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Blastocystis is a globally prevalent intestinal protist commonly found in humans
and animals, yet its role in health and disease remains ambiguous. This is a
cross-sectional study of Blastocystis in rural Turkiye, examining 124 human,
305 livestock (cattle, sheep, goats), and 40 environmental samples using
culture/microscopy, qPCR, and sequencing. We further explored associations
between Blastocystis and population parameters, along with gut microbiota
profiles. Using a combination of sequencing and microscopy, the overall
prevalence was high, at 76.6% in humans, 71%-78% in livestock, and 38%
in environmental samples. Subtypes ST1-ST4 were detected in humans, with
ST3 being most frequent. Livestock harbored ST10 predominantly, with goats
showing high carriage of ST24. Several subtypes (e.g., ST25, ST26) were
recorded in livestock for the first time in Turkiye. Body mass index (BMI)
was significantly associated with Blastocystis colonization, with lean individuals
having higher carriage. Contrary to other studies, individuals with ST4 exhibited
reduced bacterial diversity and altered microbial composition, suggesting
subtype-specific interactions. By combining parasitology, microbiome, and
environmental analysis, this study offers an overview of Blastocystis diversity and
distribution in rural Turkiye. This work provides a foundation for future integrative
research approaches to explore the ecological role of Blastocystis and its
subtypes, potential health implications, and interactions with other microbes in
rural and global contexts.
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Introduction

Blastocystis is a common intestinal protist found in humans and
various animals, including mammals, birds, and reptiles. It is one
of the two stramenopiles known to inhabit the human gut (Hublin
et al., 2021; Nguyen et al,, 2023). Despite its widespread presence,
its role in health and disease remains unclear, making it a subject
of ongoing research (Centers for Disease Control and Prevention
[CDC], 2025).

The organism exists in multiple forms-vacuolar, granular,
amoeboid, cystic, and less commonly avacuolar and
multivacuolar -transmitting through the fecal-oral route via
cysts shed in feces (Hublin et al., 2021; Tan, 2008). Blastocystis is
estimated to colonize nearly one billion people globally (Stensvold
and Clark, 2020) with prevalence varying from 5%-20% in
developed regions to over 30% in developing areas (Tan, 2008;
Khorshidvand et al., 2021). Studies of human populations across
diverse geographic regions suggest that Blastocystis colonization
is associated with distinct gut microbial profiles and higher levels
of microbial diversity. It has also been associated with increases in
the abundance of beneficial bacterial taxa such as Ruminococcaceae
and Prevotella (Audebert et al., 2016; Beghini et al., 2017; Tito
et al., 2019). This is in contrast to the reduced microbial diversity
typically observed in individuals with gastrointestinal diseases
such as inflammatory bowel disease. Morever, Blastocystis has been
reported to be associated with healthy dietary patterns, and lower
rates of obesity, cardiometabolic risk, and mortality (Piperni et al.,
2024). These findings suggest that Blastocystis may be indicative
of healthy gut microbiota though the underlying mechanisms of
how this might be achieved remain unknown (Audebert et al,
2016; Beghini et al., 2017; Nieves-Ramirez et al., 2018; Kodio et al,,
2019; Tito et al., 2019; Alzate et al., 2020; Castanieda et al., 2020;
Even et al., 2021).

Based on the diversity of SSU rRNA, at least 44 Blastocystis
subtypes (STs) have been identified. Among these, 16 STs, including
ST1-ST10, ST12, ST14, ST16, ST23, ST35, and ST41, have been
identified in humans, with ST1-ST4 being the most frequently
reported (McCain et al., 2023; Koehler et al., 2024; Santin et al,,
2024). In Tirkiye, Blastocystis prevalence ranged from 2.1 to 51%
across studies, with ST3 (47.9%) as the dominant subtype (Malatyali
etal.,, 2023). Studies on livestock (i.e., cattle, sheep, water buffaloes,
and chickens), and companion animals (i.e., dogs, cats, and horses)
together with those on environmental sources indicate carriage
rates of 3.65% to over 60%, but transmission dynamics remain
poorly understood (Onder et al., 2021; Tavur and Onder, 2022).

