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Tuberculosis, caused by Mycobacterium tuberculosis, is a severe and persistent
global public health issue, particularly exacerbated by the emergence of multidrug-
resistant and extensively drug-resistant strains. This study employed pan-genomic
approaches to analyze different strains with various resistance profiles, examining
the diversity of bacterial genetic evolution in relation to mutations in resistance-
related genes. The findings indicate that resistance-related genes are mostly
core genes (94%), with a preference for base mutations closely associated with
nonsynonymous mutations at resistance sites. Interestingly, while the majority of
drugs induce positive selection in target genes, the tlyA gene under the influence
of amikacin (AMI) undergoes passive selection. Cluster analysis of target genes
suggests consistency between SNP clusters and drug-resistant clusters, revealing a
strong correlation between bacterial evolutionary branches and resistance profiles.
Consequently, based on pan-genome evolutionary characteristics, we identified the
drug-resistant mutation pattern (DRMP) that can serve as a molecular fingerprint
and indicator for drug sensitivity, aiding in the assessment and guidance of drug
selection for treating different strains and the formulation of individualized treatment
plans. This research not only enhances our understanding of the mechanisms
of drug resistance in M. tuberculosis but also offers new perspectives for the
development of new drugs, which is crucial for global tuberculosis control.

KEYWORDS

M. tuberculosis, drug resistance, genetic diversity, DRMP, therapeutic and control
strategies

1 Introduction

Tuberculosis (TB), a historically pervasive and enduring infectious disease, continues to
pose a formidable challenge to global public health (Dheda et al., 2014; Shaku and Bishai, 2022;
Farhat et al., 2024; Shu and Liu, 2024), remaining one of the leading causes of mortality
worldwide. Despite the continuous optimization of TB prevention and control strategies over
the past few decades, the emergence of drug-resistant M. tuberculosis has significantly
undermined these efforts (Ehrt et al., 2018; Koch and Mizrahi, 2018; Farhat et al., 2024; Shu
and Liu, 2024). The appearance of multidrug-resistant (MDR) and extensively drug-resistant
(XDR) strains (Wulandari et al., 2024) has particularly limited treatment options, prolonged
treatment durations, increased costs, and substantially diminished treatment efficacy (Gandhi
etal,, 2010; Singh et al., 2020; Shitikov and Bespiatykh, 2023).

The rapid advancement of molecular biology technologies, especially the widespread
application of high-throughput sequencing techniques, has markedly enhanced our
understanding of the drug resistance mechanisms in M. tuberculosis (Hanif and Arora, 2022).
Researchers have identified various gene mutations associated with drug resistance in
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M. tuberculosis. These mutations involve genes critical for the clinical
treatment of TB, such as: mutations in the embB and embC genes
associated with ethambutol (EMB) resistance (Sreevatsan et al., 1997;
Ramaswamy et al., 2000; Lee et al., 2004; Srivastava et al., 2006;
Srivastava et al., 2009); specific mutations in the inhA and katG genes
related to isoniazid (INH) and ethionamide (ETH) resistance (Lee
etal., 2000; Morlock et al., 2003; Lavender et al., 2005; Sekiguchi et al.,
2007); mutations within the ethA and inhA structural genes also
linked to ETH resistance (Lavender et al., 2005); and high double-
point mutations in the gyrA gene indicating the emergence of
fluoroquinolone resistance (Aubry et al., 2006; Shi et al., 2006), among
others. The researchers have found that the genetic diversity of
M. tuberculosis is crucial for its evolutionary selection under drug
pressure, understanding these genetic evolutionary patterns is
significantly meaningful for preventing drug resistance and guiding
medication selection (Miiller et al., 2013; Eldholm et al., 2014; Cohen
et al,, 2015; Gagneux, 2018). However, despite some progress in
previous research, a systematic understanding of how M. tuberculosis
evolves under different pressures is still lacking.

Therefore, this study employed pan-genomic analysis techniques
on strains from different sources and with varying drug resistance
profiles to comprehensively explore the genetic diversity of
M. tuberculosis and its association with drug resistance. By examining
the evolutionary trajectory of drug-resistant related genes, we aim to
uncover how these genetic variations impact the drug resistance of
strains. This research not only aids in deepening our comprehension
of the drug resistance mechanisms in M. tuberculosis, but also
showcases patterns of drug-related mutations, offering a scientific
basis for prevention and control strategies and facilitating the
implementation of precision treatment.

