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Tuberculosis, caused by Mycobacterium tuberculosis, is a severe and persistent 
global public health issue, particularly exacerbated by the emergence of multidrug-
resistant and extensively drug-resistant strains. This study employed pan-genomic 
approaches to analyze different strains with various resistance profiles, examining 
the diversity of bacterial genetic evolution in relation to mutations in resistance-
related genes. The findings indicate that resistance-related genes are mostly 
core genes (94%), with a preference for base mutations closely associated with 
nonsynonymous mutations at resistance sites. Interestingly, while the majority of 
drugs induce positive selection in target genes, the tlyA gene under the influence 
of amikacin (AMI) undergoes passive selection. Cluster analysis of target genes 
suggests consistency between SNP clusters and drug-resistant clusters, revealing a 
strong correlation between bacterial evolutionary branches and resistance profiles. 
Consequently, based on pan-genome evolutionary characteristics, we identified the 
drug-resistant mutation pattern (DRMP) that can serve as a molecular fingerprint 
and indicator for drug sensitivity, aiding in the assessment and guidance of drug 
selection for treating different strains and the formulation of individualized treatment 
plans. This research not only enhances our understanding of the mechanisms 
of drug resistance in M. tuberculosis but also offers new perspectives for the 
development of new drugs, which is crucial for global tuberculosis control.

KEYWORDS

M. tuberculosis, drug resistance, genetic diversity, DRMP, therapeutic and control 
strategies

1 Introduction

Tuberculosis (TB), a historically pervasive and enduring infectious disease, continues to 
pose a formidable challenge to global public health (Dheda et al., 2014; Shaku and Bishai, 2022; 
Farhat et al., 2024; Shu and Liu, 2024), remaining one of the leading causes of mortality 
worldwide. Despite the continuous optimization of TB prevention and control strategies over 
the past few decades, the emergence of drug-resistant M. tuberculosis has significantly 
undermined these efforts (Ehrt et al., 2018; Koch and Mizrahi, 2018; Farhat et al., 2024; Shu 
and Liu, 2024). The appearance of multidrug-resistant (MDR) and extensively drug-resistant 
(XDR) strains (Wulandari et al., 2024) has particularly limited treatment options, prolonged 
treatment durations, increased costs, and substantially diminished treatment efficacy (Gandhi 
et al., 2010; Singh et al., 2020; Shitikov and Bespiatykh, 2023).

The rapid advancement of molecular biology technologies, especially the widespread 
application of high-throughput sequencing techniques, has markedly enhanced our 
understanding of the drug resistance mechanisms in M. tuberculosis (Hanif and Arora, 2022). 
Researchers have identified various gene mutations associated with drug resistance in 
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M. tuberculosis. These mutations involve genes critical for the clinical 
treatment of TB, such as: mutations in the embB and embC genes 
associated with ethambutol (EMB) resistance (Sreevatsan et al., 1997; 
Ramaswamy et  al., 2000; Lee et  al., 2004; Srivastava et  al., 2006; 
Srivastava et al., 2009); specific mutations in the inhA and katG genes 
related to isoniazid (INH) and ethionamide (ETH) resistance (Lee 
et al., 2000; Morlock et al., 2003; Lavender et al., 2005; Sekiguchi et al., 
2007); mutations within the ethA and inhA structural genes also 
linked to ETH resistance (Lavender et al., 2005); and high double-
point mutations in the gyrA gene indicating the emergence of 
fluoroquinolone resistance (Aubry et al., 2006; Shi et al., 2006), among 
others. The researchers have found that the genetic diversity of 
M. tuberculosis is crucial for its evolutionary selection under drug 
pressure, understanding these genetic evolutionary patterns is 
significantly meaningful for preventing drug resistance and guiding 
medication selection (Müller et al., 2013; Eldholm et al., 2014; Cohen 
et  al., 2015; Gagneux, 2018). However, despite some progress in 
previous research, a systematic understanding of how M. tuberculosis 
evolves under different pressures is still lacking.

Therefore, this study employed pan-genomic analysis techniques 
on strains from different sources and with varying drug resistance 
profiles to comprehensively explore the genetic diversity of 
M. tuberculosis and its association with drug resistance. By examining 
the evolutionary trajectory of drug-resistant related genes, we aim to 
uncover how these genetic variations impact the drug resistance of 
strains. This research not only aids in deepening our comprehension 
of the drug resistance mechanisms in M. tuberculosis, but also 
showcases patterns of drug-related mutations, offering a scientific 
basis for prevention and control strategies and facilitating the 
implementation of precision treatment.

