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Comprehensive discovery and
functional characterization of
diverse prophages in the pig gut
microbiome

Chao Wei*, Yaxiang Wang and Zhe Chen*

National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural
University, Nanchang, China

Prophages, viruses integrated into bacterial or archaeal genomes, can carry
cargo that confers beneficial phenotypes to the host. The porcine gut microbiota
constitutes a complex, dynamic, and interconnected ecosystem, yet the distribution
of prophages and their unique functional characteristics within this microbial
community remains poorly understood. In this study, we identified 10,742
prophage genomes through systematic screening of 7,524 prokaryotic genomes
from porcine gut sources, representing both bacterial and archaeal lineages, with
the distribution of integrated prophages exhibiting pronounced heterogeneity
across host species. Additionally, 1.70% (183/10,742) of prophages exhibited a
broad host range infectivity, while 5.07% (545/10,742) of integrated prophages
enhanced prokaryotic adaptive immune capabilities by augmenting or directly
providing host defense mechanisms. Notably, within tripartite phage-phage-host
interactions network analysis, we observed that these prophages (n = 15) exhibit
preferential acquisition of exogenous invasive phage sequences through CRISPR
spacer integration mechanisms. Functional annotation revealed that prophage-
encoded integrases and tail tube proteins may be critical determinants of phage
host specificity. In addition, key auxiliary metabolic genes are encoded in the
prophage of the pig intestinal tract, such as those promoting the synthesis of
host microbiota-derived vitamin B12, encoded antibiotic resistance genes, and
virulence factors that provide the host with a survival advantage. Furthermore,
comparative analysis with existing viral and phage sequences uncovered a substantial
reservoir of high-quality novel prophage sequences. Our findings systematically
investigated the diversity of prophages in the pig gut, further characterizing their
host range, functional attributes, and interactions with both host bacteria and
other phages, through large-scale analysis of porcine gut microbiota genomes.
This work offers new insights into the ecological roles of prophages and provides
valuable genomic resources for studying prophages in this ecosystem.

KEYWORDS
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1 Introduction

Phages are the most abundant entities (Clokie et al., 2011) in natural environments and
play crucial ecological roles due to their vast abundance and immense diversity (Schulz et al.,
20205 Dance, 2021). Their predation of bacteria and archaea has a strong influence on
microbial populations within diverse ecosystems (Chevallereau et al., 2022). Phages are
classified as lytic or lysogenic life cycles. Lytic phages initiate a productive replication cycle
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upon infecting prokaryotic hosts, culminating in rapid lysis and
exerting substantial regulatory influence on host population density
dynamics (Jansson and Wu, 2022). In contrast, lysogenic phages are
capable of integrating their genetic material into the host genome
following infection, establishing a dormant prophage state that persists
without causing immediate host cell lysis (Chevallereau et al., 2022).
Prophage, phage sequences integrated into bacterial or archaeal
genomes, can be beneficial, yet also pose a lethal threat as they can
reactivate and enter a lytic cycle (Sutcliffe et al., 2023). Due to the
convertible lifestyle characteristic of the prophage state, it often poses
challenges to prophage research.

Several studies (Bondy-Denomy and Davidson, 2014; Feiner et al.,
2015; Harrison and Brockhurst, 2017; Howard-Varona et al., 2017)
have demonstrated the beneficial roles of prophage, particularly under
diverse environmental stresses. During the prophage stage, integrated
phage can expand the functional gene repertoire available to the host
prokaryotic cell through lysogenic conversion, thereby enhancing the
host’s adaptive capacity (Yi et al., 2023). Prophages serve pivotal roles
in microbial interaction networks, where their integration facilitates
horizontal gene transfer among prokaryotes and confers selective
advantages to their hosts (Hu et al., 2021). For instance, numerous
prophages have been identified in deep-sea environments (Hurwitz
and U'Ren, 2016; Warwick-Dugdale et al., 2019), which can modulate
gene expression in marine bacterial hosts, facilitating their adaptation
to these extreme habitats. Similarly, Liao et al. (2024) discovered that
prophages in the human gut microbiome harbor a substantial number
of antibiotic resistance genes (ARGs), highlighting their potential role
as an underappreciated reservoir of ARGs. Additionally, a substantial
number of prophages have been identified in certain pathogenic
bacteria (Pei et al., 2024), and these prophages significantly influence
the host’s physiology, metabolism, and virulence. Therefore, phage-
host dynamics can serve as a proxy for ecological functions in
response to their environmental conditions (Piel et al., 2022; Kauffman
et al, 2022). Helpfully, prophages can also confer resistance to
infection by related phages upon their bacterial hosts, although the
breadth of this resistance varies (Bondy-Denomy et al., 2016). While
the benefits of prophages are evident, they also impose costs. The
expression of viral proteins during lysogenic conversion can place a
metabolic burden on the host, rendering the prophage disadvantageous
under certain environmental conditions (Wendling et al., 2021).
We still lack large-scale genomic data to better understand prophage
activity and function, as well as their impacts on host behavior.

Swine, as an ideal biomedical model, holds significant implications
for both agricultural production and human health (Rao et al., 2023).
The pig gut microbiome constitutes a complex, dynamic, and
interconnected ecosystem (Chen et al., 2021a; Chen et al., 2021b; Yang
et al.,, 2022), it is closely associated with various phenotypic traits of
pigs (Fu et al., 2021; Chen et al, 2022). Beyond the bacterial
component, increasing attention has been given to the pig gut virome.
For example, Hu et al. (2024b) investigated the gut phage composition
of 112 individuals from seven different pig breeds and characterized
the antibiotic resistance genes carried by these phages. Yu et al. (2025)
compared the gut virome composition of mice, pigs, and ynomolgus
macaques. Shkoporov et al. (2022) examined the extent of virome
sharing across different gut regions. More recently, Mi et al. (2024)
established the largest current pig gut virome database (PVD),
providing an important resource for future studies. Moreover, pigs are
generally raised under intensive farming conditions, which, compared
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with studies on the human gut virome, reduces the dietary variability
that can introduce noise into microbial community analyses (Yang
et al., 2022). This allows for a more accurate representation of the
natural distribution of prophages in the mammalian gut. In addition,
studies of the pig gut virome facilitate the investigation of prophage
distribution across the entire gastrointestinal tract, rather than being
limited to fecal samples (Shkoporov et al., 2022). Consequently, it
offers an excellent model for studying the characteristics of prophages
in the mammalian gut and their interactions with the host microbiota.
It will facilitate an enhanced understanding of the evolutionary
characteristics and life strategies of intestinal prophages.