2 Materials and methods
2.1 Data collection and processing

We obtained a diverse collection of genomic data from two
sources within the NCBI database, which cover the last two decades
from August 2004 to May 2024. Firstly, we acquired raw sequencing
reads from 669 sequenced M. tuberculosis isolates available through
the NCBI Sequence Read Archive (SRA)." These data provided a broad
representation of the genetic diversity present in M. tuberculosis
strains worldwide. Additionally, we included an extra 470 fully
assembled M. tuberculosis isolates from the NCBI Assembly database’
to enrich our analysis with fully annotated genomic sequences
(Supplementary Table S1). Sequencing reads were quality-trimmed
with Trimmomatic v0.39 (Bolger et al., 2014) to remove adapters and
low-quality bases. High-quality reads were aligned to the
M. tuberculosis H37Rv reference genome (NCBL: NC_000962.3) using
BWA-MEM v0.7.18 (Jung and Han, 2022) with default parameters.
Resulting alignments (SAM format) were converted to sorted BAM
files using SAMtools v1.19.2 (Danecek et al., 2021) and subsequently
transformed into FASTQ format using BEDTools v2.31.1 (bamtofastq)

1 https://www.ncbi.nlm.nih.gov/sra

2 https://www.ncbi.nlm.nih.gov/datasets/genome/?taxon=1773
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(Quinlan and Hall, 2010) with default settings. De novo genome
assembly was performed on processed reads using SOAPdenovo2
v2.41 (Luo et al,, 2012) with optimized parameters -K 127 -p 16 -F -R
-u (asm_flags = 3, rank = 1; other parameters default). Scaffolding
leveraged paired-end read information, and internal gaps were closed
using GapCloser v1.12 (Luo et al., 2012) with parameters -1 150 -p 30
-t 16. Assembly completeness was assessed with BUSCO v5.4.5
(Manni et al., 2021) using the bacteria_odb10 lineage dataset’ in
genome mode with parameters -m geno -c 16 --long.

2.2 Gene annotation

Reference protein-coding sequences (CDSs) from M. tuberculosis
H37Rv (NCBI: NC_000962.3) were extracted from GenBank
annotations, converted to nucleotide FASTA format with retention of
original locus tags and functional descriptions, and compiled into a
custom BLAST database using makeblastdb v2.14.0 (Camacho et al.,
2009). This database was filtered to exclude pseudogenes and CDSs
<100 bp. Orthologous genes were identified via BLASTn (Camacho
et al., 2009) alignment against the target genome assembly under
stringent parameters: E-value <1 x 107°, minimum nucleotide identity
70%, and query/subject coverage >80% (-E-value 1 x 10~ -perc_
identity 70 -qcov_hsp_perc 80). Matches fulfilling all criteria inherited
H37Rv-derived locus tags and functional annotations.

2.3 Pan-genome analysis

Pan-genome analysis was performed using IPGA (integrated
prokaryotes genome and pan-genome analysis) (Liu et al., 2022), a
robust tool for prokaryotic genome and pan-genome analysis. Input
genome files underwent automatic quality control, retaining genomes
with >90% completeness and <5% contamination for downstream
analysis. Genes were predicted in quality-controlled genomes using
IPGA, and the resulting predictions served as input for the
pan-genome analysis module. Within this module, the integrated
software packages PanOCT (Inman et al., 2019), OrthoMCL (Li et al.,
2003), Roary (Page et al.,, 2015), panX (Ding et al., 2017), OrthoFinder
(Emms and Kelly, 2015), Panaroo (Tonkin-Hill et al., 2020), and
PPanGGoLiN (Gautreau et al., 2020) were employed with the
following parameters: Identity = 70, Ratio (core) = 0.95, Support = —1.
Pan-genome profiles generated by the different tools were
subsequently processed by the optimal selection module to identify
the highest-quality pan-genome profile. To systematically characterize
the potential for horizontal gene transfer within our assembled
genomes, we identified and annotated mobile genetic elements
(MGEs) using the mobileOG-db module (Brown et al, 2022)
integrated within the Proksee v1.1.3 platform (Grant et al., 2023). This
approach leveraged the curated mobileOG database, a comprehensive
resource specifically designed for MGE annotation and encompassing
protein families associated with plasmids, bacteriophages, and
integrative elements (including functions such as conjugation,
transposition, replication, and integration/excision). Assembled

3 https://busco-data.ezlab.org/v5/data/lineages/
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genomic sequences (FASTA format) were analyzed within Proksee,
where the module employed HMMER3 (hmmscan) (Finn et al., 2011)
to query predicted protein sequences against the database’s profile
hidden Markov models (HMMs). Significant hits were filtered using
default thresholds (E-value < 1 x 107°, alignment coverage) to assign
functional annotations and categorize MGE-associated genes. Putative
MGE:s were inferred based on the co-localization and clustering of
multiple annotated genes encoding related functions. Finally,
customizable circular genome plots were generated using Proksee
integrated visualization capabilities to depict the genomic context,
location, and distribution of identified MGE-associated genes relative
to other features, exporting these as high-resolution vector graphics
(SVG) for publication.