2 Materials and methods

2.1 Data collection and processing

We obtained a diverse collection of genomic data from two 
sources within the NCBI database, which cover the last two decades 
from August 2004 to May 2024. Firstly, we acquired raw sequencing 
reads from 669 sequenced M. tuberculosis isolates available through 
the NCBI Sequence Read Archive (SRA).1 These data provided a broad 
representation of the genetic diversity present in M. tuberculosis 
strains worldwide. Additionally, we  included an extra 470 fully 
assembled M. tuberculosis isolates from the NCBI Assembly database2 
to enrich our analysis with fully annotated genomic sequences 
(Supplementary Table S1). Sequencing reads were quality-trimmed 
with Trimmomatic v0.39 (Bolger et al., 2014) to remove adapters and 
low-quality bases. High-quality reads were aligned to the 
M. tuberculosis H37Rv reference genome (NCBI: NC_000962.3) using 
BWA-MEM v0.7.18 (Jung and Han, 2022) with default parameters. 
Resulting alignments (SAM format) were converted to sorted BAM 
files using SAMtools v1.19.2 (Danecek et al., 2021) and subsequently 
transformed into FASTQ format using BEDTools v2.31.1 (bamtofastq) 

1  https://www.ncbi.nlm.nih.gov/sra

2  https://www.ncbi.nlm.nih.gov/datasets/genome/?taxon=1773

(Quinlan and Hall, 2010) with default settings. De novo genome 
assembly was performed on processed reads using SOAPdenovo2 
v2.41 (Luo et al., 2012) with optimized parameters -K 127 -p 16 -F -R 
-u (asm_flags = 3, rank = 1; other parameters default). Scaffolding 
leveraged paired-end read information, and internal gaps were closed 
using GapCloser v1.12 (Luo et al., 2012) with parameters -l 150 -p 30 
-t 16. Assembly completeness was assessed with BUSCO v5.4.5 
(Manni et  al., 2021) using the bacteria_odb10 lineage dataset3 in 
genome mode with parameters -m geno -c 16 --long.

2.2 Gene annotation

Reference protein-coding sequences (CDSs) from M. tuberculosis 
H37Rv (NCBI: NC_000962.3) were extracted from GenBank 
annotations, converted to nucleotide FASTA format with retention of 
original locus tags and functional descriptions, and compiled into a 
custom BLAST database using makeblastdb v2.14.0 (Camacho et al., 
2009). This database was filtered to exclude pseudogenes and CDSs 
<100 bp. Orthologous genes were identified via BLASTn (Camacho 
et  al., 2009) alignment against the target genome assembly under 
stringent parameters: E-value ≤1 × 10−5, minimum nucleotide identity 
70%, and query/subject coverage ≥80% (-E-value 1 × 10−5 -perc_
identity 70 -qcov_hsp_perc 80). Matches fulfilling all criteria inherited 
H37Rv-derived locus tags and functional annotations.

2.3 Pan-genome analysis

Pan-genome analysis was performed using IPGA (integrated 
prokaryotes genome and pan-genome analysis) (Liu et al., 2022), a 
robust tool for prokaryotic genome and pan-genome analysis. Input 
genome files underwent automatic quality control, retaining genomes 
with >90% completeness and <5% contamination for downstream 
analysis. Genes were predicted in quality-controlled genomes using 
IPGA, and the resulting predictions served as input for the 
pan-genome analysis module. Within this module, the integrated 
software packages PanOCT (Inman et al., 2019), OrthoMCL (Li et al., 
2003), Roary (Page et al., 2015), panX (Ding et al., 2017), OrthoFinder 
(Emms and Kelly, 2015), Panaroo (Tonkin-Hill et  al., 2020), and 
PPanGGoLiN (Gautreau et  al., 2020) were employed with the 
following parameters: Identity = 70, Ratio (core) = 0.95, Support = −1. 
Pan-genome profiles generated by the different tools were 
subsequently processed by the optimal selection module to identify 
the highest-quality pan-genome profile. To systematically characterize 
the potential for horizontal gene transfer within our assembled 
genomes, we  identified and annotated mobile genetic elements 
(MGEs) using the mobileOG-db module (Brown et  al., 2022) 
integrated within the Proksee v1.1.3 platform (Grant et al., 2023). This 
approach leveraged the curated mobileOG database, a comprehensive 
resource specifically designed for MGE annotation and encompassing 
protein families associated with plasmids, bacteriophages, and 
integrative elements (including functions such as conjugation, 
transposition, replication, and integration/excision). Assembled 

3  https://busco-data.ezlab.org/v5/data/lineages/

https://doi.org/10.3389/fmicb.2025.1663069
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/datasets/genome/?taxon=1773
https://busco-data.ezlab.org/v5/data/lineages/


Sun et al.� 10.3389/fmicb.2025.1663069

Frontiers in Microbiology 03 frontiersin.org

genomic sequences (FASTA format) were analyzed within Proksee, 
where the module employed HMMER3 (hmmscan) (Finn et al., 2011) 
to query predicted protein sequences against the database’s profile 
hidden Markov models (HMMs). Significant hits were filtered using 
default thresholds (E-value ≤ 1 × 10−5, alignment coverage) to assign 
functional annotations and categorize MGE-associated genes. Putative 
MGEs were inferred based on the co-localization and clustering of 
multiple annotated genes encoding related functions. Finally, 
customizable circular genome plots were generated using Proksee 
integrated visualization capabilities to depict the genomic context, 
location, and distribution of identified MGE-associated genes relative 
to other features, exporting these as high-resolution vector graphics 
(SVG) for publication.