In this study, we aim to delineate a comprehensive prophage
landscape within the porcine intestinal tract and conduct an in-depth
investigation into the host range properties, functional characteristics,
and interactions of prophages with their microbe hosts and other
phages. We obtained 10,742 prophage genomes after systematically
screening 7,524 prokaryotic genomes derived from porcine gut
sources, encompassing both bacterial and archaeal lineages.
Subsequently, we determined their potential host range via a CRISPR
spacer-targeting approach, revealing the potential for inter-
prokaryotic phage transmission. Annotation of defense systems across
all prophage genomes revealed that pig gut prophages possess the
potential to aid their hosts in countering infections by other phages,
particularly by influencing the integrity of the host CRISPR-Cas
systems. Simultaneously, through in-depth analysis of all prophage-
encoded proteins in the pig gut, we characterized the distribution of
auxiliary metabolic genes (AMGs), antibiotic resistance genes (ARGs),
and virulence factors (VFs) within the prophage genomes, as well as
their potential roles in shaping microbial hosts. Comparison with
public databases revealed that the prophage genomes we identified
exhibit high novelty, indicating that we provide valuable new prophage
sequence resources. Overall, our study reveals the diversity, ecology,
evolution, and functional significance of pig gut-derived prophages,
contributing to an enhanced understanding of the roles played by
prophages within the pig gut.

2 Materials and methods

2.1 Genome collection of pig gut-derived
prokaryotic genomes

We first collected available genomes (clearly identified as the
source of pig intestines or feces) from the National Center for
Biotechnology Information database (NCBI, February 2025), three
other studies about pig gut microorganisms (Holman et al., 2021; Hu
etal.,, 2024a; Yang et al., 2024), and our laboratory collections. Next,
CheckM (Parks et al., 2015) (v1.1.3) was used to evaluate the quality
of pig gut prokaryotic genomes, and only high-quality genomes
(completeness >90% and contamination <5%) were retained.
Furthermore, taxonomic classification of retained genomes was
performed by GTDB-Tk (Chaumeil et al., 2022) (v1.3.0) using the
“classify_wf” pipeline. Ultimately, our study compiled a
comprehensive collection of 7,524 pig gut-derived prokaryotic
genomes, comprising 84 genomes from the NCBI, 2,746 from three
other published studies about pig gut microorganisms, and 4,694
generated in our laboratory. The prokaryotic genomes dataset

consisted of 7,436 bacterial genomes and 88 archaeal genomes,
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collectively classified into 799 species, 670 genera, 148 families, 67
orders, 27 classes, and 22 phyla. Detailed information is provided in
Supplementary Table S1.

2.2 Prophage prediction, genome quality
assessment, and taxonomy assignment

We first used VirSorter2 (Guo et al,, 2021) (v2.2.2) to predict
prophage sequences in the curated pig gut prokaryotic genome dataset
with the “--include-groups dsDNAphage, ssDNA --min-length 5,000
--min-score 0.5” and “--include-groups RNA --min-length 1,000
--min-score 0.5” parameter. After conducting targeted searches for
RNA-dependent RNA polymerase (RARP) proteins to further identify
RNA phages, we did not find any RNA phages (Dominguez-Huerta
etal, 2022; Neri et al., 2022). Next, to remove contaminating bacterial
and archaeal sequences, the authenticity of all putative prophages was
evaluated based on the bacterial or archaeal universal single-copy
orthologs [BUSCO (Waterhouse et al., 2018)] and the curated viral
protein family modules [VPFs (Paez-Espino et al., 2017)]. Briefly,
proteins encoded by each prophage were searched against the 318
BUSCO gene HMMs with hmmsearch (-E 0.05), and then used the
BUSCO-provided HMM score cut-offs to filter the results for “hits”
The rate of BUSCO hits per total number of genes in each Viral RefSeq
genome (BUSCO ratio) was assessed, and this established a range of
BUSCO ratio values of 0-0.067 that were derived from known virus
genomes (Gregory et al., 2020). Meanwhile, to assess the level of viral
gene enrichment, an HMMsearch of all putative prophage genomes
against VPFs was performed, with hits being defined as any matches
with an e-value <0.05. The prophage genomes that had a BUSCO ratio
<0.067 or had a BUSCO ratio >0.067 and at least 3 VFP hits were
retained for further analysis. Furthermore, we utilized geNomad
(Camargo et al.,, 2023) (v1.7.4) with default parameters to remove
putative plasmid sequences from these putative prophages. The
genome quality of prophages was evaluated using the software CheckV
(v. 1.0.1) with default parameters and databases. For not-determined
prophage sequences, we further used geNomad with default
parameters to assess and only retained theseprophage sequences
classified as “Virus.” Finally, 10,742 prophages were obtained, and
prophage

taxonomy was predicted using geNomad with

default parameters.

2.3 Acquisition of the CRISPR spacers and
alignment with prophages

We utilized MinCED (v0.4.2, https://github.com/ctSkennerton/
minced) to predict CRISPR systems among all 7,524 prokaryotic
genomes in this study, identifying a total of 44,425 spacer sequences,
including 44,063 spacers derived from prokaryotic hosts and 362
spacers from prophages. Then, the BLASTn (v.2.12.0) (Altschu et al.,
1990) alignments were performed between all prophages and CRISPR-
spacer sequences. We established five different matching thresholds to
explore potential interactions: (a) identity = 100%, coverage = 100%
(Camarillo-Guerrero et al,, 2021; Pei et al., 2024); (b) coverage = 100%,
0-2 mismatches (Kieft et al., 2021); (c) coverage = 95%, 0-1 mismatch
(Nayfach et al., 2021); (d) identity = 95%, coverage >95% (Benler
et al., 2021); (e) identity = 80%, coverage = 90%, 0-2 mismatches
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(Johansen et al., 2023); and (f) identity >90%, coverage >75% (Yan
etal., 2023).

2.4 Defense systems prediction for all
prokaryotic hosts and prophages

We first utilized CRISPRCasFinder (Couvin et al., 2018) (v4.3.2)
with default parameters to predict CRISPR-Cas systems in prokaryotic
hosts and prophages containing spacers predicted by MinCED,
resulting in the identification of 240 CRISPR-Cas systems.
Furthermore, we used DefenseFinder with default parameters to
predict other defense systems for all 7,524 prokaryotic hosts and
10,742 identified prophages, and a total of 10,448 other defense
systems were identified.

2.5 Genetic codes assessment and
functional gene annotation for all
identified prophages

Prodigal (Hyatt et al., 2010) (v2.50) was used to identify open
reading frames (ORFs) of 10,742 prophage genomes under the
standard genetic code (code 11) and three alternative genetic codes:
TAG recoding (code 15), TAA recoding (code 90) and TGA recording
(code 91) as described by Nayfach et al. (2021). Briefly, for a prophage
with a genome size <100 kb, if its protein-coding density with the
genetic codes 15, 90, or 91 increased >10% compared to that with the
standard genetic code 11, we considered that this prophage genome
tended to use the corresponding alternative genetic code. For those
prophages with a genome size >100 kb, the threshold for considering
the utilization of alternative genetic code was the increase of protein-
coding density >5%.