2.4 SNP identification and analysis

Single nucleotide polymorphism (SNP) identification was
performed using an integrated pipeline with BCFtools v1.15.1
(Danecek et al., 2021) and GATK v4.2.6.1 (Van der Auwera et al.,
2013) for variant calling, followed by error correction and lineage-
specific variant annotation using TB-gen v0.6.1." Genetic clusters were
defined by grouping isolates exhibiting a pairwise SNP distance <12,
calculated from whole-genome SNP matrices generated with Parsnp
v2.0.5 (Kille et al., 2024). For each cluster, the mutation rate was
calculated as the average number of SNPs per site per isolate, derived
from high-quality SNP calls (QUAL > 30, DP > 10, GQ > 20) within
all isolates of the cluster. This rate was computed by dividing the total
number of identified SNPs by the product of the number of isolates in
the cluster and the core genome length (4.1 Mb). To identify cluster-
specific SNP loci, a merged multi-sample VCF file (generated using
BCFtools merge) containing variants from all clusters served as input.
Cluster-specific loci were defined as genomic positions harboring
variants present exclusively in one cluster and absent in all others.
Variants private to each cluster were isolated using BCFtools isec and
subsequently validated against the TB-gen database to exclude known
lineage-defining markers, ensuring the identified uniqueness was
specific to the cluster context.

2.5 Predicted drug resistance

First, we used the TB-AMRpred pipeline® (Pal and Mohanty,
2025) to predict antimicrobial drug resistance in M. tuberculosis based
on whole genome sequences. Then, we combined this with the
tbAnnotator pipeline® for analysis. By running the tbAnnotator.py
script, we queried a database constructed from literature-based drug
susceptibility experimental data and scored new SNPs, generating text
in json format. To more intuitively display the predicted drug
resistance results, we further regenerated HTML reports using the
htmlReportRegenerator.py script.

4 https://github.com/dbespiatykh/TB-gen
5 https://github.com/Ankitapall995/TB-AMRpred
6 https://github.com/avkitex/tbAnnotator
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2.6 Whole-genome phylogenetic
reconstruction

Whole-genome phylogenies were inferred using RealPhy v1.13
(Bertels et al., 2014) (parameters: -minlen 50, -minqual 20) from high-
quality genome assemblies (FASTA format; assessed with CheckM
v1.2.3 (Parks et al., 2015): completeness >95%, contamination <5%).
This reference-guided approach generated a multiple sequence
alignment incorporating SNPs identified de novo and via reference
mapping. Gap-rich sites (>90% gaps) were removed using trimAl
v1.5.0 (-gt 0.1) (Capella-Gutiérrez et al., 2009). Maximum-likelihood
phylogenetic reconstruction was performed with IQ-TREE v2.3.4
(Minh et al.,, 2020), employing the ModelFinder-Plus algorithm (-m
MFP + ASC) (Kalyaanamoorthy et al., 2017) to select the optimal
substitution model while accounting for ascertainment bias (ASC).
Branch support was assessed using 1,000 ultrafast bootstrap replicates
(UFBoot; -B 1000 --bnni) and the Shimodaira-Hasegawa approximate
likelihood ratio test (SH-aLRT; -alrt 1,000); clades with UFBoot >95%
and SH-aLRT >80% were considered well-supported. The entire
workflow was replicated three times to confirm topological
consistency. Final tree visualization and annotation utilized iTOL v6
(accessible at https://itol.embl.de/) (Letunic and Bork, 2021).

2.7 Amino acid mutation frequency
quantification

Amino acid mutation frequencies were determined by calculating
the percentage of alterations observed at mutated positions in analyzed
resistance gene sites. A “gain” event denotes the introduction of a
specific amino acid at a position where it was previously absent, while
a “loss” event indicates the replacement of a specific amino acid
originally present at that position. The gain frequency (Freqg,,) and
loss frequency (Freq,) for each amino acid were calculated as:

z Countgain/loss

Frquain/loss = ¥ Totalutated
mutate

where: 2. Countg,in/1oss = Total number of gain/loss events across
all sequences, 2. Total ytateq = Total number of mutated amino acid
positions in all sequences. This metric reflects the proportion of gain
or loss events per amino acid relative to all observed mutations.

