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Blastocystis is a globally prevalent intestinal protist commonly found in humans

and animals, yet its role in health and disease remains ambiguous. This is a

cross-sectional study of Blastocystis in rural Türkiye, examining 124 human,

305 livestock (cattle, sheep, goats), and 40 environmental samples using

culture/microscopy, qPCR, and sequencing. We further explored associations

between Blastocystis and population parameters, along with gut microbiota

profiles. Using a combination of sequencing and microscopy, the overall

prevalence was high, at 76.6% in humans, 71%–78% in livestock, and 38%

in environmental samples. Subtypes ST1–ST4 were detected in humans, with

ST3 being most frequent. Livestock harbored ST10 predominantly, with goats

showing high carriage of ST24. Several subtypes (e.g., ST25, ST26) were

recorded in livestock for the first time in Türkiye. Body mass index (BMI)

was significantly associated with Blastocystis colonization, with lean individuals

having higher carriage. Contrary to other studies, individuals with ST4 exhibited

reduced bacterial diversity and altered microbial composition, suggesting

subtype-specific interactions. By combining parasitology, microbiome, and

environmental analysis, this study offers an overview of Blastocystis diversity and

distribution in rural Türkiye. This work provides a foundation for future integrative

research approaches to explore the ecological role of Blastocystis and its

subtypes, potential health implications, and interactions with other microbes in

rural and global contexts.
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Introduction 

Blastocystis is a common intestinal protist found in humans and 
various animals, including mammals, birds, and reptiles. It is one 
of the two stramenopiles known to inhabit the human gut (Hublin 
et al., 2021; Nguyen et al., 2023). Despite its widespread presence, 
its role in health and disease remains unclear, making it a subject 
of ongoing research (Centers for Disease Control and Prevention 
[CDC], 2025). 

The organism exists in multiple forms–vacuolar, granular, 
amoeboid, cystic, and less commonly avacuolar and 
multivacuolar –transmitting through the fecal-oral route via 
cysts shed in feces (Hublin et al., 2021; Tan, 2008). Blastocystis is 
estimated to colonize nearly one billion people globally (Stensvold 
and Clark, 2020) with prevalence varying from 5%–20% in 
developed regions to over 30% in developing areas (Tan, 2008; 
Khorshidvand et al., 2021). Studies of human populations across 
diverse geographic regions suggest that Blastocystis colonization 
is associated with distinct gut microbial profiles and higher levels 
of microbial diversity. It has also been associated with increases in 
the abundance of beneficial bacterial taxa such as Ruminococcaceae 
and Prevotella (Audebert et al., 2016; Beghini et al., 2017; Tito 
et al., 2019). This is in contrast to the reduced microbial diversity 
typically observed in individuals with gastrointestinal diseases 
such as inflammatory bowel disease. Morever, Blastocystis has been 
reported to be associated with healthy dietary patterns, and lower 
rates of obesity, cardiometabolic risk, and mortality (Piperni et al., 
2024). These findings suggest that Blastocystis may be indicative 
of healthy gut microbiota though the underlying mechanisms of 
how this might be achieved remain unknown (Audebert et al., 
2016; Beghini et al., 2017; Nieves-Ramírez et al., 2018; Kodio et al., 
2019; Tito et al., 2019; Alzate et al., 2020; Castañeda et al., 2020; 
Even et al., 2021). 

Based on the diversity of SSU rRNA, at least 44 Blastocystis 
subtypes (STs) have been identified. Among these, 16 STs, including 
ST1–ST10, ST12, ST14, ST16, ST23, ST35, and ST41, have been 
identified in humans, with ST1–ST4 being the most frequently 
reported (McCain et al., 2023; Koehler et al., 2024; Santin et al., 
2024). In Türkiye, Blastocystis prevalence ranged from 2.1 to 51% 
across studies, with ST3 (47.9%) as the dominant subtype (Malatyalı 
et al., 2023). Studies on livestock (i.e., cattle, sheep, water bualoes, 
and chickens), and companion animals (i.e., dogs, cats, and horses) 
together with those on environmental sources indicate carriage 
rates of 3.65% to over 60%, but transmission dynamics remain 
poorly understood (Onder et al., 2021; Tavur and Önder, 2022). 

Recent data suggest that there is interplay of body mass index 
(BMI) and Blastocystis colonization, with several studies reporting 
higher Blastocystis presence in lean individuals (Beghini et al., 2017; 
Asnicar et al., 2021; Malatyali et al., 2021; Matovelle et al., 2022), 
while one study found a higher Blastocystis prevalence in obese 
individuals, though the obese sample size was small (Jinatham et al., 
2021). Other studies reported prevalence exceeding 40% in obese 
populations but the absence of lean controls limits interpretation 
(Caudet et al., 2022a,b). 