In total, 311,891 protein-coding genes were identified from 10,742
prophage genomes using Prodigal with alternative genetic codes, and
genes were annotated based on HMM searches against the Pfam-A
(Mistry et al., 2021), IGRFAM (Haft et al., 2003), and VOGDB!
protein family databases. All searches were performed using the
hmmsearch utility in the HMMER package (v.3.1b2) (Potter et al.,
2018) with the “-E le-5” option, and each gene was annotated by each
database according to its top-scoring alignment. Furthermore, to
identify integrase and tail fiber proteins from prophage protein-coding
genes, we first collected integrase and tail fiber proteins of DNA
viruses from the NR database. We utilized Diamond (blastp)
(Buchfink et al., 2015) to search the constructed integrase and tail fiber
protein database for prophage protein-coding genes with the option
“--more-sensitive -e 1e-5 Additionally, the phylogenetic trees were
constructed using identified integrase and tail fiber proteins from all
prophages. Briefly, these integrase and tail fiber proteins were
generated alignment sequences using MAFFT (v7.490) (Katoh and
Standley, 2013), and these alignment sequences were trimmed using
trimAl (v1.4.rev22) (Capella-Gutierrez et al., 2009). The phylogenetic
trees were finally generated using FastTreeMP (v2.1.10) (Price et al.,

1 http://vogdb.org
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2010) and visualized and annotated using iToL? (Letunic and
Bork, 2016).

2.6 Prediction of AMGs, ARGs, and VFGs
among prophage genomes

Prophage-encoded auxiliary metabolic genes (AMGs) were
annotated using the VIBRANT (v1.2.1) (Kieft et al, 2020) and
DRAM-v (v1.3.5) (Shaffer et al., 2020). Briefly, proteins encoded by
phage genomes were first scored by VirSorter2 (v2.2.2), and then, the
scored proteins were annotated using DRAM-v with default options.
AMGs were also annotated using the VIBRANT and assigned to the
metabolic pathways using the KEGG database. Only those AMGs
annotated by both the VIBRANT and DRAM-v were retained for
further analyses. We used the ColabFold, which combined the fast
homology search by MMseqs2 (v2.0) (Steinegger and Soding, 2017)
with the AlphaFold2 (v2.0) (Tunyasuvunakool et al., 2021) to predict
three-dimensional structures of AMGs. Five models in the AlphaFold2
were generated for each protein, and the highest-ranked model was
used for structural alignments. Visualization, superimposition, and
RMSD value calculation were performed using ChimeraX (v1.7)
(Pettersen et al., 2021) with default parameters.

The proteins of all prophage genomes were compared to of the
Comprehensive Antibiotic Resistance Database (CARD) using the
Resistance Gene Identifier [RGI (Alcock et al., 2020), v. 5.1.0] to
identify potential ARGs (the strict model with default parameters) and
were aligned with the Virulence Factors Database (VFDB)?® using
BLASTp to identify putative virulence factors with a threshold of
identity >30% and coverage >70%.

2.7 Clustering of prophages and
phylogenetic trees construction

To evaluate the novelty of porcine gut-derived prophages, we first
collected putative viral genomes from a large porcine gut virome study
[PVD (Mietal., 2024)]. To exclude the effect of genome fragmentation,
we used MH prophages (this study) and MH viral genomes (PVD) to
cluster into the species-level viral clusters, the genus-level viral
clusters, and the family-level viral clusters as described by Nayfach
etal. (2021). We further incorporated viral genomes from three large
human gut virome studies [MGV (Nayfach et al, 2021), GPD
(Camarillo-Guerrero et al., 2021), and GVD (Gregory et al., 2020)] to
form species-level clustering.

Furthermore, we constructed the phylogenetic trees of
Caudoviricetes and crAss-like phages. Briefly, we first identified a set
of 77 gene markers (Nayfach et al., 2021) of Caudoviricetes genomes
from the predicted protein sequences based on individually searching
against HMM profiles for the 77 markers using HMMER. We then
trimmed and concatenated individual marker alignments to retain
those genome fragments with less than 50% gaps using trimAl
(v1.4.rev22) (Capella-Gutierrez et al., 2009). We only kept those viral

2 https://itol.embl.de/
3 http://www.mgc.ac.cn/VFs/
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genomes containing at least three markers and existing in >5% of
alignment columns. Finally, the phylogenetic tree was constructed
using the bootstrap generated using FastTreeMP and visualized using
iTOL (see text footnote 2). To construct the phylogenetic trees of
crAss-like phages based on the large terminase subunit (TerL)
structural proteins, BLASTP and HMMER searches were performed
against a custom structural protein database. And then, the resulting
protein sequences were subsequently trimmed, aligned, and used for
phylogenetic tree construction following the methods described above.

2.8 Data visualization and statistical
analysis

All statistical analyses and data visualization were performed
using the packages in R (v4.2.1).

3 Results

3.1 Comprehensive identification of
prophages harbored in pig gut prokaryotes

To systematically investigate the characteristics and distribution
of prophages within the porcine intestinal microbiome, we screened
(MAGs,
comprising 84 genomes from the NCBI, 2,746 from three other

7,524 prokaryotic metagenome-assembled genomes

published studies about pig gut microorganisms, and 4,694 generated
in our laboratory) derived from metagenomic sequencing data of
swine gut microbiota (Supplementary Table S1), representing 12
phyla, 20 classes, 34 orders, 65 families, 188 genera, and 439 species
(Figure 1a). Using a customized prophage identification pipeline,
we identified 10,742 prophages with genome size from 5 kbp to
555.978 kbp and median size: 24.09 kbp (Supplementary Table S2),
among which 1,282 prophage genomes exhibited medium-to-high
quality (>50% completeness) while 8,636 prophage genomes could
be taxonomically classified, the vast majority were restricted to higher
ranks, with only 40 confidently assigned at the family level and were
primarily annotated as the members of known or unclassified viral
families within the class Caudoviricetes, highlighting that a large
number of potential new prophages remain to be characterized.
Notably, these prophages were identified in 67.89% (5,108/7524) of
prokaryotic genomes, encompassing 86.48% (691/799) of bacterial
and archaeal species (Figure 1b). Striking variation in the numbers of
prophages carried by each prokaryotic genome was observed across
prokaryotes, with 2,917 genomes harboring a single prophage while
37 genomes contained more than 10 prophages.