Recent data suggest that there is interplay of body mass index
(BMI) and Blastocystis colonization, with several studies reporting
higher Blastocystis presence in lean individuals (Beghini et al., 2017;
Asnicar et al., 2021; Malatyali et al., 2021; Matovelle et al., 2022),
while one study found a higher Blastocystis prevalence in obese
individuals, though the obese sample size was small (Jinatham et al.,
2021). Other studies reported prevalence exceeding 40% in obese
populations but the absence of lean controls limits interpretation
(Caudet et al., 2022a,b).

Zoonotic transmission studies suggest that certain subtypes
may spread between humans and animals, but it remains unclear
whether these same strains establish colonization or are merely
transient (Tsaousis et al., 2025; Abdo et al., 2021; Ruang-areerate
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et al., 2021; Rudzinska et al., 2022). Recent studies have reported
molecular detection of Blastocystis in soil (Jinatham et al., 2021;
Blackburn et al,, 2024), with certain subtypes shared between
human and environmental samples (Jinatham et al., 2021). These
findings suggest soil as a transmission route, adding another
layer of complexity to its transmission. Hence, an integrative
approach that considers humans, animals, and the environment,
is essential for shedding light to the organism’s epidemiology
(Tsaousis et al., 2024). The first study to investigate Blastocystis
occurrence in this context took place in a rural community in
Thailand (Jinatham et al., 2021). Nevertheless studies from diverse
regions are essential to assess potential geographic or rural/urban
differences. To address this gap, we conducted a study in a rural
area of Turkiye. We aimed to explore diversity, distribution, and
possible transmission dynamics of Blastocystis in humans, livestock
(cattle, sheep, goats), and environmental samples from Seyhan
Dam Lake in Kirikli village using microscopy and molecular
methods. Moreover, we investigated the relationship between
Blastocystis colonization and human gut microbiota composition.

Materials and methods

This is a cross-sectional study conducted in Kirikli village
located in the Seyhan Dam Lake basin, Adana, between October
and November 2023. Human, animal (cattle, sheep, and goats),
and environmental (water and mud) samples were collected and
analyzed using microscopy and molecular methods.

Ethics statement and research
permissions

The ethics committee of Cukurova University approved
this study for sample collection (approval number 49/135) and
microbiome analysis (approval number 39/147). Ethical rules
were according to the Declaration of Helsinki. All participants
were informed about the nature of the project. Signed consent
was obtained from the participants and the parents of the
child participants.

For the environmental samples, research permission was
obtained from the Adana Governorate and Karaisali District
Directorate of Agriculture and Forestry for the use of dam lake
materials (approval number E-12757666-140.03).

Study area

This study was conducted in Kirikly, a village with a population
of 582, located in Karaisali district of Adana province, Tirkiye
(37 °10'N, 35 °14'E), 35 km away from the city center (Figure 1).
The village is located within the Mediterranean climate zone,
characterized by hot, dry summers and mild, rainy winters. The
settlement, whose residents derive their living from farming and
animal husbandry, is surrounded by agricultural lands, forest
patches, grazing areas and tributaries of the Seyhan Dam Lake.
Seasonal animal movements are common in the areas surrounding
the village. The Seyhan Dam was constructed around 70 years
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FIGURE 1

Map of Turkiye (top left), highlighting the sampling province in red. The bottom image shows sampling areas in Kirikli Village (village's location
marked with a pin). Red circles represent households where both human and animal samples were collected; black circles represent households

where only human samples were collected.

ago and is located 12 km from the Kirikli village (Supplementary
Figure 1). Seyhan Dam Lake passes through the border of the village
in the study area and is used to irrigate agricultural areas and
animals. The water level recedes during November and December.
Thus, the area becomes accessible for recreational activities, such as
picnic and camping. It is also used as pasture for grazing animals,
where they defecate. The area fills with water again in April and
May due to snowmelt. This region was selected as a model site for
the One Health approach due to its geographical location, climate,
proximity to the Seyhan Lake Dam (used for livestock watering
and field irrigation) substantial animal populations, rich pastures,
and a population primarily engaged in agriculture and animal
husbandry. Furthermore, the area has the potential to represent the
human-animal-environment cycle of intestinal parasites.