Zoonotic transmission studies suggest that certain subtypes 
may spread between humans and animals, but it remains unclear 
whether these same strains establish colonization or are merely 
transient (Tsaousis et al., 2025; Abdo et al., 2021; Ruang-areerate 

et al., 2021; Rudzi´ nska et al., 2022). Recent studies have reported 
molecular detection of Blastocystis in soil (Jinatham et al., 2021; 
Blackburn et al., 2024), with certain subtypes shared between 
human and environmental samples (Jinatham et al., 2021). These 
findings suggest soil as a transmission route, adding another 
layer of complexity to its transmission. Hence, an integrative 
approach that considers humans, animals, and the environment, 
is essential for shedding light to the organism’s epidemiology 
(Tsaousis et al., 2024). The first study to investigate Blastocystis 
occurrence in this context took place in a rural community in 
Thailand (Jinatham et al., 2021). Nevertheless studies from diverse 
regions are essential to assess potential geographic or rural/urban 
dierences. To address this gap, we conducted a study in a rural 
area of Türkiye. We aimed to explore diversity, distribution, and 
possible transmission dynamics of Blastocystis in humans, livestock 
(cattle, sheep, goats), and environmental samples from Seyhan 
Dam Lake in Kırıklı village using microscopy and molecular 
methods. Moreover, we investigated the relationship between 
Blastocystis colonization and human gut microbiota composition. 

Materials and methods 

This is a cross-sectional study conducted in Kırıklı village 
located in the Seyhan Dam Lake basin, Adana, between October 
and November 2023. Human, animal (cattle, sheep, and goats), 
and environmental (water and mud) samples were collected and 
analyzed using microscopy and molecular methods. 

Ethics statement and research 
permissions 

The ethics committee of Çukurova University approved 
this study for sample collection (approval number 49/135) and 
microbiome analysis (approval number 39/147). Ethical rules 
were according to the Declaration of Helsinki. All participants 
were informed about the nature of the project. Signed consent 
was obtained from the participants and the parents of the 
child participants. 

For the environmental samples, research permission was 
obtained from the Adana Governorate and Karaisalı District 
Directorate of Agriculture and Forestry for the use of dam lake 
materials (approval number E-12757666-140.03). 

Study area 

This study was conducted in Kırıklı, a village with a population 
of 582, located in Karaisalı district of Adana province, Türkiye 
(37 ◦10N, 35 ◦14E), 35 km away from the city center (Figure 1). 
The village is located within the Mediterranean climate zone, 
characterized by hot, dry summers and mild, rainy winters. The 
settlement, whose residents derive their living from farming and 
animal husbandry, is surrounded by agricultural lands, forest 
patches, grazing areas and tributaries of the Seyhan Dam Lake. 
Seasonal animal movements are common in the areas surrounding 
the village. The Seyhan Dam was constructed around 70 years 
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FIGURE 1 

Map of Türkiye (top left), highlighting the sampling province in red. The bottom image shows sampling areas in Kırıklı Village (village’s location 
marked with a pin). Red circles represent households where both human and animal samples were collected; black circles represent households 
where only human samples were collected. 

ago and is located 12 km from the Kırıklı village (Supplementary 
Figure 1). Seyhan Dam Lake passes through the border of the village 
in the study area and is used to irrigate agricultural areas and 
animals. The water level recedes during November and December. 
Thus, the area becomes accessible for recreational activities, such as 
picnic and camping. It is also used as pasture for grazing animals, 
where they defecate. The area fills with water again in April and 
May due to snowmelt. This region was selected as a model site for 
the One Health approach due to its geographical location, climate, 
proximity to the Seyhan Lake Dam (used for livestock watering 
and field irrigation) substantial animal populations, rich pastures, 
and a population primarily engaged in agriculture and animal 
husbandry. Furthermore, the area has the potential to represent the 
human-animal-environment cycle of intestinal parasites. 

Sample collection 

Human, animal (cattle, sheep and goats) and environmental 
samples were collected and preserved in a 1:2 ratio 
DNA/RNA ShieldTM (ZymoResearch, Freiburg, Germany) 
until further analysis. 

Human fecal samples 
The “purposive sampling method,” commonly utilized in 

biological research and modified accordingly, was used (Işıklar, 
2018) to determine the number of human samples for this 
study. All participants appeared to be healthy, with no cases of 

diarrhea or bloody stool. Samples were randomly collected from 
124 participants across 64 households. Of these, 90 participants 
belonged to households actively engaged in animal husbandry, 
while the other 34 participants were from households without 
animals and reported not owning any animals for at least 6 months. 
These two groups were evaluated based on whether they were 
engaged in animal husbandry or not. There were no cases of 
diarrhea or bloody stool. Each participant was provided with a 
labeled, sterile fecal collection container. 