2.4 SNP identification and analysis

Single nucleotide polymorphism (SNP) identification was 
performed using an integrated pipeline with BCFtools v1.15.1 
(Danecek et al., 2021) and GATK v4.2.6.1 (Van der Auwera et al., 
2013) for variant calling, followed by error correction and lineage-
specific variant annotation using TB-gen v0.6.1.4 Genetic clusters were 
defined by grouping isolates exhibiting a pairwise SNP distance ≤12, 
calculated from whole-genome SNP matrices generated with Parsnp 
v2.0.5 (Kille et  al., 2024). For each cluster, the mutation rate was 
calculated as the average number of SNPs per site per isolate, derived 
from high-quality SNP calls (QUAL > 30, DP > 10, GQ > 20) within 
all isolates of the cluster. This rate was computed by dividing the total 
number of identified SNPs by the product of the number of isolates in 
the cluster and the core genome length (4.1 Mb). To identify cluster-
specific SNP loci, a merged multi-sample VCF file (generated using 
BCFtools merge) containing variants from all clusters served as input. 
Cluster-specific loci were defined as genomic positions harboring 
variants present exclusively in one cluster and absent in all others. 
Variants private to each cluster were isolated using BCFtools isec and 
subsequently validated against the TB-gen database to exclude known 
lineage-defining markers, ensuring the identified uniqueness was 
specific to the cluster context.

2.5 Predicted drug resistance

First, we  used the TB-AMRpred pipeline5 (Pal and Mohanty, 
2025) to predict antimicrobial drug resistance in M. tuberculosis based 
on whole genome sequences. Then, we  combined this with the 
tbAnnotator pipeline6 for analysis. By running the tbAnnotator.py 
script, we queried a database constructed from literature-based drug 
susceptibility experimental data and scored new SNPs, generating text 
in json format. To more intuitively display the predicted drug 
resistance results, we further regenerated HTML reports using the 
htmlReportRegenerator.py script.

4  https://github.com/dbespiatykh/TB-gen

5  https://github.com/Ankitapal1995/TB-AMRpred

6  https://github.com/avkitex/tbAnnotator

2.6 Whole-genome phylogenetic 
reconstruction

Whole-genome phylogenies were inferred using RealPhy v1.13 
(Bertels et al., 2014) (parameters: -minlen 50, -minqual 20) from high-
quality genome assemblies (FASTA format; assessed with CheckM 
v1.2.3 (Parks et al., 2015): completeness >95%, contamination <5%). 
This reference-guided approach generated a multiple sequence 
alignment incorporating SNPs identified de novo and via reference 
mapping. Gap-rich sites (>90% gaps) were removed using trimAl 
v1.5.0 (-gt 0.1) (Capella-Gutiérrez et al., 2009). Maximum-likelihood 
phylogenetic reconstruction was performed with IQ-TREE v2.3.4 
(Minh et al., 2020), employing the ModelFinder-Plus algorithm (-m 
MFP + ASC) (Kalyaanamoorthy et al., 2017) to select the optimal 
substitution model while accounting for ascertainment bias (ASC). 
Branch support was assessed using 1,000 ultrafast bootstrap replicates 
(UFBoot; -B 1000 --bnni) and the Shimodaira-Hasegawa approximate 
likelihood ratio test (SH-aLRT; -alrt 1,000); clades with UFBoot ≥95% 
and SH-aLRT ≥80% were considered well-supported. The entire 
workflow was replicated three times to confirm topological 
consistency. Final tree visualization and annotation utilized iTOL v6 
(accessible at https://itol.embl.de/) (Letunic and Bork, 2021).

2.7 Amino acid mutation frequency 
quantification

Amino acid mutation frequencies were determined by calculating 
the percentage of alterations observed at mutated positions in analyzed 
resistance gene sites. A “gain” event denotes the introduction of a 
specific amino acid at a position where it was previously absent, while 
a “loss” event indicates the replacement of a specific amino acid 
originally present at that position. The gain frequency (Freqgain) and 
loss frequency (Freqloss) for each amino acid were calculated as:

	

∑
=

∑
gain/loss

gain/loss
mutated

Count
Freq

Total

where: ∑ gain/lossCount  = Total number of gain/loss events across 
all sequences, ∑ mutatedTotal  = Total number of mutated amino acid 
positions in all sequences. This metric reflects the proportion of gain 
or loss events per amino acid relative to all observed mutations.