2.8 Evolutionary selection pressure on drug
resistance-associated genes

To assess the selection pressure acting on these protein-coding
genes, we extracted the precise genomic coordinates of the target
resistance genes (the 31 genes identified through resistance analysis)
from species-specific annotation files using an awk script, generating
corresponding BED-format files. Nucleotide coding sequences (CDS)
were then batch-extracted from the assembled genomes based on
these coordinates using bedtools getfasta -s -name+. These CDS
sequences were subsequently translated into amino acid sequences in
batch using a custom Python script employing the Biopython library.
Finally, the ratios of non-synonymous (K,) to synonymous (K,)
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substitution rates (K,/K;) were calculated batch-wise using the ParaAT
pipeline (Zhang et al, 2012), where sequence alignment was
performed by MAFFT v7.526 using default parameters, and K, and K
values were computed by K,K,_Calculator v3.0 (Zhang, 2022) using
default parameters. K,/K; ratios were interpreted as follows: K,/K > 1
indicates positive selection (favoring fixation of amino acid-altering
mutations); K,/K; = 1 indicates neutral evolution (random fixation of
mutations); K,/K; < 1 indicates purifying selection (removal of amino
acid-altering mutations). We visualized the results by plotting K,/K{
density plots using ggplot2 v3.5.1 in R v4.2.1.

2.9 Cluster analysis

Based on the resistance stratification data, we utilized
unsupervised clustering analysis to categorize a collection of 600
strains. To determine the stable number of clusters, we employed the
ConsensusClusterPlus22 R package, performing clustering analyses
across all groups through 1,000 iterations using the KM hierarchical
clustering algorithm. Additionally, we utilized PCA (principal
component analysis) to further validate the stability of the
classifications. Subsequently, we used the VCF2PCACluster (He et al.,
2024) to perform PCA and clustering analysis on the SNP (single
nucleotide polymorphism) data.

2.10 Muti-gene phylogeny

Coding sequences (CDSs) of 31 resistance genes were individually
aligned using MAFFT v7.505 with the --auto parameter in PhyloSuite
v1.2.3 (Zhang et al., 2020). Poorly aligned regions were trimmed using
trimAl v1.4 with the -automatedl heuristic to preserve reliable
phylogenetic signal. The trimmed alignments were then concatenated
into a super matrix using PhyloSuite’s integrated concatenation tool.
Optimal partitioning schemes (by gene and codon position) and
nucleotide substitution models were determined under the Bayesian
information criterion (BIC) using PartitionFinder v2.1.1 (Lanfear
etal., 2017), employing a greedy search algorithm to evaluate model
combinations. Maximum likelihood (ML) phylogenies were
reconstructed with IQ-TREE v2.3.4, applying partition-specific
substitution models. Topological robustness was assessed via 10,000
ultrafast bootstrap (UFBoot) replicates and by evaluating 100 distinct
random starting trees to ensure consistency. Final trees were visualized
and annotated in iTOL vé6.

2.11 Differential analysis of SNPs

We constructed a matrix of SNPs and refined it meticulously to
ensure data accuracy and consistency. During the matrix
establishment, we set a criterion: if a mutation occurred at a particular
locus within the sample, that locus was labeled as 1; if no mutation
occurred, it was labeled as 0. Subsequently, we conducted a
comprehensive comparative analysis across different cluster types to
identify which SNPs had a mutation rate exceeding 90% in each
cluster type and further filtered out SNP loci unique to each category.
These filtered loci are referred to as drug-resistant mutation
pattern (DRMP).
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2.12 Statistical analysis

For statistical analysis and graphical generation, we utilized R
Project v4.0.2 (accessible at https://www.r-project.org/). In terms of
text processing, we employed Perl v5.15 (available at https://www.perl.
org/) and Python v3.10 (accessible at https://www.python.org/). To
calculate the correlation between gene mutation bases and amino acid
usage and evolutionary rates, we applied the Spearman’s rank
correlation analysis method. For drawing and beautifying the
evolutionary tree, we used iTOL v6 (accessible at https://itol.embl.de/)
(Letunic and Bork, 2021).