Animal fecal samples 
A total of 305 fecal samples were collected from 89 cattle, 151 

sheep, and 65 goats belonging to the individuals participating in 
the study. The number of samples for each animal was calculated 
using the “proportional stratified sampling method” (Işıklar, 2018). 
Therefore, the number of animals sampled per household varied 
according to the household’s animal population. To minimize 
environmental contamination, samples were collected by direct 
observation of the animals’ defecation during morning feeding, 
grooming, or rest, so that only a single sample was collected 
from each animal. Individual samples were collected in pre-labeled 
containers. 

Environmental samples 
Twenty-four dam lake water and 16 mud samples were 

collected directly from the closest parts of the Seyhan Dam 
lake, where human activities (picnics, camping, fishing, etc.) and 
animal grazing occurred and from areas irrigated for livestock 
and agricultural use. Water samples were collected from the dam 
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lake, its tributaries, and from standing water in 1-liter sterile 
containers. These were left to stand on a flat surface at room 
temperature overnight (Jinatham et al., 2021), and the supernatant 
was drained until 50 ml of sediment was left with a manual drainage 
system. Then, the sediment was transferred to 15 ml tubes and 
centrifuged at 500 g for 10 min, the supernatant was drained, and 
the sediment remaining at the bottom was preserved in a 1:2 ratio 
DNA/RNA shield until further analysis. Mud samples were taken 
from the mentioned locations and directly preserved in a 1:2 ratio 
DNA/RNA shield until further analysis. 

Screening of Blastocystis 

Culture 
Approximately 200 mg were taken from all fecal samples and 

inoculated into 2 ml of Jones’ medium containing 10% horse serum 
(Stensvold et al., 2007; Sarzhanov et al., 2021). Similarly, sediment 
obtained from water and mud samples processed as described in 
the Environmental Samples section was also inoculated into the 
medium. After 48–72 h of incubation at 37 ◦C, culture samples 
were examined using a light microscope (Supplementary Figure 2) 
to determine whether Blastocystis was present. 

Genomic DNA Extraction 
DNA extraction was performed by taking 200 µl of a 

thoroughly vortexed DNA/RNA shield-sample mixture, and the 
PureLinkTM Microbiome DNA Purification Kit (Thermo Fisher 
Scientific, Carlsbad, CA, USA) was used according to the 
manufacturer’s protocol. 

qPCR (Real-time PCR) 
Blastocystis was identified using specific primer sequences 

(BL18SPPF1 _5-AGTAGTCATACGCTCGTCTCAAA-3 and BL 
18SR2PP 5 -TCTTCGTTACCCGTTACTGC-3) to amplify a 
conserved region of SSU rRNA gene (330 bp) by qPCR (Poirier 
et al., 2011). A negative control (nuclease-free water) and a positive 
control (genomic DNA of Blastocystis) were used in every qPCR 
run. The reaction mixtures (10 µl) contained 5 µl of Luna Taq 
Universal (New England Biolabs, Ipswich, MA, USA), 0.5 µl of a 
10 µM primer pair, and 2 µl of template DNA. qPCR protocol 
included; pre-denaturation step: 95 ◦C for 5 min; followed by 49 
cycles of denaturation step: 95 ◦C for 5 s, annealing step, 68 ◦C for 
10 s, extension step: 72 ◦C for 15 s and final extension at 72 ◦C for 
10 min. Reactions were set up in 96-well plates in a CFX96 Touch 
Real-Time PCR Detection System (Bio-Rad, United States). 

Polymerase chain reaction and phylogenetic 
analysis 

Nested PCR was performed on samples positive for Blastocystis 
by either culturing (microscopy) or qPCR methods. The 
primer oligonucleotide sequences of nested PCR are detailed 
in Supplementary Table 1. First and second-round PCR protocols 
were set up as follows: pre-denaturation step: 95 ◦C for 5 min; 30 
cycles of: denaturation step: 94 ◦C for 1 min; annealing step: 59 ◦C 
and 50 ◦C (first and second-round PCR, respectively) for 1 min; 
extension step: 72 ◦C for 1 min and a final extension step: 72 ◦C for 
10 min. DNA sequencing was performed by using internal primers 
for each second-round PCR-positive sample (Cologne, Germany). 