2.8 Evolutionary selection pressure on drug 
resistance-associated genes

To assess the selection pressure acting on these protein-coding 
genes, we extracted the precise genomic coordinates of the target 
resistance genes (the 31 genes identified through resistance analysis) 
from species-specific annotation files using an awk script, generating 
corresponding BED-format files. Nucleotide coding sequences (CDS) 
were then batch-extracted from the assembled genomes based on 
these coordinates using bedtools getfasta -s -name+. These CDS 
sequences were subsequently translated into amino acid sequences in 
batch using a custom Python script employing the Biopython library. 
Finally, the ratios of non-synonymous (Ka) to synonymous (Ks) 
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substitution rates (Ka/Ks) were calculated batch-wise using the ParaAT 
pipeline (Zhang et  al., 2012), where sequence alignment was 
performed by MAFFT v7.526 using default parameters, and Ka and Ks 
values were computed by KaKs_Calculator v3.0 (Zhang, 2022) using 
default parameters. Ka/Ks ratios were interpreted as follows: Ka/Ks > 1 
indicates positive selection (favoring fixation of amino acid-altering 
mutations); Ka/Ks = 1 indicates neutral evolution (random fixation of 
mutations); Ka/Ks < 1 indicates purifying selection (removal of amino 
acid-altering mutations). We visualized the results by plotting Ka/Ks 
density plots using ggplot2 v3.5.1 in R v4.2.1.

2.9 Cluster analysis

Based on the resistance stratification data, we  utilized 
unsupervised clustering analysis to categorize a collection of 600 
strains. To determine the stable number of clusters, we employed the 
ConsensusClusterPlus22 R package, performing clustering analyses 
across all groups through 1,000 iterations using the KM hierarchical 
clustering algorithm. Additionally, we  utilized PCA (principal 
component analysis) to further validate the stability of the 
classifications. Subsequently, we used the VCF2PCACluster (He et al., 
2024) to perform PCA and clustering analysis on the SNP (single 
nucleotide polymorphism) data.

2.10 Muti-gene phylogeny

Coding sequences (CDSs) of 31 resistance genes were individually 
aligned using MAFFT v7.505 with the --auto parameter in PhyloSuite 
v1.2.3 (Zhang et al., 2020). Poorly aligned regions were trimmed using 
trimAl v1.4 with the -automated1 heuristic to preserve reliable 
phylogenetic signal. The trimmed alignments were then concatenated 
into a super matrix using PhyloSuite’s integrated concatenation tool. 
Optimal partitioning schemes (by gene and codon position) and 
nucleotide substitution models were determined under the Bayesian 
information criterion (BIC) using PartitionFinder v2.1.1 (Lanfear 
et al., 2017), employing a greedy search algorithm to evaluate model 
combinations. Maximum likelihood (ML) phylogenies were 
reconstructed with IQ-TREE v2.3.4, applying partition-specific 
substitution models. Topological robustness was assessed via 10,000 
ultrafast bootstrap (UFBoot) replicates and by evaluating 100 distinct 
random starting trees to ensure consistency. Final trees were visualized 
and annotated in iTOL v6.

2.11 Differential analysis of SNPs

We constructed a matrix of SNPs and refined it meticulously to 
ensure data accuracy and consistency. During the matrix 
establishment, we set a criterion: if a mutation occurred at a particular 
locus within the sample, that locus was labeled as 1; if no mutation 
occurred, it was labeled as 0. Subsequently, we  conducted a 
comprehensive comparative analysis across different cluster types to 
identify which SNPs had a mutation rate exceeding 90% in each 
cluster type and further filtered out SNP loci unique to each category. 
These filtered loci are referred to as drug-resistant mutation 
pattern (DRMP).

2.12 Statistical analysis

For statistical analysis and graphical generation, we utilized R 
Project v4.0.2 (accessible at https://www.r-project.org/). In terms of 
text processing, we employed Perl v5.15 (available at https://www.perl.
org/) and Python v3.10 (accessible at https://www.python.org/). To 
calculate the correlation between gene mutation bases and amino acid 
usage and evolutionary rates, we  applied the Spearman’s rank 
correlation analysis method. For drawing and beautifying the 
evolutionary tree, we used iTOL v6 (accessible at https://itol.embl.de/) 
(Letunic and Bork, 2021).