Sample collection

Human, animal (cattle, sheep and goats) and environmental
samples were collected and preserved in a 1:2 ratio
DNA/RNA  Shield™ Germany)

until further analysis.

(ZymoResearch, Freiburg,

Human fecal samples

The “purposive sampling method,” commonly utilized in
biological research and modified accordingly, was used (Isiklar,
2018) to determine the number of human samples for this
study. All participants appeared to be healthy, with no cases of
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diarrhea or bloody stool. Samples were randomly collected from
124 participants across 64 households. Of these, 90 participants
belonged to households actively engaged in animal husbandry,
while the other 34 participants were from households without
animals and reported not owning any animals for at least 6 months.
These two groups were evaluated based on whether they were
engaged in animal husbandry or not. There were no cases of
diarrhea or bloody stool. Each participant was provided with a
labeled, sterile fecal collection container.

Animal fecal samples

A total of 305 fecal samples were collected from 89 cattle, 151
sheep, and 65 goats belonging to the individuals participating in
the study. The number of samples for each animal was calculated
using the “proportional stratified sampling method” (Isiklar, 2018).
Therefore, the number of animals sampled per household varied
according to the household’s animal population. To minimize
environmental contamination, samples were collected by direct
observation of the animals’ defecation during morning feeding,
grooming, or rest, so that only a single sample was collected
from each animal. Individual samples were collected in pre-labeled
containers.

Environmental samples

Twenty-four dam lake water and 16 mud samples were
collected directly from the closest parts of the Seyhan Dam
lake, where human activities (picnics, camping, fishing, etc.) and
animal grazing occurred and from areas irrigated for livestock
and agricultural use. Water samples were collected from the dam
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lake, its tributaries, and from standing water in 1-liter sterile
containers. These were left to stand on a flat surface at room
temperature overnight (Jinatham et al., 2021), and the supernatant
was drained until 50 ml of sediment was left with a manual drainage
system. Then, the sediment was transferred to 15 ml tubes and
centrifuged at 500 g for 10 min, the supernatant was drained, and
the sediment remaining at the bottom was preserved in a 1:2 ratio
DNA/RNA shield until further analysis. Mud samples were taken
from the mentioned locations and directly preserved in a 1:2 ratio
DNA/RNA shield until further analysis.

Screening of Blastocystis

Culture

Approximately 200 mg were taken from all fecal samples and
inoculated into 2 ml of Jones’ medium containing 10% horse serum
(Stensvold et al.,, 2007; Sarzhanov et al., 2021). Similarly, sediment
obtained from water and mud samples processed as described in
the Environmental Samples section was also inoculated into the
medium. After 48-72 h of incubation at 37 °C, culture samples
were examined using a light microscope (Supplementary Figure 2)
to determine whether Blastocystis was present.

Genomic DNA Extraction

DNA extraction was performed by taking 200 pl of a
thoroughly vortexed DNA/RNA shield-sample mixture, and the
PureLink™ Microbiome DNA Purification Kit (Thermo Fisher
Scientific, Carlsbad, CA, USA) was used according to the
manufacturer’s protocol.

gPCR (Real-time PCR)

Blastocystis was identified using specific primer sequences
(BL18SPPF1 _5-AGTAGTCATACGCTCGTCTCAAA-3’ and BL
18SR2PP 5 '-TCTTCGTTACCCGTTACTGC-3') to amplify a
conserved region of SSU rRNA gene (330 bp) by qPCR (Poirier
etal, 2011). A negative control (nuclease-free water) and a positive
control (genomic DNA of Blastocystis) were used in every qPCR
run. The reaction mixtures (10 1) contained 5 pl of Luna Taq
Universal (New England Biolabs, Ipswich, MA, USA), 0.5 il of a
10 WM primer pair, and 2 pl of template DNA. qPCR protocol
included; pre-denaturation step: 95 °C for 5 min; followed by 49
cycles of denaturation step: 95 °C for 5 s, annealing step, 68 °C for
10 s, extension step: 72 °C for 15 s and final extension at 72 °C for
10 min. Reactions were set up in 96-well plates in a CFX96 Touch
Real-Time PCR Detection System (Bio-Rad, United States).