The sequences obtained by Sanger sequencing were manually 
inspected and used as queries to perform BLAST searches for 
comparisons with reference gene sequences in the National Center 
for Biotechnology Information (NCBI). For the phylogenetic 
analysis, a dataset spanning Blastocystis diversity, as well as newly 
derived sequences, was constructed. To avoid redundancy, groups 
of highly similar sequences (% divergence <98%) were collapsed 
and only one or two representatives were included in the dataset. 
Sequences were aligned using MUSCLE v5. Ambiguous positions 
were removed using Trimal v1.4. Maximum likelihood analysis was 
performed using IQTREE (Nguyen et al., 2015). 

Microbiome sequencing 
High-throughput amplicon sequencing was outsourced 

to Novogene, following a modified version of the protocol 
described by Caporaso et al., 2011. One nanogram of extracted 
DNA was used, fragmented, and adapted for paired-end 
sequencing. The 16S rRNA gene was amplified using the 
primer pair 515F (GTGCCAGCMGCCGCGGTAA) and 907R 
(CCGTCAATTCCTTTGAGTTT), which targets the V3-V4 
hypervariable region. Sequencing was performed on the Illumina 
NovaSeq platform. 

Raw sequencing reads were processed using the Lotus2 pipeline 
(Özkurt et al., 2022). The workflow included several key steps: 
chimera detection and removal were conducted using Minimap2 
(Li, 2018), which was also employed to identify and exclude 
o-target human DNA reads by performing a BLAST search 
against the Genome Reference Consortium Human Build 38.p14 
(0 contaminated samples detected). The trimmed reads were 
then clustered into Amplicon Sequence Variants (ASVs) with 
a maximum of one nucleotide dierence, using the Divisive 
Amplicon Denoising Algorithm 2 (DADA2) (Callahan et al., 
2016). ASVs were taxonomically classified through BLAST searches 
against the GreenGenes2 (GG2) database (DeSantis et al., 2006). 

Statistical analysis 

The data obtained in this study was statistically analyzed using 
IBM Statistical Package for the Social Sciences (SPSS) version 
29 software. A global chi-square test was used to assess whether 
the distributions of gender and age groups (0–18 years, 19– 
39 years, 40–59 years, and 60 years and above) diered significantly 
(p < 0.05). For microbiome analysis, the Shapiro-Wilk test was used 
to assess the normality of data distribution. Normally distributed 
data were analyzed using ANOVA, followed by the Tukey’s HSD 
test for pairwise comparisons. For non-normally distributed data, 
the Kruskal-Wallis test was applied, followed by the Dunn test (with 
Bonferroni adjustment) for multiple comparisons. 

Statistical analyses and data visualization were performed using 
R Studio 4.2.3. To account for variations in sequencing depth, data 
were first rarefied to 60,000 reads based on the species accumulation 
curve (Supplementary Figure 1). Rarefaction resulted in the 
exclusion of one sample. The relative abundance of each genus was 
then calculated for each sample, and a heatmap was generated to 
visualize the results. Alpha diversity was assessed using diversity 
indices, including Shannon and Simpson, and richness estimators 
including Chao1 and observed taxa, implemented in the Phyloseq 
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package. These indices were compared between Blastocystis-
positive and Blastocystis-negative samples. To visualize microbiome 
composition, compositional bar plots were generated using the 
Microbiome package, including only taxa representing more than 
1% of total reads. Principal Coordinate Analysis (PCoA) based 
on Bray-Curtis dissimilarity was used to visualize dierences in 
microbial community structure between Blastocystis-positive and 
Blastocystis-negative samples. Samples were plotted using Bray-
Curtis dissimilarity matrices. PERMANOVA (Anderson, 2017) 
was used to test for statistical significance of group dierences. 
Linear Discriminant Analysis Eect Size (LEfSe) (Segata et al., 
2011) was applied to identify potential biomarkers discriminating 
Blastocystis-positive from Blastocystis-negative samples based on 
relative abundance profiles. 

Results 

Demographic characteristics of the 
human participants 

Of the 124 participants in the study, 58 (46.8%) were female, 
and 66 (53.2%) were male, with an average age of 44.7 (range 
between 6 and 82). Of the participants, 90 out of 124 (72.6%) 
are actively involved in animal husbandry, and 34 (27.4%) stated 
being involved in caring for any animals for at least the last 
6 months. Additionally, all participants declared that they drank tap 
water. Body mass index (BMI) was calculated for all participants 
who were 19 years of age or older (n:109) (Geifman and Rubin, 
2011). Ninety-five (87.2%) of the individuals participating in the 
study had a BMI above 25 and were classified as overweight or 
obese. The remaining participants were classified as having normal 
weight (18.5–24.9). There were no individuals in the study who 
were extremely underweight (BMI < 18.5). The distribution of 
sociodemographic characteristics of the participants according to 

TABLE 1 Distribution of sociodemographic characteristics of 
participants according to the presence of Blastocystis. 

