulate Th17
cell expansion in mice (Zhu et al, 2020). In colorectal cancer,
Ruminococcus spp. can maintain the immune surveillance function
of CD8+ T cells through its metabolic characteristics (Schirmer
et al,, 2019). The remaining three genera were also associated with
other AIDs, including MS, RA, and IBD (Bixio et al., 2024; Ajith
and Anita, 2025; Anderson et al., 2021; Yousefl et al., 2023; Caruso
et al., 2020).

On the other hand, in some AID phenotypes, alterations in the
microbiota exhibited an opposing trend compared to the healthy
control group. For example, in Psoriasis and MG, 10 microbiota
features were shared between these two AID phenotypes, including
the genera Actinobacteria, Butyricicoccus, Clostridium IV, Shigella,
Blautia, Lactonifactor, Anaerostipes, Clostridium I, Parabacteroides,
and Ruminococcus 1I; however, opposite trends of change were
found. Similar results were also found in Psoriasis and RA
(opposite-trend-genera: Actinobacteria, Clostridium IV, Blautia,
Clostridium I, Ruminococcus I, Ruminococcus 11, Parabacteroides,
Bilophila Lactonifactor, Megamonas, Anaerostipe, Holdemania, and
Shigella). Th17 cells play a crucial role in the pathogenesis of
AIDs. Although specific pathological regions vary among different
AID phenotypes, Psoriasis, RA, and MG involve an imbalance
in Th17/Treg cells (Alexander et al., 2022; Zhang et al., 2024;
Szekanecz et al., 2021). Almost all the above-mentioned genera
with opposite trends have been reported to be associated with
Th17 cells or T-cell-related inflammatory responses, except for the
genera Holdemania and Bilophila (Bixio et al., 2024; Ajith and
Anita, 2025; Sun et al., 2023; Schirmer et al., 2019; Lian et al.,
2024; Yu et al,, 2025; Lu et al., 2024; Zou et al., 2024). Numerous
investigations have demonstrated that the gut microbiota can
exert an impact on host immunity via its metabolites. This
process, in turn, affects AID phenotypes, and this mechanism
represents a key strategy for treating AIDs (Yang and Cong,
2021). Our findings indicate that, within distinct AIDs, the gut
microbiota microenvironment may exhibit completely opposing
characteristics. The variations in AID phenotypes may be attributed
to the influence of specific gut microbiota patterns on the host
immune response process. Combined with the role of genetic
factors, this leads to an imbalance of Th17/Treg cells in different
regions of the body, ultimately giving rise to the emergence of
corresponding pathological phenotypes.

Strengths and limitations

The strengths of this study include the use of gut microbiota
data covering a variety of disease phenotypes (10 AIDs),
including gut microbiota sequencing data from almost 2,000
participants. However, this study has some limitations that should
be acknowledged. First, we aimed to include gut microbiota
sequencing data covering the widest possible range of AIDs and the
corresponding healthy controls. However, microbiota sequencing
data in public databases often lack relevant information, such
as host comorbidities, diet, BMI, and treatment/medication
conditions. In our study, only sex (70.5%), age (86.9%), and
geographical location (100%) were comprehensively available.
Previous research has shown that age and geographical location
influence gut microbiota composition, and in some diseases,
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such as systemic lupus erythematosus (SLE), sex also plays a
role (Pang et al., 2023; Bradley and Haran, 2024; He et al,
2018). Therefore, we conducted sensitivity analyses based on these
three factors (Figure 4 and Supplementary Table S1, “Sensitivity
analyses”). Most genera showed significant differences; however,
in the >65 age group, some genera did not, likely due to the
limited sample size rather than age-related effects. Moreover,
because of the limitations of publicly available sequencing data
(16S limitations), our analyses were restricted to the genus level,
and species-level analyses could not be performed. Second, all
datasets were retrospectively obtained, and the classifier was
not validated in an external prospective cohort. The complex
phenotypes of AIDs, prolonged sample collection periods, and
limited availability of prospective data in public databases preclude
such validation. Future studies should involve collaboration with
relevant clinical teams to prospectively collect fecal samples, utilize
gut metagenomic sequencing to obtain deep-level microbiota
information, assess the classifier’s predictive value for disease
progression or prognosis, and enhance its clinical applicability.
Finally, the data were cross-sectional, limiting our ability to
determine the temporal sequence and causality between abnormal
gut microbiota and the onset of AIDs.

Conclusion

In conclusion, this study offers a comprehensive analysis of the
composition of stool microbiota in AIDs. Our findings show that
the composition of gut microbiota changes in rheumatoid arthritis
(RA), spondyloarthritis (SpA), Crohn’s disease (CD), ulcerative
colitis (UC), celiac disease (CeD), multiple sclerosis (MS),
myasthenia gravis (MG), systemic lupus erythematosus (SLE),
and psoriasis. These changes are notably associated with varying
degrees of gut dysbiosis. Moreover, through differential abundance
testing and machine learning techniques, we identified several
microbial signatures that exhibit consistently higher or lower
abundances in AIDs patients than in healthy controls. Subsequent
research is imperative to delve into the specific roles and functions
of this genus within the host. This is crucial for establishing
causal associations in disease pathogenesis and for exploring their
potential as targets for future therapeutic interventions.
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SUPPLEMENTARY FIGURE S1

(A) Detailed information on the effectiveness of batch effect removal.
Shrinkage of the batch mean parameters. X-axis: estimated batch mean
parameter (Gamma); Y-axis: batch mean parameter after shrinkage
(Gamma-shrunk). Shrinkage can stably adjust the batch mean parameters.
(B) Original/adjusted mean abundance. X-axis: overall mean; Y-axis: mean
values from the different batches. The correction process makes the
originally scattered batch expressions more compact and closer to the
overall average expression, thereby significantly reducing the batch effect.

SUPPLEMENTARY TABLE S1

Comprehensive information on autoimmune diseases (AIDs) was collected
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