3 Results

3.1 Landscape on the Mycobacterium
tuberculosis pan-genome

We constructed a comprehensive pan-genome of M. tuberculosis
by assembling 1,000 complete genomes of this pathogen. Using the
IPGA scoring system, we identified that panX exhibited the most
optimal performance in the pan-genome analysis of M. tuberculosis.
The results revealed a striking imbalance in gene distribution: core
genes constituted the overwhelming majority (69%) of the total gene
complement, while accessory genes accounted for only 31%. This
underscores the substantial core genome shared among the analyzed
strains (Figure 1A). Additionally, the number of pan-gene clusters
increased to 12,295, whereas the number of core gene clusters
decreased to 2,935. Meanwhile, the curve began to plateau with
additional strains, indicating that further strain addition had a
minimal impact on defining the core genome (Figure 1B). Upon
further statistical analysis of the gene sequence length distribution
within the pan-genome, we observed a decrease in the number of
genes as the gene length increased. Most genes were found to be under
2,000 bp in length. Notably, core genes primarily consisted of shorter
sequences (under 1,000 bp), resulting in a smoother curve. In contrast,
accessory genes were more prevalent among longer sequences
(1,500 bp), leading to a more fluctuating curve (Figure 1C). Based on
the phylogenetic inference using whole-genome SNPs, we were able
to classify these genomes into 16 distinct clusters (Figure 1D).
Furthermore, our analysis of mobile genetic elements involved in
constructing the pan-genome revealed that integration/excision (IE)
was the most frequently annotated, with 23 occurrences. This was
followed by replication/recombination/repair (RRR) (20), phage (P)
(9), and stability/transfer/defense (STD) (3), transfer (T) being the
least frequent of 2 (Figure 1E). Overall, we successfully constructed
the pan-genome of M. tuberculosis, providing valuable insights into its
genetic diversity and evolutionary history. This achievement highlights
the power of pan-genome analysis in elucidating the complex genomic
landscape of infectious diseases.

3.2 Pan-genomic variation in
Mycobacterium tuberculosis

To thoroughly investigate the wvariation of M. tuberculosis,

we conducted an extensive analysis of the distribution of SNPs across
the entire genome. Our findings indicate a lack of pronounced
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mutation hotspots; however, they suggest that genetic diversity arises
ubiquitously throughout the genome rather than being concentrated
in specific genomic segments (Figure 2A), upon statistical analysis of
all base mutations, it became evident that M. tuberculosis exhibits a
striking level of conservatism at the nucleotide level, with 98.08%
stability observed. Only a minuscule fraction, 2.02% of bases, were
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found to be mutated. This high degree of genetic stability suggests that
most regions of the M. tuberculosis genome are under strong selective
pressure to maintain function. Among the identified mutations, the
transition from cytosine (C) to guanine (G) was the most prevalent,
accounting for 25.96% of all mutations. This was followed closely by
the transition of guanine (G) to adenine (A), which constituted
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Panoramic analysis of variation. Distribution of SNPs and GC content at the pan-genomic level (A). Statistical map of mutant base transitions (B). Motif
plots of sequence features for each of the five bases before and after the mutant site are depicted (C). Chart of amino acid change results (D).

24.47% of mutations. In contrast, transversions between adenine (A)
and thymine (T) were exceedingly rare, with A to T mutations
occurring at a frequency of 0.87% and T to A mutations at 0.88%. This
pronounced asymmetry in substitution types highlights a fundamental
constraint or bias in the mutagenic processes shaping M. tuberculosis
evolution (Figure 2B). To investigate sequence preferences influencing
mutagenesis, we generated position-weighted sequence logos centered
on each nucleotide (A, C, G, T) with 5-bp flanking contexts. Motif
analysis consistently revealed significant enrichment of C/G bases
immediately adjacent to mutated sites across all central nucleotides
(p < 0.001, Fisher’s exact test). This conserved pattern suggests that
C/G dinucleotides may facilitate mutagenesis by stabilizing local
structural dynamics or recruiting specific protein interactors
(Figure 2C). To elucidate the potential impact of these mutations on
protein sequence and function, we statistically analyzed the
translational changes subsequent to the mutations. We counted the
number of amino acid changes encoded by the mutated sites and
discovered that synonymous (63%) and nonsynonymous mutations
(37%) occurred in similar proportions in both the positive and
negative strands. Within synonymous mutations, the amino acid
alanine (Ala) was most frequently unaffected. In the realm of
nonsynonymous mutations, valine (Val) was the amino acid most
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commonly subjected to change. Notably, tryptophan (Trp) exhibited
only nonsynonymous mutations, suggesting its critical role in protein
structure or function. Additionally, we observed an increase in the
number of termination codons resulting from the mutations, which
could have significant implications for gene expression and
pathogenicity (Figure 2D). These insights not only enhance our
understanding of the genetic diversity and evolution of M. tuberculosis
but also have important implications for developing targeted
therapeutic strategies against this globally significant human pathogen.