Characteristics Positive 
(n%) 

Negative 
(n%) 

Total (%) p value 

Gender Female 40 (69.0%) 18 (31.0%) 58 (46.8%) p ≈ 0.095 

χ2≈ 2.7842 
Male 54 (81.8%) 12 (18.2%) 66 (53.2%) 

Age group 0–18 10 (66.7%) 5 (33.3%) 15 (12.1%) p ≈ 0.79 

χ2 = 1.048 
19–39 21 (80.8%) 5 (19.2%) 26 (21.0%) 

40–59 45 (76.3%) 14 (23.7%) 59 (47.6%) 

60 and 

above 

18 (75.0%) 6 (25.0%) 24 (19.4%) 

BMI* 18.5–24.9 14 (100.0%) 0 (0.0%) 14 (12.8%) p ≈ 0.032 

χ2 = 6.892 
25.0–29.9 28 (66.7%) 14 (33.3%) 42 (38.5%) 

≥30.0 42 (79.2%) 11 (20.8%) 53 (48.6%) 

Animal 
husbandry 

Yes 65 (72.2%) 25 (27.8%) 90 (72.6%) p ≈ 0.129 

χ2 = 2.297 
No 29 (85.3%) 5 (14.7%) 34 (27.4%) 

*Body mass index (BMI) is calculated for ages 19 and above. Bold values indicate statistical 
significance (p < 0.05). 

the presence of Blastocystis is shown in Table 1. A more detailed 
table can be found in Supplementary Table 1. 

Blastocystis occurrence 
In this study, all sample types were investigated for the 

presence of Blastocystis using culture and qPCR. A sample was 
considered positive when Blastocystis was seen microscopically 
(Supplementary Figure 2) in culture or when a sequence was 
obtained (qPCR product or PCR product). Hence, samples positive 
only for microscopy were included in the prevalence calculation but 
not subtyping. In all cases, the vacuolar form was predominantly 
observed microscopically and occasionally granular and amoeboid 
forms. In human samples, culture positivity was 70.1% (87/124). 
Regarding qPCR, 111/124 samples yielded a band of the expected 
size, however of these only 36 samples were successfully sequenced 
and subtyped. 28 samples were positive by both microscopy and 
molecular methods. Combining the two approaches, the overall 
positivity rate in humans in this study was 76.6% (95/124). 
Positivity in the 0–18 age group was 66.7% (10/15), 80.8% (21/26) 
in the 19–39 group, 76.3% (45/59) in the 40–59 group and 75% 
(18/24) in the over 60 group. Statistical analysis showed a significant 
association between BMI and Blastocystis positivity (p < 0.05). 
Though Blastocystis was more prevalent among individuals with 
normal BMI no statistical test was performed at the subgroup 
level. Global chi square tests revealed no statistically significant 
relationships between Blastocystis positivity and other demographic 
variables such as gender, occupation, and age groups (p > 0.05). 

In animals, 66% (200/304) were culture positive. More 
specifically, 65.2% (58/89) of cattle were culture positive, 66.2% 
(100/151) of sheep, and 64.6% (42/65) of goats. Using qPCR, 100% 
of the samples showed a band of the expected size. Of these, 77 
were successfully sequenced and subtyped (24 cattle, 35 sheep, 
and 17 goats). Combining the two approaches, the positivity rate 
was as 71% (63/89) in cattle, 73% (110/151) in sheep, and 78% 
(50/64) in goats. 

The environmental samples showed 37.5% (15/40) positivity 
solely through culture. Eleven of these were water samples, while 
four were mud. None of the environmental samples yielded 
Blastocystis sequences. 

Blastocystis subtypes 
In total, 112 sequences were subtyped from humans (n = 36), 

cattle (n = 24), sheep (n = 35) and goat (n = 17). In 
multiple instances the chromoatograms showed evidence of mixed 
infections, as indicated by multiple peaks. To assign subtype the 
criteria below were followed: reasonably good quality sequence 
of over 300 bp and over 98% similarity in GenBank. Subtypes 
were identified using a combination of phylogeny and blast 
against GenBank and the curated database pubmlst1 and phylogeny 
(Supplementary Figure 3). In the phylogenetic analysis all subtypes 
were monophyletic and the new sequences placed within known 
subtype clades. For 18 sequences, the methodologies did not agree. 
In pubmlst, they were identified as belonging to one of the subtypes 
previously comprising ST10 (i.e., ST23, ST42-ST44), perhaps due 
to the short length of the sequences. In the phylogenetic tree, these 

1 https://pubmlst.org/bigsdb?db=pubmlst_blastocystis_seqdef&page= 
sequenceQuery 
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placed within the clade comprising ST10 in the past, but jumped 
within the clade depending on taxon sampling. Of these, 13 were 
from cattle, three from sheep and two from goats. These sequences 
were not assigned a subtype, only the clade with which they cluster. 