Polymerase chain reaction and phylogenetic
analysis

Nested PCR was performed on samples positive for Blastocystis
by either culturing (microscopy) or qPCR methods. The
primer oligonucleotide sequences of nested PCR are detailed
in Supplementary Table 1. First and second-round PCR protocols
were set up as follows: pre-denaturation step: 95 °C for 5 min; 30
cycles of: denaturation step: 94 °C for 1 min; annealing step: 59 °C
and 50 °C (first and second-round PCR, respectively) for 1 min;
extension step: 72 °C for 1 min and a final extension step: 72 °C for
10 min. DNA sequencing was performed by using internal primers
for each second-round PCR-positive sample (Cologne, Germany).
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The sequences obtained by Sanger sequencing were manually
inspected and used as queries to perform BLAST searches for
comparisons with reference gene sequences in the National Center
for Biotechnology Information (NCBI). For the phylogenetic
analysis, a dataset spanning Blastocystis diversity, as well as newly
derived sequences, was constructed. To avoid redundancy, groups
of highly similar sequences (% divergence <98%) were collapsed
and only one or two representatives were included in the dataset.
Sequences were aligned using MUSCLE v5. Ambiguous positions
were removed using Trimal v1.4. Maximum likelihood analysis was
performed using IQTREE (Nguyen et al., 2015).

Microbiome sequencing
High-throughput sequencing was
to Novogene, following a modified version of the protocol

amplicon outsourced
described by Caporaso et al., 2011. One nanogram of extracted
DNA was used, fragmented, and adapted for paired-end
sequencing. The 16S rRNA gene was amplified using the
primer pair 515F (GTGCCAGCMGCCGCGGTAA) and 907R
(CCGTCAATTCCTTTGAGTTT), which targets the V3-V4
hypervariable region. Sequencing was performed on the Illumina
NovaSeq platform.

Raw sequencing reads were processed using the Lotus2 pipeline
(Ozkurt et al., 2022). The workflow included several key steps:
chimera detection and removal were conducted using Minimap2
(Li, 2018), which was also employed to identify and exclude
off-target human DNA reads by performing a BLAST search
against the Genome Reference Consortium Human Build 38.p14
(0 contaminated samples detected). The trimmed reads were
then clustered into Amplicon Sequence Variants (ASVs) with
a maximum of one nucleotide difference, using the Divisive
Amplicon Denoising Algorithm 2 (DADA2) (Callahan et al,
2016). ASVs were taxonomically classified through BLAST searches
against the GreenGenes2 (GG2) database (DeSantis et al., 2006).

Statistical analysis

The data obtained in this study was statistically analyzed using
IBM Statistical Package for the Social Sciences (SPSS) version
29 software. A global chi-square test was used to assess whether
the distributions of gender and age groups (0-18 years, 19-
39 years, 40-59 years, and 60 years and above) differed significantly
(p < 0.05). For microbiome analysis, the Shapiro-Wilk test was used
to assess the normality of data distribution. Normally distributed
data were analyzed using ANOVA, followed by the Tukey’s HSD
test for pairwise comparisons. For non-normally distributed data,
the Kruskal-Wallis test was applied, followed by the Dunn test (with
Bonferroni adjustment) for multiple comparisons.

Statistical analyses and data visualization were performed using
R Studio 4.2.3. To account for variations in sequencing depth, data
were first rarefied to 60,000 reads based on the species accumulation
curve (Supplementary Figure 1). Rarefaction resulted in the
exclusion of one sample. The relative abundance of each genus was
then calculated for each sample, and a heatmap was generated to
visualize the results. Alpha diversity was assessed using diversity
indices, including Shannon and Simpson, and richness estimators
including Chaol and observed taxa, implemented in the Phyloseq
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package. These indices were compared between Blastocystis-
positive and Blastocystis-negative samples. To visualize microbiome
composition, compositional bar plots were generated using the
Microbiome package, including only taxa representing more than
1% of total reads. Principal Coordinate Analysis (PCoA) based
on Bray-Curtis dissimilarity was used to visualize differences in
microbial community structure between Blastocystis-positive and
Blastocystis-negative samples. Samples were plotted using Bray-
Curtis dissimilarity matrices. PERMANOVA (Anderson, 2017)
was used to test for statistical significance of group differences.
Linear Discriminant Analysis Effect Size (LEfSe) (Segata et al.,
2011) was applied to identify potential biomarkers discriminating
Blastocystis-positive from Blastocystis-negative samples based on
relative abundance profiles.