3.3 Drug resistance-related genes of
Mycobacterium tuberculosis

Our comprehensive investigation into genes associated with drug
resistance uncovers an intriguing distribution pattern: these genes are
dispersed across both the positive and negative strands of the genome.
Among them, genes like embB stand out for their capacity to resist
multiple drugs. Moreover, our analysis reveals a complex interplay
where multiple genes can collaboratively contribute to the resistance
against a single drug (Figure 3A). A pan-genomic examination of
these pivotal genes discloses that the majority are classified as core
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Analysis of drug resistance-related genes. The circular diagram displays the distribution of drug resistance-related genes and their relationship to the
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genes, underscoring their fundamental role in the organism’s survival.
Only two genes, ethA and fabD, were characterized as auxiliary,
suggesting a more specialized function (Figure 3B). The mutation rate
among these genes was remarkably low at 1%, with the predominant
mutation being a guanine (G) transitioning to adenine (A). This
specific G to A mutation was the most frequent, highlighting a
potential hotspot for genetic alterations impacting drug resistance.
Furthermore, we analyzed the correlation between the types of variant
bases and resistance to nine different antimicrobial drugs. Our results
revealed a positive correlation between the occurrence of base
mutations and the resistance levels observed for these drugs.
Interestingly, when evaluating the resistance conferred by different
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mutated bases, we found that mutations exhibiting the least resistance
correlation were those associated with para-aminosalicylic acid (PAS).
This implies that PAS remains relatively efficacious even against strains
harboring certain mutations, potentially due to the drug’s unique
mechanism of action or the types of mutations that arise in its
presence. In contrast, mutations showing a higher resistance
correlation were those associated with pyrazinamide (PZA). These
insights into the nuanced relationships between mutated bases and
drug resistance have important implications for understanding the
evolution of drug-resistant strains. They also emphasize the need for
continuous surveillance of mutational patterns to predict and
counteract the emergence of resistant phenotypes. Moreover, this
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information can guide the development of more robust therapeutic
strategies that are less susceptible to existing resistance mechanisms,
ultimately improving clinical outcomes in the battle against multidrug-
resistant infections (Figure 3C). These findings underscore the diverse
mechanisms by which different drugs are rendered ineffective due to
genetic changes. This insight not only advances our understanding of
drug resistance at the genomic level but also paves the way for more
targeted and effective strategies to combat drug-resistant strains.

3.4 The relationship between gene
mutations and the rate of gene evolution

The dynamics of gene mutations significantly influence the
evolutionary trajectory of protein sequences. These evolutionary
changes typically encompass the acquisition and deletion of amino
acids (AAs), which can profoundly affect protein function and
structural stability. In our study, we conducted an in-depth analysis of
the AA variations encoded by genes associated with drug resistance.
Our study findings reveal that, among the resistance genes examined,
the proportion of the AA variant is significantly higher than other
types, notably, alanine (Ala), valine (Val), serine (Ser), arginine (Arg),
and threonine (Thr) were high variability, suggesting a possible
correlation between the frequency of these residues and the adaptive
advantage conferred by resistance genes. Conversely, our analysis also
identified a set of AAs that appear to be more stable in these genes.
Including Trp, phenylalanine (Phe), methionine (Met), lysine (Lys),
and cysteine (Cys) (Figure 4A). This divergence in AA usage may
reflect functional constraints or selective pressures unique to the
resistant phenotypes. To explore the impact of mutations on the
evolutionary rate of genes, we examined the ratio of nonsynonymous
(K,) to synonymous (K;) substitutions, a metric commonly used to
infer selection pressures acting on protein-coding genes. Strikingly,
we observed varied K,/K; ratios across different resistance genes,
indicating heterogeneity in their evolutionary trajectories. Remarkably,
the majority of the resistance genes exhibited signatures of positive
selection, indicated by K,/K; ratios greater than 1. This pattern suggests
that these genes are evolving under pressures that favor new variants,
potentially due to environmental challenges such as exposure to
antimicrobial agents. In stark contrast, only two genes, tlyA and
embC, showed signs of purifying selection with K,/K; ratios of 0.3 and
0.26, respectively (Figure 4B). Purifying selection, characterized by
K./K, ratios less than 1, operates to remove deleterious variants from
the population, implying that most mutations in these genes are likely
to be harmful and thus eliminated over time. Taken together, these
results provide compelling evidence that the evolution of drug
resistance in bacterial populations is a complex process influenced by
both the accumulation of advantageous mutations and the elimination
of detrimental ones. This deeper understanding of genetic variation
and its impact on evolutionary dynamics can inform strategies to
mitigate the spread of antimicrobial resistance.