Given the presence of incomplete phage fragments among the
predicted prophage genomes, we established a subset catalogue
comprising 1,282 medium-to-high quality (MH) prophage genomes.
These 1,282 prophage genomes were distributed across 12.39%
(932/7,524) of prokaryotic genomes and 40.43% (323/799) of prokaryotic
species (Supplementary Figure Sla). However, 204 prokaryotic genomes
harbored multiple medium-to-high quality prophages, which further
underscores the highly uneven distribution across porcine intestinal
prokaryotic genomes. Furthermore, to explore the relationship between
prophage distribution and genomic GC content, we calculated the GC
content of each prokaryotic genome carried prophage genome. While
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FIGURE 1

Overview of porcine gut-derived prokaryotic prophages. (a) Overview of the pipeline used for identifying porcine gut-derived prokaryotic prophages,
including bacterial and archaeal genomes collection, prophage prediction, genomic completeness assessment, and taxonomic classification of
prophages. (b) The proportion of all identified prophages at the genome level and the species level (pie charts), along with the distribution of the
number of prophages per prokaryotic genome (bar chart). (c) The proportion of all identified prophages and MH prophages for each bacterial and
archaeal species genome. The dots represent different bacterial and archaeal species.

the majority of bacterial genomes exhibited GC contents ranging from
40 to 60%, archaeal genomes predominantly showed 20-40% GC
contents (Supplementary Figure S1b). We focused on the distribution of
prophages across different genomes in the same species. A total of 691
prokaryotic species were identified prophages in their genomes, with
four species having >80% prokaryotic genomes identified prophages
(Figure 1c). Notably, all these four species were conditionally pathogenic
bacteria in the humans including Escherichia fergusonii (100%, 16/16),
Citrobacter portucalensis (100%, 5/5), Klebsiella pneumoniae (90%, 9/10),
and Parabacteroides distasonis (80%, 4/5), demonstrating significantly
higher occurrence than other species. Intriguingly, several bacterial
species, such as CAG-317 sp000433215 (0%, 0/1,149), UBA644
$p002299265 (0%, 0/18), and Ruminiclostridium_E sp016297165 (0%,
0/10), did not have any medium-to-high quality prophages detected in
their genomes, but incomplete prophage genome fragments were
observed in their genomes (Supplementary Table S3). Overall,
substantial heterogeneity in prophage distribution was observed across
different prokaryotic genomes in the porcine gut, and compared with
symbiotic bacteria, specific pathogenic bacteria were more likely to
carry prophages.

3.2 CRISPR spacer matching analysis
reveals the potential prokaryotic host
range and inter-prophage interactions

Prophages typically alternate between lysogenic and lytic
cycles, reflecting dynamic infection models (Touchon et al., 2016).

Frontiers in Microbiology

Understanding the potential for horizontal transmission of
prophages across distinct bacterial and archaeal hosts is crucial for
unraveling the complex tripartite interactions among phages,
prokaryotes, and their host organisms (Zeng et al., 2016; Yin et al.,
2016). CRISPR spacer sequences provide a powerful tool for
reconstructing the historical infection events of phage (Medvedeva
et al., 2022; Wu et al., 2024). We identified a total 44,425 spacer
sequences from 29.44% (2,215/7,524) prokaryotic genomes and 23
prophage genomes, and after matching with different thresholds
for spacer matching, we obtained different specific numbers of
relationships. Specially, we obtained 1,059 host-prophage pairs and
17 prophage-prophage interactions, 2,712 host-prophage pairs and
25 prophage-prophage interactions, 3,346 host-prophage pairs and
29 prophage-prophage interactions, 3,350 host-prophage pairs and
29 prophage-prophage interactions, 8,583 host-prophage pairs and
67 prophage-prophage interactions, and 25,752 host-prophage
pairs and 230 prophage-prophage interactions using five distinct
sets of parameter settings. Considering the importance of
interaction accuracy, we retained the most stringent threshold
(100% identity and 100% coverage) for our final analysis (Figure 2a
and Supplementary Tables S4, S5). Notably, the majority of
prokaryotic genomes encoded a maximum of two CRISPR arrays,
whereas most prophages contained at most one CRISPR array
(Figure 2b). CRISPR spacer targeting analysis further revealed 616
prophages with putative prokaryotic hosts. Among all spacer-
targeted prophages, 70.29% (433/616) exhibited high host
specificity (specialist phages, targeting a single bacterial/archaeal
genus), while the 29.71% (183/616) demonstrated broad host
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Host range of porcine gut-derived bacterial and archaeal prophages and patterns of inter-prophage interactions. (a) Schematic overview of CRISPR
spacer matching analysis for prophages and hosts. (b) The number of CRISPR arrays encoded by prokaryotic genomes (x-axis) and prophage (y-axis)
genomes, and the percent of prokaryotic genomes encoding CRISPR arrays. (c) The distribution of infection host range for prophages by CRISPR
spacer matching. (d) The distribution of inter-prophage interaction types with CRISPR spacer matching.

ranges (generalist phages, targeting 2-6 distinct bacterial/archaeal
genera) (Supplementary Figure S1d). Notably, a subset of
prophages (n = 51) displayed cross-phylum infection capability,
indicating an exceptional potential for broad-host-range infectivity
(Figure 2c). Subsequent analysis of prophage-prophage interactions
revealed three principal interaction modes (I, II, and III)
(Figure 2d). Considering both bacterial host genomes and
prophages were predicted to contain spacer sequences, three
interaction patterns naturally emerged: (I) a prophage with a
predicted spacer matches another prophage genome; (II) both
prophages contain predicted spacers that match each other; (III) a
prophage matches both its bacterial host and another prophage,
with the two prophages sharing a common host. Intriguingly,
we observed that the majority of prophage-prophage interactions
predominantly adopted modes I and II, suggesting that during
integration into prokaryotic host genomes, phages may
preferentially capture and incorporate sequences from invading
phage sequences into their spacer arrays, potentially establishing a
phage-mediated immune-like defense mechanism analogous to
host CRISPR systems (Figure 2d).
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3.3 Prophages augment or confer defense
mechanisms in prokaryotic hosts against
exogenous phage predation

Host microorganisms deploy diverse defense mechanisms,
including CRISPR-Cas, restriction-modification (RM), and abortive
infection (Abi) systems to counteract phage invasion (Bernheim and
Sorek, 2020; Makarova et al., 20205 Jurénas et al., 2022). Intriguingly,
certain archaeal viruses and huge phages have been reported to
encode CRISPR-Cas systems for eliminating competing phages
(Al-Shayeb et al., 2020; Wu et al., 2024). We successfully predicted
CRISPR-Cas systems in prokaryotic genomes (1 = 238) and prophages
(n=2) using CRISPRCasFinder (Figure 3a
Supplementary Table S6). Although CRISPR-Cas systems were
identified in both prokaryotic genomes and prophages, their

and

abundance was significantly lower than the number of CRISPR arrays
detected in prokaryotic genomes (n = 2,215) and prophages (n = 23),
suggesting that the majority of CRISPR arrays exist in isolation and
likely cannot mediate functional CRISPR-Cas-mediated host
immunity. However, this interpretation may be influenced by the
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Characterization of defense mechanisms in prokaryotic hosts and prophages. (a) Overview of the pipeline used to identify CRISPR-Cas systems in
prokaryotic hosts and prophages. (b) The phylogenetic tree analysis of CRISPR-Cas systems and associated prophage types in bacterial (left) and
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labeled in red. The stacked diagram (right) illustrates the proportion of other defense systems identified in all prophage genomes.