Results

Demographic characteristics of the
human participants

Of the 124 participants in the study, 58 (46.8%) were female,
and 66 (53.2%) were male, with an average age of 44.7 (range
between 6 and 82). Of the participants, 90 out of 124 (72.6%)
are actively involved in animal husbandry, and 34 (27.4%) stated
being involved in caring for any animals for at least the last
6 months. Additionally, all participants declared that they drank tap
water. Body mass index (BMI) was calculated for all participants
who were 19 years of age or older (n:109) (Geifman and Rubin,
2011). Ninety-five (87.2%) of the individuals participating in the
study had a BMI above 25 and were classified as overweight or
obese. The remaining participants were classified as having normal
weight (18.5-24.9). There were no individuals in the study who
were extremely underweight (BMI < 18.5). The distribution of
sociodemographic characteristics of the participants according to

TABLE 1 Distribution of sociodemographic characteristics of
participants according to the presence of Blastocystis.

Characteristics |Positive |Negative [Total (%) |p value
(n%) (n%)

Gender Female 40 (69.0%) |18 (31.0%) 8 (46.8%) ~ 0.095
xl“ 2.7842
Male 54 (81.8%) |12 (18.2%) |66 (53.2%)
Age group |0-18 10 (66.7%) |5 (33.3%) 15(12.1%) |p~0.79
%2 =1.048
19-39 21(80.8%) |5(192%) |26 (21.0%)
40-59 45 (76.3%) 114 (23.7%) |59 (47.6%)
60 and 18 (75.0%) |6 (25.0%) |24 (19.4%)
above
BMI* 18.5-24.9 14 (100.0%) |0 (0.0%) 14 (12.8%) |p~0.032
2
=6.892
25.0-29.9 28 (66.7%) |14 (33.3%) |42 (38.5%) x
>30.0 42(79.2%) |11 (20.8%) |53 (48.6%)
Animal Yes 65(72.2%) |25 (27.8%) |90 (72.6%) |p~0.129
husbandry x2 =2.297

o 29 (85.3%) |5(14.7%) 34 (27.4%)

*Body mass index (BMI) is calculated for ages 19 and above. Bold values indicate statistical
significance (p < 0.05).
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the presence of Blastocystis is shown in Table 1. A more detailed
table can be found in Supplementary Table 1.

Blastocystis occurrence

In this study, all sample types were investigated for the
presence of Blastocystis using culture and qPCR. A sample was
considered positive when Blastocystis was seen microscopically
(Supplementary Figure 2) in culture or when a sequence was
obtained (qPCR product or PCR product). Hence, samples positive
only for microscopy were included in the prevalence calculation but
not subtyping. In all cases, the vacuolar form was predominantly
observed microscopically and occasionally granular and amoeboid
forms. In human samples, culture positivity was 70.1% (87/124).
Regarding qPCR, 111/124 samples yielded a band of the expected
size, however of these only 36 samples were successfully sequenced
and subtyped. 28 samples were positive by both microscopy and
molecular methods. Combining the two approaches, the overall
positivity rate in humans in this study was 76.6% (95/124).
Positivity in the 0-18 age group was 66.7% (10/15), 80.8% (21/26)
in the 19-39 group, 76.3% (45/59) in the 40-59 group and 75%
(18/24) in the over 60 group. Statistical analysis showed a significant
association between BMI and Blastocystis positivity (p < 0.05).
Though Blastocystis was more prevalent among individuals with
normal BMI no statistical test was performed at the subgroup
level. Global chi square tests revealed no statistically significant
relationships between Blastocystis positivity and other demographic
variables such as gender, occupation, and age groups (p > 0.05).