3.5 Cluster analysis of Mycobacterium
tuberculosis

To elucidate the relationship between genetic mutations and drug
responses, we conducted an extensive cluster analysis involving 1,140
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strains. Utilizing tolerance scores against nine antimicrobial drugs,
we discerned three prominent clustering groups through a rigorous
examination of internal consistency and clustering effects. This
classification was further validated by PCA, which distinctly separated
the strains into three coherent groups on the PCA plot (Figure 5A).
Intriguingly, when we applied PCA to investigate the association
between these drugs and SNPs, a similar pattern emerged. The SNPs
were broadly clustered into three subgroups on the PCA plot,
suggesting a potential correlation between genetic variations and
phenotypic drug responses (Figure 5B). Phylogenetic reconstruction
based on multiple genes recapitulated the population structure
observed in principal component analysis (PCA) and further
demonstrated that allele-specific drug effects were closely aligned with
SNP-based clustering patterns (Figure 5C). We presented the drug
resistance characteristics of each sample through a heatmap of drug
resistance. From early evolutionary stages lacking drug resistance,
through intermediate stages where diverse resistance mechanisms
emerged, to late stages where resistance stabilized, significant
differences in drug resistance existed across clusters. By leveraging
these genetic constraints, we established drug-resistance mutation
profiles (DRMPs) through the analysis of SNPs within each cluster and
identification of those unique to specific clusters. Critically, these
DRMPs serve as precise molecular signatures that enable the selection
of optimal, cluster-specific drug regimens. This approach facilitates
targeted therapy, whether using single agents or tailored drug
combinations, thereby maximizing treatment efficacy for distinct
M. tuberculosis populations (Figures 5C, 6). These analyses underscore
the intricate interplay between genetic diversity and drug response,
highlighting the potential of customized treatment approaches based
on the molecular fingerprints of bacterial strains.

4 Discussion

The genetic diversity exhibited by M. tuberculosis is a key driver
of the emergence of clinical multidrug resistance (Jia et al., 2017;
Napier et al., 2020; Shaku and Bishai, 2022), a problem that has long
confounded anti-tuberculosis treatment (Farhat et al., 2024; Shu and
Liu, 2024). In this study, we employed pan-genomic analysis methods
to comprehensively explore the relationship between the evolutionary
characteristics of M. tuberculosis and its drug resistance, thereby
elucidating specific patterns of drug-resistant mutations. These
findings provide clearer guidance for the future development of
antimicrobial drugs and clinical treatment.

We analyzed over 1,000 M. tuberculosis strains from various
sources with diverse resistance profiles collected over the past 15 years,
examining the diversity in genetic evolution and its correlation with
drug-resistant gene mutations. We identified 31 main drug-resistant
genes, 94% of which are attributed to the core genes (Figure 3).
Further analysis revealed a preference for base mutations closely
associated with nonsynonymous mutations at resistance sites,
reflecting the adaptive changes in bacteria under drug pressure over
the years. These results not only offer new perspectives on the drug-
resistant mechanisms of M. tuberculosis but also provide a crucial
molecular foundation for addressing drug-resistant tuberculosis.

The study shows that starting from drug-sensitive strains, AMI
and fluoroquinolones (FLQ) resistance emerged first, followed by
cumulative mutations in INH, rifampicin (RIF), and streptomycin
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FIGURE 4
Correlation between gene mutation and gene evolutionary rate. The histogram displays the changes in amino acid (AA) usage frequency of nine drug
resistance-related genes caused by gene mutations. The five most frequently used AAs are marked in red on the right, while the five least frequently
used AAs are indicated in light green on the left (A). Density plot of the rate of evolution of resistance genes (K,/K; ratio), the lines represent the
corresponding genes, with the values indicating the median. K,/K; > 1 indicates that the gene is under positive selection, K,/K; = 1 suggests neutral
evolution of the gene, and K,/K, < 1 implies that the gene is undergoing purifying selection (B).