3 Results

3.1 Landscape on the Mycobacterium 
tuberculosis pan-genome

We constructed a comprehensive pan-genome of M. tuberculosis 
by assembling 1,000 complete genomes of this pathogen. Using the 
IPGA scoring system, we  identified that panX exhibited the most 
optimal performance in the pan-genome analysis of M. tuberculosis. 
The results revealed a striking imbalance in gene distribution: core 
genes constituted the overwhelming majority (69%) of the total gene 
complement, while accessory genes accounted for only 31%. This 
underscores the substantial core genome shared among the analyzed 
strains (Figure 1A). Additionally, the number of pan-gene clusters 
increased to 12,295, whereas the number of core gene clusters 
decreased to 2,935. Meanwhile, the curve began to plateau with 
additional strains, indicating that further strain addition had a 
minimal impact on defining the core genome (Figure  1B). Upon 
further statistical analysis of the gene sequence length distribution 
within the pan-genome, we observed a decrease in the number of 
genes as the gene length increased. Most genes were found to be under 
2,000 bp in length. Notably, core genes primarily consisted of shorter 
sequences (under 1,000 bp), resulting in a smoother curve. In contrast, 
accessory genes were more prevalent among longer sequences 
(1,500 bp), leading to a more fluctuating curve (Figure 1C). Based on 
the phylogenetic inference using whole-genome SNPs, we were able 
to classify these genomes into 16 distinct clusters (Figure  1D). 
Furthermore, our analysis of mobile genetic elements involved in 
constructing the pan-genome revealed that integration/excision (IE) 
was the most frequently annotated, with 23 occurrences. This was 
followed by replication/recombination/repair (RRR) (20), phage (P) 
(9), and stability/transfer/defense (STD) (3), transfer (T) being the 
least frequent of 2 (Figure 1E). Overall, we successfully constructed 
the pan-genome of M. tuberculosis, providing valuable insights into its 
genetic diversity and evolutionary history. This achievement highlights 
the power of pan-genome analysis in elucidating the complex genomic 
landscape of infectious diseases.

3.2 Pan-genomic variation in 
Mycobacterium tuberculosis

To thoroughly investigate the variation of M. tuberculosis, 
we conducted an extensive analysis of the distribution of SNPs across 
the entire genome. Our findings indicate a lack of pronounced 
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mutation hotspots; however, they suggest that genetic diversity arises 
ubiquitously throughout the genome rather than being concentrated 
in specific genomic segments (Figure 2A), upon statistical analysis of 
all base mutations, it became evident that M. tuberculosis exhibits a 
striking level of conservatism at the nucleotide level, with 98.08% 
stability observed. Only a minuscule fraction, 2.02% of bases, were 

found to be mutated. This high degree of genetic stability suggests that 
most regions of the M. tuberculosis genome are under strong selective 
pressure to maintain function. Among the identified mutations, the 
transition from cytosine (C) to guanine (G) was the most prevalent, 
accounting for 25.96% of all mutations. This was followed closely by 
the transition of guanine (G) to adenine (A), which constituted 

FIGURE 1

Pan-genome mapping of M. tuberculosis. Proportion of core and accessory genes among M. tuberculosis (A), plot of changes in the number of pan- 
and core gene clusters with the addition of M. tuberculosis (B). Distribution of gene sequence lengths in the M. tuberculosis pan-genome, x-axis: gene 
sequence length (bp), y-axis: number of genes (C). Phylogenetic relationships among M. tuberculosis strains based on whole-genome variation (D). 
Spatial distribution of mobile genetic elements in the M. tuberculosis pan-genome (E). IE, integration/excision, RRR, replication/recombination/repair; 
P, phage; STD, stability/transfer/defense; T, transfer.
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24.47% of mutations. In contrast, transversions between adenine (A) 
and thymine (T) were exceedingly rare, with A to T mutations 
occurring at a frequency of 0.87% and T to A mutations at 0.88%. This 
pronounced asymmetry in substitution types highlights a fundamental 
constraint or bias in the mutagenic processes shaping M. tuberculosis 
evolution (Figure 2B). To investigate sequence preferences influencing 
mutagenesis, we generated position-weighted sequence logos centered 
on each nucleotide (A, C, G, T) with 5-bp flanking contexts. Motif 
analysis consistently revealed significant enrichment of C/G bases 
immediately adjacent to mutated sites across all central nucleotides 
(p < 0.001, Fisher’s exact test). This conserved pattern suggests that 
C/G dinucleotides may facilitate mutagenesis by stabilizing local 
structural dynamics or recruiting specific protein interactors 
(Figure 2C). To elucidate the potential impact of these mutations on 
protein sequence and function, we  statistically analyzed the 
translational changes subsequent to the mutations. We counted the 
number of amino acid changes encoded by the mutated sites and 
discovered that synonymous (63%) and nonsynonymous mutations 
(37%) occurred in similar proportions in both the positive and 
negative strands. Within synonymous mutations, the amino acid 
alanine (Ala) was most frequently unaffected. In the realm of 
nonsynonymous mutations, valine (Val) was the amino acid most 

commonly subjected to change. Notably, tryptophan (Trp) exhibited 
only nonsynonymous mutations, suggesting its critical role in protein 
structure or function. Additionally, we observed an increase in the 
number of termination codons resulting from the mutations, which 
could have significant implications for gene expression and 
pathogenicity (Figure  2D). These insights not only enhance our 
understanding of the genetic diversity and evolution of M. tuberculosis 
but also have important implications for developing targeted 
therapeutic strategies against this globally significant human pathogen.