In animals, 66% (200/304) were culture positive. More
specifically, 65.2% (58/89) of cattle were culture positive, 66.2%
(100/151) of sheep, and 64.6% (42/65) of goats. Using qPCR, 100%
of the samples showed a band of the expected size. Of these, 77
were successfully sequenced and subtyped (24 cattle, 35 sheep,
and 17 goats). Combining the two approaches, the positivity rate
was as 71% (63/89) in cattle, 73% (110/151) in sheep, and 78%
(50/64) in goats.

The environmental samples showed 37.5% (15/40) positivity
solely through culture. Eleven of these were water samples, while
four were mud. None of the environmental samples yielded
Blastocystis sequences.

Blastocystis subtypes

In total, 112 sequences were subtyped from humans (n = 36),
cattle (n 24), sheep (n 35) and goat (n 17).
multiple instances the chromoatograms showed evidence of mixed

infections, as indicated by multiple peaks. To assign subtype the
criteria below were followed: reasonably good quality sequence
of over 300 bp and over 98% similarity in GenBank. Subtypes
were identified using a combination of phylogeny and blast
against GenBank and the curated database pubmlst! and phylogeny
(Supplementary Figure 3). In the phylogenetic analysis all subtypes
were monophyletic and the new sequences placed within known
subtype clades. For 18 sequences, the methodologies did not agree.
In pubmlst, they were identified as belonging to one of the subtypes
previously comprising ST10 (i.e., ST23, ST42-ST44), perhaps due
to the short length of the sequences. In the phylogenetic tree, these

1 https://pubmlst.org/bigsdb?db=pubmlst_blastocystis_seqdef&page=
sequenceQuery
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placed within the clade comprising ST10 in the past, but jumped
within the clade depending on taxon sampling. Of these, 13 were
from cattle, three from sheep and two from goats. These sequences
were not assigned a subtype, only the clade with which they cluster.

In total, 13 subtypes were identified: ST1, ST2, ST3, ST4, ST5,
ST10, ST21, ST24, ST25, ST26, ST42, ST43, and ST44. In humans,
four subtypes were detected, namely ST1, ST2, ST3, and ST4. The
most abundant subtype was ST3 (33%, 12/36), followed by ST1,
and ST?2 (each at 31%, 11/36) and ST4 (6%, 2/36). In animals, ten
subtypes were detected: ST4, ST5, ST10, ST21, ST24, ST25, ST26,
ST42, ST43, and ST44. In cattle, ST10 (n = 8), ST25 (n = 2), ST26
(n=3),ST42 (n=5),ST43 (n=1), and ST44 (n = 5) were identified.
In sheep, ST4 (n = 1), ST5 (n = 2), ST10 (n = 17), ST24 (n = 5),
ST26 (n = 4), ST43 (n = 3), and ST44 (n = 3) were detected. Goat
samples were positive for ST10 (n = 5), ST21 (n = 2), ST24 (n=7),
ST26 (n = 1), ST43 (n = 1), and ST44 (n = 1). Table 2 showed
the distribution of Blastocystis subtypes among human and animal
host. ST10 was the most abundant in cattle and sheep, while in goats
ST24 was. ST10, ST26, ST43, and ST44 were shared by all three
ruminant species (Figure 2). ST25 and ST42 were detected only in
cattle, while ST21 was detected only in goats. ST24 was detected in
goats and sheep, but not in cattle.

At the household level, subtype analysis was performed on
more than one individual from five households, and no common
subtype (ST) was identified among individuals within the same
household. However, common subtypes were reported among
livestock within the same household.