(SM) (Figure 5C), indicating more than just simple cross-resistance
reported previously. The analysis of evolutionary rates of drug-
resistant genes suggests that although most target genes underwent
positive selection (Figure 4), such as PAS-targeted thyA; SM-targeted
rpsL, gid; and INH-targeted multiple genes, the structural diversity of
these target proteins had minimal impact on their function. This
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provides opportunities for drug-resistant mutations. Interestingly, the
tlyA gene under AMI influence underwent passive selection,
indicating its conservation and potential lethality of mutations,
suggesting that drug target selection should focus on more conserved
proteins to minimize resistance. Thus, developing new drugs against
resistant strains targeting the tlyA gene remains promising.
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Since conventional treatment outcomes are often poor due to
variant strains of M. tuberculosis (Jang and Chung, 2020; Napier
et al., 2020), revising clinical treatment plans and selecting drugs
against drug-resistant strains require identification and evaluation
of prevalent bacterial strains (Escalante et al., 1998; Lavender et al.,
2005; Singh et al., 2020). Previously, this was determined primarily
through phenotypic drug susceptibility testing, which involves
cumbersome liquid culture screening in microplates and has a long
turnaround time. Consequently, the industry has proposed using
molecular drug susceptibility to assess and select treatment
methods, necessitating a deep understanding of drug-resistant
mutation patterns (Dominguez et al., 2023). Although recent
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studies have used SNP detection methods to assess the drug
resistance of M. tuberculosis, these mainly focused on single-drug
resistance testing (Allix-Béguec et al., 2018; Dominguez et al,,
2023). For example, linear probe assays like GenoType MTBDRsl
VER 2.0 and cartridge-based methods like Xpert MTB/XDR detect
fluoroquinolone resistance (Cao et al, 2021), and Nipro
Genoscholar PZA-TB II focuses on the detection of pncA gene
mutations related to PZA resistance (Driesen et al., 2018; Willby
etal.,2018). However, these methods fall short in comprehensiveness
and systematicity. Part of this is due to background noise from
random genetic drift, and another part is because drug resistance
often results from combined mutations across multiple genes and
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shown are the DRMP. The bases include the alternate allele (Alt) and the reference allele (Ref). The numbers indicate the base positions (Pos) on the

sites (Ahmad et al., 2016; Chen et al., 2023; Dominguez et al., 2023).
Additionally, different drug sensitivity testing (DST) methods may
lead to the emergence of discrepant results among isolates (Qadir
et al., 2024), which increases the difficulty of fully understanding
mutation patterns and evaluating unknown variant strains.
Comparative studies on evolutionary patterns under polypharmacy
pressure over extended periods can clarify strain characteristics,
enabling a more comprehensive drug-resistant assessment of all
variant strains (Arnold et al., 2022). Therefore, to provide detailed
data support for future molecular drug susceptibility diagnostics,
our study reveals the interplay between diversity and drug pressure
selection through pan-genome PCA and clustering analysis
(Figure 5), and establishes a link between genetic variation and
drug-resistant phenotypes based on SNPs differences (Figure 6).
This locks in the DRMP, serving as a molecular fingerprint and
precise molecular drug susceptibility indicator for resistant strains,
aiding in the evaluation of resistant conditions in variant strains
(including unknown ones) and determining optimal treatment
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options, thus facilitating the implementation of precision
personalized treatment. Beyond direct diagnosis and treatment
guidance, DRMP characterization offers significant clinical and
epidemiological value. Clinically, specific mutation patterns may
predict  resistance-associated  fitness  costs, influencing
M. tuberculosis transmissibility and relapse risk. This enables patient
stratification for enhanced follow-up or infection control.
Epidemiologically, DRMP act as molecular fingerprints for tracking
transmission. Clusters sharing rare DRMP signal local outbreaks,
while geographically distinct patterns reveal cross-border spread.
Pan-genomic DRMP analysis identifies regionally prevalent
resistance mechanisms, exposing gaps in local drug regulation or
prescribing practices. These insights prioritize targeted surveillance,
optimize resource allocation for containment, and inform early-
warning systems for emerging threats.

In summary, this study adopts a pan-genomic perspective to
comprehensively analyze the correlation between the evolution of

M. tuberculosis and its drug resistance. The findings suggest that
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developing new antibiotics targeting certain key and conserved genes
can enhance drug sensitivity and decrease the possibility of drug
resistance. Moreover, the research reveals a close association between
the clustering of SNPs in clinical strains and drug-resistant
characteristics, and identifies specific DRMP. This DRMP can serve as
precise molecular markers for drug susceptibility, guiding the
selection of effective medications and thereby providing personalized
treatment options for clinical therapy.
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