3.3 Drug resistance-related genes of 
Mycobacterium tuberculosis

Our comprehensive investigation into genes associated with drug 
resistance uncovers an intriguing distribution pattern: these genes are 
dispersed across both the positive and negative strands of the genome. 
Among them, genes like embB stand out for their capacity to resist 
multiple drugs. Moreover, our analysis reveals a complex interplay 
where multiple genes can collaboratively contribute to the resistance 
against a single drug (Figure 3A). A pan-genomic examination of 
these pivotal genes discloses that the majority are classified as core 

FIGURE 2

Panoramic analysis of variation. Distribution of SNPs and GC content at the pan-genomic level (A). Statistical map of mutant base transitions (B). Motif 
plots of sequence features for each of the five bases before and after the mutant site are depicted (C). Chart of amino acid change results (D).
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genes, underscoring their fundamental role in the organism’s survival. 
Only two genes, ethA and fabD, were characterized as auxiliary, 
suggesting a more specialized function (Figure 3B). The mutation rate 
among these genes was remarkably low at 1%, with the predominant 
mutation being a guanine (G) transitioning to adenine (A). This 
specific G to A mutation was the most frequent, highlighting a 
potential hotspot for genetic alterations impacting drug resistance. 
Furthermore, we analyzed the correlation between the types of variant 
bases and resistance to nine different antimicrobial drugs. Our results 
revealed a positive correlation between the occurrence of base 
mutations and the resistance levels observed for these drugs. 
Interestingly, when evaluating the resistance conferred by different 

mutated bases, we found that mutations exhibiting the least resistance 
correlation were those associated with para-aminosalicylic acid (PAS). 
This implies that PAS remains relatively efficacious even against strains 
harboring certain mutations, potentially due to the drug’s unique 
mechanism of action or the types of mutations that arise in its 
presence. In contrast, mutations showing a higher resistance 
correlation were those associated with pyrazinamide (PZA). These 
insights into the nuanced relationships between mutated bases and 
drug resistance have important implications for understanding the 
evolution of drug-resistant strains. They also emphasize the need for 
continuous surveillance of mutational patterns to predict and 
counteract the emergence of resistant phenotypes. Moreover, this 

FIGURE 3

Analysis of drug resistance-related genes. The circular diagram displays the distribution of drug resistance-related genes and their relationship to the 
nine drugs. From the outside to the inside, the diagram indicates: drug names, drug resistance-related genes, distribution of SNPs, GC content, positive 
strand GC content, and negative strand GC content (A). Pie chart shows the distribution of drug resistance-associated genes across the pan-genome 
(B). Trend chart of mutation base type (middle) and correlation between nine different drug resistances (right) (C). AMI, amikacin; EMB, ethambutol; 
ETH, ethionamide; FLQ, fluoroquinolones; INH, isoniazid; PAS, para-aminosalicylic acid; PZA, pyrazinamide; RIF, rifampicin; SM, streptomycin.
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information can guide the development of more robust therapeutic 
strategies that are less susceptible to existing resistance mechanisms, 
ultimately improving clinical outcomes in the battle against multidrug-
resistant infections (Figure 3C). These findings underscore the diverse 
mechanisms by which different drugs are rendered ineffective due to 
genetic changes. This insight not only advances our understanding of 
drug resistance at the genomic level but also paves the way for more 
targeted and effective strategies to combat drug-resistant strains.

3.4 The relationship between gene 
mutations and the rate of gene evolution

The dynamics of gene mutations significantly influence the 
evolutionary trajectory of protein sequences. These evolutionary 
changes typically encompass the acquisition and deletion of amino 
acids (AAs), which can profoundly affect protein function and 
structural stability. In our study, we conducted an in-depth analysis of 
the AA variations encoded by genes associated with drug resistance. 
Our study findings reveal that, among the resistance genes examined, 
the proportion of the AA variant is significantly higher than other 
types, notably, alanine (Ala), valine (Val), serine (Ser), arginine (Arg), 
and threonine (Thr) were high variability, suggesting a possible 
correlation between the frequency of these residues and the adaptive 
advantage conferred by resistance genes. Conversely, our analysis also 
identified a set of AAs that appear to be more stable in these genes. 
Including Trp, phenylalanine (Phe), methionine (Met), lysine (Lys), 
and cysteine (Cys) (Figure 4A). This divergence in AA usage may 
reflect functional constraints or selective pressures unique to the 
resistant phenotypes. To explore the impact of mutations on the 
evolutionary rate of genes, we examined the ratio of nonsynonymous 
(Ka) to synonymous (Ks) substitutions, a metric commonly used to 
infer selection pressures acting on protein-coding genes. Strikingly, 
we  observed varied Ka/Ks ratios across different resistance genes, 
indicating heterogeneity in their evolutionary trajectories. Remarkably, 
the majority of the resistance genes exhibited signatures of positive 
selection, indicated by Ka/Ks ratios greater than 1. This pattern suggests 
that these genes are evolving under pressures that favor new variants, 
potentially due to environmental challenges such as exposure to 
antimicrobial agents. In stark contrast, only two genes, tlyA and 
embC, showed signs of purifying selection with Ka/Ks ratios of 0.3 and 
0.26, respectively (Figure 4B). Purifying selection, characterized by 
Ka/Ks ratios less than 1, operates to remove deleterious variants from 
the population, implying that most mutations in these genes are likely 
to be harmful and thus eliminated over time. Taken together, these 
results provide compelling evidence that the evolution of drug 
resistance in bacterial populations is a complex process influenced by 
both the accumulation of advantageous mutations and the elimination 
of detrimental ones. This deeper understanding of genetic variation 
and its impact on evolutionary dynamics can inform strategies to 
mitigate the spread of antimicrobial resistance.