Microbiome analysis

Using Shannon (Figure 3A), Simpson (Figure 3B), Chaol
(Figure 3C) and observed taxa (Figure 3D), there were no
significant differences in bacterial alpha diversity between
Blastocystis positive and Blastocystis negative samples, as confirmed
by ANOVA/Kruskal-Wallis tests. The same metrics were then

&N
/! W

Sheep

FIGURE 2
Shared and unique Blastocystis subtypes (ST) detected in cattle,
sheep and goats.
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compared at the subtype level (ST1-ST4) (Figure 3E-H). ST1
had the highest average diversity score average across all metrics
relative to the Blastocystis negative samples, while ST4 samples
showed a trend toward lower diversity and richness, but these
results were not significant. Comparison of the composition of
samples grouped by Blastocystis presence is shown in Figure 4
(individual samples are shown in Supplementary Figure 2).
At the genus level, Blastocystis positive samples had a higher
relative abundance of Prevotella and Bifidobacterium and relatively
decreased Lachnospiraceae (Figure 4A). When samples were
grouped by subtype, ST4 had a notable reduction in Prevotella
and a marked increase in Bifidobacterium along with an increase
in Agathobacter (Figure 4B). At the phylum level, Blastocystis
positive samples showed an increase in Bacteroidota and a decrease
in Proteobacteria (Figure 4C). When the samples were grouped
by Blastocystis subtype, ST4 showed markedly lower relative
abundance of Bacteroidota, and an increase in Actinobacteriota
(Figure 4D). To assess differences in overall bacterial community
composition principal coordinate analysis (PCoA) was used based
on Bray-Curtis dissimilarities (Figure 5). PERMANOVA testing
indicated that the community structure differed significantly
between Blastocystis positive and Blastocystis negative groups,
although the effect size was small (p 0.037, R? = 0.046),
(Figure 5A). When samples were grouped by Blastocystis subtype
(Figure 5B), PERMANOVA testing also revealed significant
differences in community composition (p = 0.03, R> = 0.136),
indicating a stronger effect size compared to colonization status

alone. Pairwise Adonis was used to assess differences in community
composition between groups. A significant difference was observed
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between ST3 and Blastocystis negative samples (Supplementary
Table 2). To identify taxa associated with Blastocystis colonization
status, Linear discriminant analysis Effect Size (LEFsE) was used.
Linear discriminant analysis (LDA) scores with an absolute value
of 2 were considered indicative of discriminative features. Taxa
were aggregated to the genus and family levels (Figure 6). Those
with high LDA scores contributed most strongly to distinguishing
Blastocystis positive from Blastocystis negative samples. In total, 38
genera were identified as discriminatory for Blastocystis negative
samples, while 13 genera were discriminatory for Blastocystis
positive samples. At the family level, these numbers were 5 and 13,
respectively.

Discussion

The current study presents the first integrative investigation
of Blastocystis in rural Tiirkiye, examining human, livestock,
and environmental samples to assess its prevalence, subtype
distribution, and gut microbiome composition. Anthropometric
data from human participants revealed a significant association
between BMI and Blastocystis colonization in agreement with
previous studies (Beghini et al., 2017; Asnicar et al., 2021; Malatyali
et al., 2021; Matovelle et al., 2022), with lean individuals having
the highest Blastocystis positivity rate. A few studies have found
a high occurrence of Blastocystis in obese individuals (Jinatham
et al,, 2021; Caudet et al., 2022a,b). Nonetheless, the organism’s
presence has been associated with bacterial taxa linked to improved
cardiometabolic health profiles (Piperni et al., 2024) and in the
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obese with lower incidence of metabolic syndrome (Caudet et al.,
2022a,b). Moreover, Blastocystis colonization was not associated
with gut inflammation as indicated by lower fecal calprotectin
levels (Nieves-Ramirez et al., 2018). Collectively, these findings
support hypotheses of a beneficial role for Blastocystis within the
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gut ecosystem and warrants further exploration to understand its
contributions and underlying mechanisms (Deng and Tan, 2025;
Stensvold, 2025).

Our results indicate a high occurrence of Blastocystis across
all studied host species, consistent with findings from other
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rural communities (El Safadi et al., 2014; Jinatham et al., 2021).
However, the true incidence is likely underestimated as several
samples negative by microscopy were clearly Blastocystis positive,
but had to be excluded due to poor sequencing quality.
Moreover, several samples positive only by microscopy also failed
amplification or sequencing. This was notably the case with
the animal and environmental samples. A main issue is the
lack of standardization of Blastocystis QPCR from environmental
samples. Alternative explanations that could account for this,
include potential amplification inhibition and mixed infections.
Optimizing environmental DNA methodologies are essential and
could significantly improve our understanding of ecological
reservoirs and transmission pathways.