In total, 13 subtypes were identified: ST1, ST2, ST3, ST4, ST5, 
ST10, ST21, ST24, ST25, ST26, ST42, ST43, and ST44. In humans, 
four subtypes were detected, namely ST1, ST2, ST3, and ST4. The 
most abundant subtype was ST3 (33%, 12/36), followed by ST1, 
and ST2 (each at 31%, 11/36) and ST4 (6%, 2/36). In animals, ten 
subtypes were detected: ST4, ST5, ST10, ST21, ST24, ST25, ST26, 
ST42, ST43, and ST44. In cattle, ST10 (n = 8), ST25 (n = 2), ST26 
(n = 3), ST42 (n = 5), ST43 (n = 1), and ST44 (n = 5) were identified. 
In sheep, ST4 (n = 1), ST5 (n = 2), ST10 (n = 17), ST24 (n = 5), 
ST26 (n = 4), ST43 (n = 3), and ST44 (n = 3) were detected. Goat 
samples were positive for ST10 (n = 5), ST21 (n = 2), ST24 (n = 7), 
ST26 (n = 1), ST43 (n = 1), and ST44 (n = 1). Table 2 showed 
the distribution of Blastocystis subtypes among human and animal 
host. ST10 was the most abundant in cattle and sheep, while in goats 
ST24 was. ST10, ST26, ST43, and ST44 were shared by all three 
ruminant species (Figure 2). ST25 and ST42 were detected only in 
cattle, while ST21 was detected only in goats. ST24 was detected in 
goats and sheep, but not in cattle. 

At the household level, subtype analysis was performed on 
more than one individual from five households, and no common 
subtype (ST) was identified among individuals within the same 
household. However, common subtypes were reported among 
livestock within the same household. 

Microbiome analysis 

Using Shannon (Figure 3A), Simpson (Figure 3B), Chao1 
(Figure 3C) and observed taxa (Figure 3D), there were no 
significant dierences in bacterial alpha diversity between 
Blastocystis positive and Blastocystis negative samples, as confirmed 
by ANOVA/Kruskal-Wallis tests. The same metrics were then 

FIGURE 2 

Shared and unique Blastocystis subtypes (ST) detected in cattle, 
sheep and goats. 
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FIGURE 3 

Comparisons of averaged diversity metrics by Blastocystis colonization status and subtype. The metrics include Shannon (A, E), Simpson (B, F), 
Chao1 (C, G) and Observed taxa (D, H). Violin plots in panels A–D compare Blastocystis-positive (red) and Blastocystis-negative (blue) samples. 
Panels E–H compare diversity across Blastocystis subtypes (colored by subtype). Statistical testing was performed using ANOVA with Tukey’s HSD for 
normally distributed data and Kruskal-Wallis with Dunn’s test for non-normally distributed data. P-values > 0.05 indicate non-significance. 

compared at the subtype level (ST1-ST4) (Figure 3E–H). ST1 
had the highest average diversity score average across all metrics 
relative to the Blastocystis negative samples, while ST4 samples 
showed a trend toward lower diversity and richness, but these 
results were not significant. Comparison of the composition of 
samples grouped by Blastocystis presence is shown in Figure 4 
(individual samples are shown in Supplementary Figure 2). 
At the genus level, Blastocystis positive samples had a higher 
relative abundance of Prevotella and Bifidobacterium and relatively 
decreased Lachnospiraceae (Figure 4A). When samples were 
grouped by subtype, ST4 had a notable reduction in Prevotella 
and a marked increase in Bifidobacterium along with an increase 
in Agathobacter (Figure 4B). At the phylum level, Blastocystis 
positive samples showed an increase in Bacteroidota and a decrease 
in Proteobacteria (Figure 4C). When the samples were grouped 
by Blastocystis subtype, ST4 showed markedly lower relative 
abundance of Bacteroidota, and an increase in Actinobacteriota 
(Figure 4D). To assess dierences in overall bacterial community 
composition principal coordinate analysis (PCoA) was used based 
on Bray-Curtis dissimilarities (Figure 5). PERMANOVA testing 
indicated that the community structure diered significantly 
between Blastocystis positive and Blastocystis negative groups, 
although the eect size was small (p = 0.037, R2 = 0.046), 
(Figure 5A). When samples were grouped by Blastocystis subtype 
(Figure 5B), PERMANOVA testing also revealed significant 
dierences in community composition (p = 0.03, R2 = 0.136), 
indicating a stronger eect size compared to colonization status 
alone. Pairwise Adonis was used to assess dierences in community 
composition between groups. A significant dierence was observed 