3.5 Cluster analysis of Mycobacterium 
tuberculosis

To elucidate the relationship between genetic mutations and drug 
responses, we conducted an extensive cluster analysis involving 1,140 

strains. Utilizing tolerance scores against nine antimicrobial drugs, 
we discerned three prominent clustering groups through a rigorous 
examination of internal consistency and clustering effects. This 
classification was further validated by PCA, which distinctly separated 
the strains into three coherent groups on the PCA plot (Figure 5A). 
Intriguingly, when we  applied PCA to investigate the association 
between these drugs and SNPs, a similar pattern emerged. The SNPs 
were broadly clustered into three subgroups on the PCA plot, 
suggesting a potential correlation between genetic variations and 
phenotypic drug responses (Figure 5B). Phylogenetic reconstruction 
based on multiple genes recapitulated the population structure 
observed in principal component analysis (PCA) and further 
demonstrated that allele-specific drug effects were closely aligned with 
SNP-based clustering patterns (Figure 5C). We presented the drug 
resistance characteristics of each sample through a heatmap of drug 
resistance. From early evolutionary stages lacking drug resistance, 
through intermediate stages where diverse resistance mechanisms 
emerged, to late stages where resistance stabilized, significant 
differences in drug resistance existed across clusters. By leveraging 
these genetic constraints, we established drug-resistance mutation 
profiles (DRMPs) through the analysis of SNPs within each cluster and 
identification of those unique to specific clusters. Critically, these 
DRMPs serve as precise molecular signatures that enable the selection 
of optimal, cluster-specific drug regimens. This approach facilitates 
targeted therapy, whether using single agents or tailored drug 
combinations, thereby maximizing treatment efficacy for distinct 
M. tuberculosis populations (Figures 5C, 6). These analyses underscore 
the intricate interplay between genetic diversity and drug response, 
highlighting the potential of customized treatment approaches based 
on the molecular fingerprints of bacterial strains.

4 Discussion

The genetic diversity exhibited by M. tuberculosis is a key driver 
of the emergence of clinical multidrug resistance (Jia et  al., 2017; 
Napier et al., 2020; Shaku and Bishai, 2022), a problem that has long 
confounded anti-tuberculosis treatment (Farhat et al., 2024; Shu and 
Liu, 2024). In this study, we employed pan-genomic analysis methods 
to comprehensively explore the relationship between the evolutionary 
characteristics of M. tuberculosis and its drug resistance, thereby 
elucidating specific patterns of drug-resistant mutations. These 
findings provide clearer guidance for the future development of 
antimicrobial drugs and clinical treatment.

We analyzed over 1,000 M. tuberculosis strains from various 
sources with diverse resistance profiles collected over the past 15 years, 
examining the diversity in genetic evolution and its correlation with 
drug-resistant gene mutations. We identified 31 main drug-resistant 
genes, 94% of which are attributed to the core genes (Figure  3). 
Further analysis revealed a preference for base mutations closely 
associated with nonsynonymous mutations at resistance sites, 
reflecting the adaptive changes in bacteria under drug pressure over 
the years. These results not only offer new perspectives on the drug-
resistant mechanisms of M. tuberculosis but also provide a crucial 
molecular foundation for addressing drug-resistant tuberculosis.

The study shows that starting from drug-sensitive strains, AMI 
and fluoroquinolones (FLQ) resistance emerged first, followed by 
cumulative mutations in INH, rifampicin (RIF), and streptomycin 
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(SM) (Figure 5C), indicating more than just simple cross-resistance 
reported previously. The analysis of evolutionary rates of drug-
resistant genes suggests that although most target genes underwent 
positive selection (Figure 4), such as PAS-targeted thyA; SM-targeted 
rpsL, gid; and INH-targeted multiple genes, the structural diversity of 
these target proteins had minimal impact on their function. This 

provides opportunities for drug-resistant mutations. Interestingly, the 
tlyA gene under AMI influence underwent passive selection, 
indicating its conservation and potential lethality of mutations, 
suggesting that drug target selection should focus on more conserved 
proteins to minimize resistance. Thus, developing new drugs against 
resistant strains targeting the tlyA gene remains promising.