Overall, 13 subtypes were identified indicating high genetic
diversity in the sampled area and associated hosts. Humans
predominantly carried subtypes ST1, ST2, and ST3, aligning with
global human-associated subtype distributions (Alfellani et al,
20135 Jiménez et al., 2022). Livestock, all of which were ruminants
(cattle, sheep, and goats), carried subtypes typical of these animals
(Maloney et al., 2019; Rauft-Adedotun et al., 2023; Stensvold et al.,
2023; Heydarian et al., 2024; Naguib et al., 2024; Santin et al,
2024). When looking at the community and household level there
was barely any sharing of subtypes between humans and their
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animals. This finding does not seem to match several other studies,
which provide evidence that supports the zoonotic transmission of
Blastocystis. Notably, however, the overall proportion of confirmed
zoonotic cases remains low; in nearly all studies, only a small subset
of humans shared identical subtypes with animals (Yoshikawa et al.,
2009; Rudzinska et al., 2022; Salehi et al., 2022; McCain et al., 2023;
Sejnohové et al.,, 2024). Hence, even though zoonotic transmission
is possible, it appears to be infrequent in the studied populations.
An alternative explanation might be environmental exposure.
Blastocystis was previously detected in environmental samples, and
recent studies focusing on subtyping have revealed a wide range of
subtypes in such samples (Noradilah et al., 2016; Jinatham et al,,
2021; Sanhueza Teneo et al,, 2025). Herein, we detected Blastocystis
in water and/or soil samples; however, sequencing failure prevented
subtype identification. Collectively, these findings point toward the
environment having a role in driving Blastocystis transmission.
Nonetheless, this route remains comparatively less studied and
warrants further investigation.

Blastocystis colonization has been associated with distinct gut
microbial profiles characterized by increased microbial diversity
and bacterial species richness (Audebert et al, 2016; Nieves-
Ramirez et al., 2018; Kodio et al., 2019; Even et al., 2021;
Piperni et al., 2024; Castanieda et al., 2025). Most of these studies
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have considered the presence or absence of Blastocystis, with
comparatively fewer exploring differences across subtypes (Beghini
et al,, 2017; Tito et al., 2019; Antonetti et al., 2024). Our analyses
reveal subtypes specific structuring, indicating that individuals
harboring different subtypes have distinct microbial communities
consistent with previous findings. In this study, ST4 stood out as
it showed a trend toward lower microbial diversity and richness in
contrast to earlier studies (Beghini et al., 2017; Tito et al., 2019).
Notably, in these studies, nearly all ST4-positive samples (except for
two from Asia) originated from westernized populations, mainly
from Europe. This suggests that ST4-microbiota associations
may vary across populations or environments. Alternatively, the
difference could be due to the small number of individuals
with ST4 herein. Regardless, this finding highlights the need to
investigate diverse populations focusing on Blastocystis subtype-
level differences.

This study has certain limitations. First, the cross-sectional
design precludes assessment of temporal relationships (Tsaousis
et al., 2025). While a significant association between BMI and
Blastocystis carriage was revealed, the test did not establish whether
differences among the three BMI groups underlie that finding as
other potential confounding factors (e.g., diet, co-existing diseases)
were not considered.

Conclusion

This study not only bridges a knowledge gap by characterizing
Blastocystis subtype diversity in humans and livestock within a
rural Turkish setting but also spearheads a model for integrated
One Health investigations in the region. By combining classical
parasitological, and microbiome analyses, we demonstrate the
feasibility and value of this type of framework. These findings
lay the groundwork for future longitudinal and comparative
research both within Tirkiye and in similar rural communities
globally. Additional multidisciplinary collaborative studies will be
instrumental in redefining our understanding of intestinal protists—
not solely as pathogens, but as complex microbial players in host
health and environmental ecosystems (Tsaousis et al., 2024).
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