incomplete assembly of both the prokaryotic host and prophage
genomes. Subsequent characterization of CRISPR-Cas systems
encoded in prokaryotic genomes revealed their classification into two
classes, four types, and eleven subtypes, with Class 1-Subtype
I (n=103) and Class 2-Subtype II (n=90) representing the
predominant CRISPR-Cas system types among prokaryotic genomes
(Figure 3b). Concomitantly, we surprisingly observed that
CRISPR-Cas systems encoded by prophages themselves were
incomplete, lacking core Cas effector proteins such as Cas3, Cas9, or
Cas12. However, these prophages could functionally leverage host-
derived Cas effectors (e.g., Cas9) from their prokaryotic hosts to
CRISPR-Cas-mediated cleavage of foreign DNA
(Supplementary Figure S2a), thereby enhancing the hosts antiviral

execute

defense against competing phage infections.

In addition to CRISPR-Cas systems, prokaryotic genomes have
evolved a multitude of antiviral mechanisms in their evolutionary
arms race against viral pathogens (Chopin et al, 2005).
We systematically identified 10,448 antiviral defense systems
(including those encoded within prophages) across 7,524 prokaryotic
genomes beyond CRISPR-Cas systems. Among these, 38.40%
(2,889/7,524) of prokaryotic hosts predominantly relied on restriction-
modification (RM) systems, while 15.23% (1,146/7,524) utilized AbiD
systems as their main defense strategy. Notably, 5.07% (545/10,742) of
the 10,742 prophages encoded defense systems that could potentially
contribute to their host protections. After stringent filtering to exclude
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potential contamination from host-derived sequences, this finding
suggests that prophages may acquire antiviral defense systems via
horizontal gene transfer (HGT) to enhance host defense capacity
against competing phages (Figure 3c).

3.4 Functional insights into prophages in
the porcine gut microbiota

Several phages, including huge phages and crAss-like phages, have
been demonstrated to employ alternative codon recoding strategies
(Devoto et al,, 2019; Yutin et al., 2021; Lou et al., 2024), which play
crucial roles in regulating viral replication and gene expression
mechanisms. To investigate the prevalence of alternative codon usage
patterns among porcine intestinal prophages, we performed protein
prediction using four genetic codes (genetic code 11: standard code,
genetic code 15, genetic code 90, and genetic code 91), optimizing
genetic code selection based on total alignment scores. Our analysis
revealed that 0.35% (38/10,742) prophages utilize alternative codon
strategies for protein encoding. Comparative Pfam annotation of these
alternatively recoded proteins demonstrated that, although fewer
proteins were predicted under alternative codon usage (2,317 vs.
3,068), a higher number of Pfam annotations (613 vs. 595) were
achieved compared to standard codon-derived predictions (Figure 4a).
Comparative analysis further demonstrated that, while the majority
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of protein predictions overlapped between the two strategies,
alternative codon usage enabled the assembly of previously fragmented
protein predictions into cohesive, full-length polypeptides, often
yielding larger and more complete protein architectures than standard
code predictions (Figure 4b). This finding provides a mechanistic
explanation for the enhanced functional annotation yields observed
with alternative codon recoding.

To further investigate the functional potential of prophages
within the porcine intestinal microbiome, we analyzed 311,891
proteins encoded by 10,742 prophages against hidden Markov model
(HMM)  databases including TIGRFAM, Pfam, and
VOGDB. Collectively, 9.79% (30,534/311,891) of prophage genes
exhibited no any  database
(Supplementary Table S7). The majority of annotated genes were

significant  matches in

10.3389/fmicb.2025.1662087

functions, highlighting the limited functional characterization of
porcine intestinal prophages in current genomic databases.
Concurrently, several prophage-encoded proteins exhibited canonical
viral functionalities, including capsid formation, packaging, lysis,
lysozymes, and transcriptional regulation (Figure 4c), spanning genes
associated with core phage functional modules. Notably, several
prophage-encoded proteins were annotated as helix-turn-helix
(HTH) motifs, which primarily mediate bacterial chromosomal
binding, a molecular mechanism that may constitute a critical factor
facilitating phage integration into bacterial genomes. Intriguingly, a
subset of prophage-encoded proteins was annotated as HNH
endonuclease domains, which may facilitate targeted cleavage of
specific DNA sequences derived from competing phages (Bellas et al.,
2020), suggesting a putative defense mechanism against rival viral
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methyltransferases were annotated, which may enable viruses to
evade host defense systems (Markine-Goriaynoff et al., 2004; Jeudy
et al., 2020).

Integrase, a key enzyme mediating site-specific recombination
and facilitating the stable integration of phage genomes into
bacterial/archaeal host chromosome (Howard-Varona et al., 2017),
was also extensively characterized. Similarly, phage tail-fiber
proteins constitute critical structural components of the viral tail
apparatus, directly mediating host recognition, adhesion, and
infection initiation (Yehl et al., 2019; Patel et al., 2024), were
indicated. These proteins represent central molecular determinants
governing phage host specificity and infection efficiency. To
investigate whether integrase and tail tube proteins contribute to
prophage host range, we constructed phylogenetic trees of these
proteins to evaluate their host distribution patterns. Phylogenetic
analysis revealed that evolutionary distances were significantly
smaller within groups infecting similar hosts (single, same species,
cross species, and cross genus) compared to between-group
distances (Figure 4d, p < 0.05). This finding suggests that prophage-
encoded integrase and tail tube proteins may be crucial determinants
of phage host specificity.