between ST3 and Blastocystis negative samples (Supplementary 
Table 2). To identify taxa associated with Blastocystis colonization 
status, Linear discriminant analysis Eect Size (LEFsE) was used. 
Linear discriminant analysis (LDA) scores with an absolute value 
of 2 were considered indicative of discriminative features. Taxa 
were aggregated to the genus and family levels (Figure 6). Those 
with high LDA scores contributed most strongly to distinguishing 
Blastocystis positive from Blastocystis negative samples. In total, 38 
genera were identified as discriminatory for Blastocystis negative 
samples, while 13 genera were discriminatory for Blastocystis 
positive samples. At the family level, these numbers were 5 and 13, 
respectively. 

Discussion 

The current study presents the first integrative investigation 
of Blastocystis in rural Türkiye, examining human, livestock, 
and environmental samples to assess its prevalence, subtype 
distribution, and gut microbiome composition. Anthropometric 
data from human participants revealed a significant association 
between BMI and Blastocystis colonization in agreement with 
previous studies (Beghini et al., 2017; Asnicar et al., 2021; Malatyali 
et al., 2021; Matovelle et al., 2022), with lean individuals having 
the highest Blastocystis positivity rate. A few studies have found 
a high occurrence of Blastocystis in obese individuals (Jinatham 
et al., 2021; Caudet et al., 2022a,b). Nonetheless, the organism’s 
presence has been associated with bacterial taxa linked to improved 
cardiometabolic health profiles (Piperni et al., 2024) and in the 
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FIGURE 4 

Compositional plots of the most abundant taxa in Blastocystis-positive and Blastocystis-negative samples. Relative abundances are depicted at the 
genus level (A, B) and phylum level (C, D). Comparisons are by Blastocystis presence (A, C) and by subtype (B, D) Only taxa representing more than 
1% of total reads within each sample are displayed. 

FIGURE 5 

Principal Coordinates Analysis (PCoA) based on Bray-Curtis dissimilarity of samples. Left panel: Comparison of Blastocystis-positive (red) and 
Blastocystis-negative (blue) samples. Right panel: comparison of samples by Blastocystis subype. Statisitcal differences in group centroids were 
assessed using PERMANOVA. P < 0.05 indicate significance 

obese with lower incidence of metabolic syndrome (Caudet et al., 
2022a,b). Moreover, Blastocystis colonization was not associated 
with gut inflammation as indicated by lower fecal calprotectin 
levels (Nieves-Ramírez et al., 2018). Collectively, these findings 
support hypotheses of a beneficial role for Blastocystis within the 

gut ecosystem and warrants further exploration to understand its 
contributions and underlying mechanisms (Deng and Tan, 2025; 
Stensvold, 2025). 

Our results indicate a high occurrence of Blastocystis across 
all studied host species, consistent with findings from other 
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FIGURE 6 

Linear discriminant analysis Effect Size (LEFsE) comparing taxa that discriminate between Blastocystis positive (red) and Blastocystis negative (blue) 
samples. Taxa with higher LDA scores indicate stronger discriminative power, with | LDA| > 2 being depicted. Results are shown at genus (A) and 
family (B) taxanomic levels. 

rural communities (El Safadi et al., 2014; Jinatham et al., 2021). 
However, the true incidence is likely underestimated as several 
samples negative by microscopy were clearly Blastocystis positive, 
but had to be excluded due to poor sequencing quality. 
Moreover, several samples positive only by microscopy also failed 
amplification or sequencing. This was notably the case with 
the animal and environmental samples. A main issue is the 
lack of standardization of Blastocystis qPCR from environmental 
samples. Alternative explanations that could account for this, 
include potential amplification inhibition and mixed infections. 
Optimizing environmental DNA methodologies are essential and 
could significantly improve our understanding of ecological 
reservoirs and transmission pathways. 