FIGURE 4

Correlation between gene mutation and gene evolutionary rate. The histogram displays the changes in amino acid (AA) usage frequency of nine drug 
resistance-related genes caused by gene mutations. The five most frequently used AAs are marked in red on the right, while the five least frequently 
used AAs are indicated in light green on the left (A). Density plot of the rate of evolution of resistance genes (Ka/Ks ratio), the lines represent the 
corresponding genes, with the values indicating the median. Ka/Ks > 1 indicates that the gene is under positive selection, Ka/Ks = 1 suggests neutral 
evolution of the gene, and Ka/Ks < 1 implies that the gene is undergoing purifying selection (B).
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Since conventional treatment outcomes are often poor due to 
variant strains of M. tuberculosis (Jang and Chung, 2020; Napier 
et al., 2020), revising clinical treatment plans and selecting drugs 
against drug-resistant strains require identification and evaluation 
of prevalent bacterial strains (Escalante et al., 1998; Lavender et al., 
2005; Singh et al., 2020). Previously, this was determined primarily 
through phenotypic drug susceptibility testing, which involves 
cumbersome liquid culture screening in microplates and has a long 
turnaround time. Consequently, the industry has proposed using 
molecular drug susceptibility to assess and select treatment 
methods, necessitating a deep understanding of drug-resistant 
mutation patterns (Domínguez et  al., 2023). Although recent 

studies have used SNP detection methods to assess the drug 
resistance of M. tuberculosis, these mainly focused on single-drug 
resistance testing (Allix-Béguec et  al., 2018; Domínguez et  al., 
2023). For example, linear probe assays like GenoType MTBDRsl 
VER 2.0 and cartridge-based methods like Xpert MTB/XDR detect 
fluoroquinolone resistance (Cao et  al., 2021), and Nipro 
Genoscholar PZA-TB II focuses on the detection of pncA gene 
mutations related to PZA resistance (Driesen et al., 2018; Willby 
et al., 2018). However, these methods fall short in comprehensiveness 
and systematicity. Part of this is due to background noise from 
random genetic drift, and another part is because drug resistance 
often results from combined mutations across multiple genes and 

FIGURE 5

Clustering analysis of M. tuberculosis strains. PCA clustering of drug resistance score (A) and SNPs (B). The cluster evolutionary tree, the outer circle is a 
resistance distribution map of nine drugs, and the inner layer is the evolutionary tree itself, with colors showing different cluster groups (C).
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sites (Ahmad et al., 2016; Chen et al., 2023; Domínguez et al., 2023). 
Additionally, different drug sensitivity testing (DST) methods may 
lead to the emergence of discrepant results among isolates (Qadir 
et al., 2024), which increases the difficulty of fully understanding 
mutation patterns and evaluating unknown variant strains. 
Comparative studies on evolutionary patterns under polypharmacy 
pressure over extended periods can clarify strain characteristics, 
enabling a more comprehensive drug-resistant assessment of all 
variant strains (Arnold et al., 2022). Therefore, to provide detailed 
data support for future molecular drug susceptibility diagnostics, 
our study reveals the interplay between diversity and drug pressure 
selection through pan-genome PCA and clustering analysis 
(Figure 5), and establishes a link between genetic variation and 
drug-resistant phenotypes based on SNPs differences (Figure 6). 
This locks in the DRMP, serving as a molecular fingerprint and 
precise molecular drug susceptibility indicator for resistant strains, 
aiding in the evaluation of resistant conditions in variant strains 
(including unknown ones) and determining optimal treatment 

options, thus facilitating the implementation of precision 
personalized treatment. Beyond direct diagnosis and treatment 
guidance, DRMP characterization offers significant clinical and 
epidemiological value. Clinically, specific mutation patterns may 
predict resistance-associated fitness costs, influencing 
M. tuberculosis transmissibility and relapse risk. This enables patient 
stratification for enhanced follow-up or infection control. 
Epidemiologically, DRMP act as molecular fingerprints for tracking 
transmission. Clusters sharing rare DRMP signal local outbreaks, 
while geographically distinct patterns reveal cross-border spread. 
Pan-genomic DRMP analysis identifies regionally prevalent 
resistance mechanisms, exposing gaps in local drug regulation or 
prescribing practices. These insights prioritize targeted surveillance, 
optimize resource allocation for containment, and inform early-
warning systems for emerging threats.

In summary, this study adopts a pan-genomic perspective to 
comprehensively analyze the correlation between the evolution of 
M. tuberculosis and its drug resistance. The findings suggest that 

FIGURE 6

Diagram of M. tuberculosis DRMP, with evolutionary levels increasing from bottom to top. Each small circle in the diagram represents an anti-
tuberculosis drug, while the drugs enclosed in boxes denote the corresponding therapeutic levels that can be applied. The variant sites in the genes 
shown are the DRMP. The bases include the alternate allele (Alt) and the reference allele (Ref). The numbers indicate the base positions (Pos) on the 
gene.
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developing new antibiotics targeting certain key and conserved genes 
can enhance drug sensitivity and decrease the possibility of drug 
resistance. Moreover, the research reveals a close association between 
the clustering of SNPs in clinical strains and drug-resistant 
characteristics, and identifies specific DRMP. This DRMP can serve as 
precise molecular markers for drug susceptibility, guiding the 
selection of effective medications and thereby providing personalized 
treatment options for clinical therapy.
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