Prophage-encoded auxiliary metabolic genes (AMGs) can
modulate host metabolism, thereby enhancing or reprogramming
metabolic pathways (Yi et al., 2023). Subsequent systematic annotation
of AMGs across all prophage genomes revealed that 1.12%
(120/10,754) of prophages harbored AMGs, originating from 10.01%
(80/799) of host species (Figure 4e and Supplementary Table S8).
Among these auxiliary metabolic genes (AMGs), the dcm gene was
the most prevalent, followed by metK and cobT genes (Figure 4f).
Notably, the cobT gene, a critical determinant of vitamin BI12
biosynthesis, is involved in the production of an essential nutrient that
must be acquired exogenously through the diet or, to a limited extent,
synthesized endogenously by the gut microbiota in swine and humans
(Wienhausen et al., 2024). Therefore, we conducted an in-depth
investigation of prophage-associated AMGs involved in vitamin B12
biosynthesis, focusing on cobA, cobS, and cobT genes. Our findings
suggest that prophage-mediated transfer of these genes may
supplement or enhance host biosynthetic capabilities, providing
selective advantages through enhanced nutritional biosynthesis
(Figure 4g). Furthermore, to delineate the metabolic augmentation
potential of prophage-encoded AMGs (cobA, cobS, and cobT),
we performed comparative analyses of prophage-encoded AMGs and
their bacterial/archaeal host homologs, including protein identity (PI)
assessments (Supplementary Figure S2b) and three-dimensional
S2¢).  These
investigations demonstrated functional equivalence between

structural comparisons (Supplementary Figure
prophage-derived AMGs and native host-encoded genes. This
molecular convergence strongly supports the hypothesis that prophage
integration supplements or amplifies host metabolic networks
(Supplementary Figure S2d), ultimately influencing microbial
physiological functionality through auxiliary biosynthetic pathway
modulation. Furthermore, we assessed the potential functionality of
prophages based on the integrity of their genomic features. Our
analysis revealed that approximately 997 genomes in the MHC harbor
lysis-related genes, and 263 genomes contain integration-related
genes. The presence of these functional modules is likely to facilitate
the completion of the prophage life cycle and enable them to exert
their biological functions (Supplementary Table S9).
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3.5 Prophage-mediated mobilization of
antibiotic resistance genes and diverse
virulence factor genes in the porcine gut
microbiota

Prophages serve as pivotal vectors for horizontal gene transfer
(HGT), facilitating not only the dissemination of antibiotic resistance
genes (ARGs) but also enhancing host pathogenicity through the
transfer of virulence factor genes (VFGs) to bacterial hosts (Pei et al.,
2024), thereby driving the evolution of bacterial virulence. To
comprehensively characterize and assess the transmission risks of
ARGs and VFGs mediated by prophages within porcine intestinal
bacterial/archaeal hosts, we conducted a systematic genomic analysis
of all 10,742 prophage genomes. Specifically, we identified 208 putative
ARGs across 120 prophages, associated with 65 bacterial/archaeal
genomes (0.86%, 65/7,524) and 12 prokaryotic species (1.50%, 12/799)
(Figure 5a and Supplementary Table S10). Notably, Escherichia coli
harbored the highest number of prophage-associated ARGs (n = 92),
with 43.08% (28/65) of E. coli strains carrying ARG-bearing
prophages. This was followed by Escherichia fergusonii (n = 68 ARGs,
15 of 16 strains), Citrobacter portucalensis (n=13 ARGs, 4 of 5
strains), and Salmonella enterica (n=9 ARGs, 2 of 3 strains)
(Figure 5b). Among the identified ARGs, multidrug resistance
(n =107), aminocoumarin resistance (n = 27), and nitroimidazole
resistance (n = 16) were the most prevalent categories, followed by
elfamycin resistance (n=9), fluoroquinolone resistance (1 =38),
fosfomycin resistance (n =8), and tetracycline resistance (n = 8)
(Figure 5¢). Primary antibiotic resistance mechanisms observed in
porcine intestinal bacterial prophages encompassed antibiotic efflux,
antibiotic inactivation, antibiotic target alteration, and multi-
mechanism resistance. Furthermore, our analysis revealed that cross-
species prophages exhibited a higher ARG detection frequency
(3.70%, 3/81) compared to prophages with restricted host ranges.
However, single-host lineages (Single) displayed greater diversity in
their ARG repertoires relative to those with broad host ranges (cross
genera, cross species, and same species) (Supplementary Figure S2e).
Overall, the presence of ARGs within cross-species prophages
underscores their enhanced potential for mediating the dissemination
of resistance determinants across taxonomic boundaries.

Similarly, we detected 1,111 putative virulence factor genes
(VEGs) across 378 prophage genomes, associated with 253 bacterial/
archaeal genomes (3.36%, 253/7,524) and 83 prokaryotic species
(10.39%, 83/799) (Figure 5d and Supplementary Table S11). Notably,
Escherichia coli harbored the highest number of prophage-associated
virulence factor genes (VFGs) (n = 291), with 43.08% (28/65) of E. coli
strains carrying VFG-bearing prophages. This was followed by
Escherichia fergusonii (n = 225 VFGs, 15 of 16 strains), Citrobacter
portucalensis (n = 142 VFGs, 5 of 5 strains), and Klebsiella pneumoniae
(n =56 VEGs, 10 of 10 strains) (Figure 5¢). Among these virulence
factors, Flagella (n = 243), Capsule (n = 128), and Lipopolysaccharide
(LPS, n = 98) were the most prevalent, followed by Lipooligosaccharide
(LOS, n = 65), Type VI Secretion System (T6SS, n = 52), and Type 1
fimbriae (n =45 and Figure 5f). Among all prophages harboring
toxin-related VFGs, those with cross-species integration exhibited a
higher detection frequency (11.11%, 9/81) compared to other
integration modes (Supplementary Figure S2f). Moreover, broad-
host-range prophages (cross genera, cross species, and same species)
played a pivotal role in the dissemination of toxin gene, highlighting
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their substantial risk potential in promoting the spread of pathogenic
trait across microbial communities.

3.6 Mining prophages reveals a fraction of
viral dark matter in the porcine gut

Profiling of porcine intestinal virome can be performed either
through bulk metagenomic sequencing or viral-like particle (VLP)-
enriched sequencing to identify viral sequences. The recent release of
a large-scale Porcine Virome Dataset (PVD) has significantly advanced
research on swine gut-associated viral communities (Mi et al., 2024).
To assess the contribution of our prophage dataset to existing porcine
intestinal viral databases, we clustered all 1,282 medium-to-high
(MH) quality prophage genomes against viral sequences in the PVD
at species-, genus-, and family-level taxonomic resolutions (Figure 6a).
Specifically, approximately 11.15% (143/1,282) of MH prophages
exhibited sufficient species-level clustering matches with known
porcine intestinal phages, while the remaining 88.85% (1,139/1,282)
represent previously uncharacterized viral entities. Similarly,
taxonomic clustering revealed 39.39% (505/1,282) and 8.85%
(110/1,282) of MH prophages as previously uncharacterized viral
entities at genus- and family-level clustering resolutions, respectively.
These newly identified medium-to-high (MH) quality prophage
genomes of bacterial/archaeal origin substantially expand the current
reference genome databases for porcine gut phages. Subsequent
comparative analysis against three large-scale human gut virome
databases [Metagenomic Gut Virus catalogue (MGV), Gut Phage
Database (GPD), and Gut Virome Database (GVD)] revealed that
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only 9.67% (124/1,282) of MH prophages formed sufficient species-
level clustering matches with known human gut phages, whereas the
vast majority, 90.33% (1,158/1,282), remained uncharacterized
(Figure 6b). Certainly, compared with MH prophages from human
guts, 92.98% (1,192/1,282) pig gut prophage genomes exhibited
uniqueness (Figure 6b).