Overall, 13 subtypes were identified indicating high genetic 
diversity in the sampled area and associated hosts. Humans 
predominantly carried subtypes ST1, ST2, and ST3, aligning with 
global human-associated subtype distributions (Alfellani et al., 
2013; Jiménez et al., 2022). Livestock, all of which were ruminants 
(cattle, sheep, and goats), carried subtypes typical of these animals 
(Maloney et al., 2019; Rau-Adedotun et al., 2023; Stensvold et al., 
2023; Heydarian et al., 2024; Naguib et al., 2024; Santin et al., 
2024). When looking at the community and household level there 
was barely any sharing of subtypes between humans and their 

animals. This finding does not seem to match several other studies, 
which provide evidence that supports the zoonotic transmission of 
Blastocystis. Notably, however, the overall proportion of confirmed 
zoonotic cases remains low; in nearly all studies, only a small subset 
of humans shared identical subtypes with animals (Yoshikawa et al., 
2009; Rudzi´ nska et al., 2022; Salehi et al., 2022; McCain et al., 2023; 
Šejnohová et al., 2024). Hence, even though zoonotic transmission 
is possible, it appears to be infrequent in the studied populations. 
An alternative explanation might be environmental exposure. 
Blastocystis was previously detected in environmental samples, and 
recent studies focusing on subtyping have revealed a wide range of 
subtypes in such samples (Noradilah et al., 2016; Jinatham et al., 
2021; Sanhueza Teneo et al., 2025). Herein, we detected Blastocystis 
in water and/or soil samples; however, sequencing failure prevented 
subtype identification. Collectively, these findings point toward the 
environment having a role in driving Blastocystis transmission. 
Nonetheless, this route remains comparatively less studied and 
warrants further investigation. 

Blastocystis colonization has been associated with distinct gut 
microbial profiles characterized by increased microbial diversity 
and bacterial species richness (Audebert et al., 2016; Nieves-
Ramírez et al., 2018; Kodio et al., 2019; Even et al., 2021; 
Piperni et al., 2024; Castañeda et al., 2025). Most of these studies 
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have considered the presence or absence of Blastocystis, with 
comparatively fewer exploring dierences across subtypes (Beghini 
et al., 2017; Tito et al., 2019; Antonetti et al., 2024). Our analyses 
reveal subtypes specific structuring, indicating that individuals 
harboring dierent subtypes have distinct microbial communities 
consistent with previous findings. In this study, ST4 stood out as 
it showed a trend toward lower microbial diversity and richness in 
contrast to earlier studies (Beghini et al., 2017; Tito et al., 2019). 
Notably, in these studies, nearly all ST4-positive samples (except for 
two from Asia) originated from westernized populations, mainly 
from Europe. This suggests that ST4-microbiota associations 
may vary across populations or environments. Alternatively, the 
dierence could be due to the small number of individuals 
with ST4 herein. Regardless, this finding highlights the need to 
investigate diverse populations focusing on Blastocystis subtype-
level dierences. 

This study has certain limitations. First, the cross-sectional 
design precludes assessment of temporal relationships (Tsaousis 
et al., 2025). While a significant association between BMI and 
Blastocystis carriage was revealed, the test did not establish whether 
dierences among the three BMI groups underlie that finding as 
other potential confounding factors (e.g., diet, co-existing diseases) 
were not considered. 

Conclusion 

This study not only bridges a knowledge gap by characterizing 
Blastocystis subtype diversity in humans and livestock within a 
rural Turkish setting but also spearheads a model for integrated 
One Health investigations in the region. By combining classical 
parasitological, and microbiome analyses, we demonstrate the 
feasibility and value of this type of framework. These findings 
lay the groundwork for future longitudinal and comparative 
research both within Türkiye and in similar rural communities 
globally. Additional multidisciplinary collaborative studies will be 
instrumental in redefining our understanding of intestinal protists– 
not solely as pathogens, but as complex microbial players in host 
health and environmental ecosystems (Tsaousis et al., 2024). 
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SUPPLEMENTARY FIGURE 1 

Field photographs of the sampling area. 

SUPPLEMENTARY FIGURE 2 

Blastocystis cells observed in culture. 

SUPPLEMENTARY FIGURE 3 

Maximum likelihood phylogeny of Blastocystis 
sequences. 

SUPPLEMENTARY FIGURE 4 

Rarefaction curves of 16S sequencing samples. The total number of 
sequencing reads is shown on the X-axis, and the taxa detected at the 
corresponding sequencing are displayed on the 
Y-axis. 

SUPPLEMENTARY FIGURE 5 

Compositional bar plots showing the most abundant taxa in 
Blastocystis-positive and negative samples. Each bar represents an 
individual sample. Taxa were aggregated to Genus (A,B) and phylum (C,D) 
level. Samples have been grouped by Blastocystis colonization status (A,C) 
or Blastocystis subtype (B,D). Only taxa representing more than 1% of the 
total reads within each sample 
are displayed. 
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