Furthermore, to evaluate the contribution of our dataset to the
current Caudoviricetes class, we conducted a concatenated
phylogenetic analysis of 934 MH prophage genomes classified within
Caudoviricetes against 4,196 complete Caudoviricetes phage genomes
from the RefSeq database, utilizing 77 conserved marker proteins
(Figure 6¢). Phylogenetic diversity analysis revealed that prophages
from this study contributed 39.74% (867/2,182 PD units) of the total
phylogenetic diversity (PD), substantially expanding the current
diversity landscape of the Caudoviricetes class (Figure 6c¢).

CrAss-like phages, which dominate the human gut virome, are
known to modulate intestinal bacterial abundance and diversity
through host-specific interactions (Guerin et al., 2018; Yutin et al,,
2021), have been linked to host metabolism, immune regulation, and
disease susceptibility, including established associations to obesity,
inflammatory bowel disease (Jansen and Matthijnssens, 2023). They
belong to the Crassvirales order (hereafter referred to as crassviruses).
Notably, substantial populations of crAss-like phages have also been
reported in the intestinal ecosystems of non-human animals,
suggesting conserved ecological roles across mammalian hosts.
Subsequently, we investigated the presence of crAss-like phages within
porcine intestinal prophages and assessed their distribution across six
subclusters (alpha, beta, delta, epsilon, gamma, and zeta). Notably,
four subclusters—alpha, beta, delta, and gamma—have been formally
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Characterization of the novel porcine gut-derived prophages. (a) The genome clustering analysis for MH prophages with previous large Porcine
Virome Database (PVD) at the species-level clustering, the genus-level clustering, and the family-level clustering. (b) The genome clustering analysis
for MH prophages with three major human gut virome datasets (MGV, GPD, and GVD) and human gut prophages (Pei et al., 2024) at the species-level.
(c) The phylogenetic tree analysis of Caudoviricetes based on 77 marker genes for Caudoviricetes MH prophages and RefSeq’'s Caudoviricetes
sequences. The outer circle represents the length of genomes, and the red clades represent Caudoviricetes MH prophages in this study. (d) The
phylogenetic tree analysis of crAss-like phages based on Terl proteins. The red stars represent TerL proteins of MH prophage in this study, and the
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classified by the International Committee on Taxonomy of Viruses
(ICTV) as distinct families: Intestiviridae, Steigviridae, Suoliviridae,
and Crevaviridae, respectively (Figure 6d). ICTV currently classifies
crAss-like phages into only four official subfamilies (alpha, beta,
gamma, delta), while epsilon and zeta have not yet been included in
the official classification system. Although these two subfamilies have
been identified as independent branches in phylogenetic analyses,
they lack sufficient taxonomic evidence (such as representative virus
isolates, host infection verification, or complete functional
characteristics) to meet ICTV’s strict classification criteria.
Collectively, we identified 12 MH crAss-like phages (0.94%, 12/1,282),
predominantly distributed within the zeta subcluster, followed by the
alpha and beta subclusters.

4 Discussion

Prophages play crucial roles in shaping the ecology and evolution of
microbe populations, with important consequences for higher-order
ecological interactions (Wendling, 2023). In this study, we systematically
investigated the diversity of prophages in the pig gut and further
characterized their host range, functional attributes, and interactions
with bacterial or archaeal hosts through large-scale analysis of porcine
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gut microbiota genomes. The highly uneven distribution of prophages
and their exceptionally broad host ranges reveal potentially diverse
interaction modalities between phages and their prokaryotic hosts.
Prophage-encoded defense systems, particularly their influence on the
integrity of host CRISPR-Cas systems, play a critical role in helping hosts
resist infection by other phages. Auxiliary metabolic genes suggest that
prophages may protect host prokaryotes from phage predation while
enhancing or modifying host metabolic capabilities, thereby increasing
prokaryotic fitness. The identification of antibiotic resistance genes and
virulence factors encoded by prophages with cross-host potential
underscores their inherent risk in disseminating resistance determinants
and virulence traits. These findings demonstrate that prophages
integrated into host prokaryotes’ genomes enhance prokaryotic fitness
through multiple mechanisms, providing deeper insights into the role
prophages play within the complex pig gut microbiome.

Through CRISPR spacer matching analysis, we gained a clearer
understanding of the host distribution of pig gut prophages. Our study
demonstrates that prophages were identified in 67.89% (5,108/7,524)
of prokaryotic host genomes analyzed, yet only 12.39% (932/7,524) of
these hosts harbored MH-associated prophages. The high frequency
of prophage distribution in host genomes further confirms that, in the
gut environment, the benefits prophages provide to their hosts are as
indispensable as in other environments during the bacteriophage-host
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interactions (Bosi and Mascagni, 2019; Middelboe et al., 2025).
Furthermore, the distribution of integrated prophages exhibits
pronounced heterogeneity across host species, with a higher
prevalence of MH-associated prophages identified in potential
opportunistic pathogens. This suggests that opportunistic pathogens
may undergo more phage-mediated horizontal gene transfer events.
Moreover, these multi-niche-adapted pathogens demonstrate
enhanced prophage integration propensity, likely conferring survival
advantages across diverse environments through phage-mediated
genomic plasticity (Tan et al., 2020).

Furthermore, leveraging infection histories archived in host CRISPR
systems, we delineated the potential host ranges of prophages (Liao et al.,
2024). Notably, certain phages exhibited broad-spectrum infectivity,
even demonstrating cross-phylum infection capabilities that transcend
established taxonomic barriers. This also implies that certain prophages
may have the potential to infect multiple hosts upon induction, possibly
even extending across different bacterial phyla. Interestingly, our
genomic functional characterization analysis also revealed that the host
range of prophages is closely linked to integrase structure, although
further evidence is needed to substantiate this association.

Prophage-encoded defense systems provide resistance to distant
phages through diverse mechanisms, including modification of cell
surface receptors (Uc-Mass et al., 2004), inhibition of DNA
translocations (McGrath et al., 2002). Previous work highlighted such
prophage-encoded defense systems participate in inter-viral
competition (Dedrick et al., 2017). Here, we also discovered that
certain prophages integrated into prokaryotic hosts enhance or directly
provide host defense mechanisms, fortifying the host’s adaptive
immune capabilities through phage-mediated genetic augmentation.
Notably, within tripartite phage-phage-host interactions, we observed
that prophages preferentially acquire foreign invasive phage sequences
through CRISPR spacer integration mechanisms. Our findings still
require further validation through induction and infection
experiments to assess the extent to which prophages influence the
integrity of host defense systems. Interestingly, Brenes and Laub (2025)
recently demonstrated that E. coli prophages encode a diverse arsenal
of defense systems that protect against temperate phage infection.
Collectively, these findings demonstrate that while some phages engage
in predatory lytic cycles, leaving detectable infection signatures across
diverse prokaryotic hosts, others establish nuanced symbiotic
relationships following genomic integration without inducing host
lysis. Such non-lytic phages predominantly enhance host adaptive
capabilities through mutualistic interactions, suggesting phage survival
strategies are selectively optimized based on intrinsic viral properties
and host-specific genomic constraints. Furthermore, our study
confirms that during prolonged evolutionary arms races with
prokaryotic hosts, phages develop specialized evasion strategies to
circumvent host defense systems (Wu et al., 2024).

Prophage-mediated gene transfer is primarily known to occur
through generalized, specialized, and lateral transduction (Fillol-
Salom et al., 2021), accompanied by the transfer of a wide array of
functional genes into host genomes. Here, we found that in addition
to prophage-encoded integrases, tail tube proteins may also play a role
in shaping phage host specificity through molecular recognition
mechanisms that govern infection tropism. This is consistent with the
description of targeting mechanisms of tailed bacteriophages reported
by Nobrega et al. (2018). AMGs are found in both lytic and temperate
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phages, and they have the potential to be utilized at any stage of host
infection, such as photosynthesis (Mann et al., 2003), sulfur oxidation
(Mann et al., 2003). Through functional annotation of prophage-
encoded AMGs, we demonstrated that prophages in the pig gut
enhance or modify host metabolic capabilities, enabling host bacteria
to more efficiently synthesize essential metabolites such as vitamin
B12, which is critical for porcine physiology. However, the carriage of
antibiotic resistance genes and virulence factors by prophages, coupled
with their broad host range, underscores their inherent risk of
disseminating these genetic determinants within the porcine gut
microbiota. Of course, our study mainly focuses on the genomic
distribution of auxiliary metabolic genes, antibiotic resistance genes
and virulence factors, which may have the potential to be expressed.
Beyond inferring the functionality of prophages based on the presence
of genes essential for their basic lifestyle, we did not directly investigate
prophage activity. Moreover, our study lacks experimental validation
to determine whether these prophages are truly functional.
We acknowledge this as a limitation of the present work.

Furthermore, to assess the novelty of the phage genomes
we identified compared to those in current public databases,
naturally, this is directly related to the limited availability of porcine
gut phage databases and the substantial heterogeneity observed
among viral communities in the pig gut (Hu et al, 2024b).
Unfortunately, due to the limited availability of sample information,
our ability to further explore the factors influencing the pig gut
virome was restricted. Although porcine and human prophage
genomes exhibit substantial differences, the host distribution patterns
of pig gut prophages show notable similarities to those in humans. In
particular, potential pathogens such as Escherichia coli and Klebsiella
pneumoniae appear more likely to harbor prophages than common
commensal bacteria (Pei et al., 2024). Certainly, our study provides a
substantial reservoir of high-quality novel phage sequences. This has
important implications for exploring the compositional and
functional diversity of pig gut prophages. This finding underscores
the critical importance of mining prophage sequences from host
genomes and providing novel perspectives for investigating the
diverse interaction modalities between phages and their prokaryotic
hosts through genomic context-driven discovery frameworks. In
addition, understanding the relationship between prophages and
their hosts provides valuable insights for regulating microbial
networks in the pig gut. Such processes are critical for supporting gut
health in the porcine.

Collectively, this study provides a systematic profiling of prophages
and their distribution patterns and diversity within porcine gut
prokaryotic hosts, highlighting their distinct phage-host interaction
modalities. We provide an in-depth characterization of the functional
roles of pig gut prophages, focusing on their interaction-mediated
defense systems, prophage-mediated AMGs, ARGs, and VFs. Together,
these findings highlight the multifaceted ways in which prophages shape
host physiology, defense, and adaptation, offering critical insights into
the ecological and evolutionary dynamics of the pig gut microbiome.

5 Conclusion

In conclusion, we conducted a comprehensive analysis of
10,742 prophage genomes identified from 7,524 bacterial and
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archaeal genomes of pig gut origin. This represents the first large-
scale characterization of prophage diversity and host interactions
in the pig gut microbiome. Our findings revealed substantial
heterogeneity in prophage distribution across host species, with
a subset exhibiting broad host range infectivity. Functional
investigations highlighted the pivotal roles of prophages in
enhancing host defense through CRISPR spacer acquisition and
integration of immune-related genes. Additionally, prophages
contributed to host adaptability by carrying auxiliary metabolic
genes (notably those involved in vitamin B12 synthesis),
antibiotic resistance genes, and virulence factors. Phylogenetic
and functional analyses suggested that prophage-encoded
integrases and tail proteins may influence host specificity. Finally,
comparative analyses uncovered a rich reservoir of novel
prophage sequences, significantly expanding the known diversity
of the class Caudoviricetes, particularly within Crassvirales.
Altogether, our study provides valuable insights into the
ecological and functional roles of prophages in the pig gut
microbiome and lays a foundational resource for future
investigations into

prophage-host dynamics in

mammalian systems.
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SUPPLEMENTARY FIGURE S1

The proportion of MH prophages, the distribution of prophages across the
GC content and interactions, and the number of host genera for prophage
genomes. (a) The proportion of MH (>50% completeness) prophages at the
genome level and species level (pie charts), and the number of MH
prophages per prokaryotic genome (bar chart). (b) The distribution of
identified prophages across the GC content of prokaryotic genomes. (c) The
number distribution of interactions for prophage-prophage and host-
prophage using spacer matching with different parameters. (d) The number
of host genera targeted by each prophage, the number of spacers mapped
to each prophage, and the proportion of prophages by CRISPR

spacer matching.

SUPPLEMENTARY FIGURE S2

The representative examples for CRISPR-Cas systems and vitamin B12-
related genes, and distribution of ARGs and VFs for prophage genomes. (a)
Representative examples showing how prophages augment incomplete
CRISPR-Cas systems in prokaryotic hosts. The light red and cyan horizontal
solid lines represent prophage and host genomes regions, and the red
vertical dotted lines represent the boundaries of prophage and host
genomes predicted by VirSorter2. (b) The protein identity of vitamin B12-
related genes for prophages and prokaryotic genomes. (c) The 3D structure
of vitamin B12-related genes for prophages and prokaryotic genomes. (d)
The vitamin B12 biosynthesis pathway and related genes. (e) The distribution
of prophage-mediated ARGs across prophages with different infection host
ranges. (f) The distribution of prophage-mediated VFGs across prophages
with different host infection ranges.
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