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Discrepancies in gut microbial
communities and serum
metabolites of Hu sheep with
different backfat thickness

Bo Li, Wenwen Xu, Wenjia Wang, Mengyuan Mao, Xiaoyu Huang
and Enping Zhang*

College of Animal Science and Technology, Northwest A and F University, Xianyang, China

Although market demand for lean meat continues to rise, the regulatory
mechanisms governing backfat thickness (BFT) metabolism remain poorly
understood. This study employed a multi-omics approach to investigate BFT-
associated differences in Hu sheep with distinct fat deposition phenotypes. From
160 genetically similar Hu sheep, we selected 12 individuals with non-significant
weight differences (P > 0.05) but extreme divergence in BFT [6 high-BFT
(HBF) and 6 low-BFT (LBF) individuals]. Using integrated metagenomics and
metabolomics, we systematically compared ileal microbial community structure
and serum metabolic profiles between the two groups. HBF sheep showed
significantly increased adiposity and altered ileal microbiota composition,
characterized by elevated abundances of Carnobacterium, Parabacteroides
distasonis, Lactiplantibacillus, and Bifidobacterium. Serum metabolomics
identified key differential glycerophospholipids-1-(9Z-octadecenoyl)-2-
(11Z-eicosenoyl)-glycero-3-phosphate, PE-NMe(15:0/20:3(52,82,117)),
PE-NMe»(18:1(92)/20:0), and PE-NMe»(18:1(92)/22:1(13Z))-all enriched in
glycerophospholipid metabolism pathways. Integrated correlation analysis
revealed strong associations between P distasonis abundance and these
phospholipids. These results demonstrate BFT-related adaptive remodeling
of the serum metabolome and gut microbiota, identifying P. distasonis as a
potential modulator of the host-microbe metabolic axis in ovine adiposity
regulation.
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1 Introduction

Fat is an essential nutrient in humans and animals, regulating life activities through
the absorption of glucose and fatty acids and the secretion of diverse bioactive molecules,
including hormones, metabolites, and genetic material (Rosen and Spiegelman, 2014).
However, dysregulation of fat secretion can lead to metabolic disorders such as lipid
overload, inflammation, and organelle stress, posing risks to health (Julibert et al., 2019;
An et al,, 2023). Over the long process of domestication, sheep have evolved to deposit
substantial fat reserves in subcutaneous tissue and the tail, serving as adaptations to
withstand harsh environments and store energy (Cheng et al., 2016). In modern intensive
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FIGURE 1
Correlation analysis between body weight and backfat thickness of
Hu sheep

sheep farming, excessive subcutaneous fat deposition diminishes
lean meat yield and impairs animal health, increasing vulnerability
to metabolic disorders, inflammation, and reduced disease
resistance (Liu et al., 2024). Concurrently, rising consumer health
awareness has intensified scrutiny of the link between dietary
fat intake and cardiovascular disease risk (Schlesinger et al,
2019; Sacks et al., 2017). Consequently, negative perceptions of
high-fat meat products are driving increased market demand for
leaner alternatives, presenting new challenges for sheep producers
(Diekman and Malcolm, 2009). These converging factors make
the regulation of ovine fat deposition a paramount goal for
breeders globally.

In livestock production, Backfat Thickness (BFT) serves as a
key indicator of ovine fat deposition. Excessive BFT (> 20 mm)
diminishes carcass economic value and may impose a greater
metabolic burden on the animal, thereby reducing production
efficiency (Zhou et al., 2018). Multiple factors contribute to elevated
BFT in sheep, encompassing genetics, diet, and management
practices (Du et al., 2022; Zhou et al., 2024; Cerdeiio et al., 2006).
Serum metabolomics offers a novel perspective for investigating
fat deposition, enabling further elucidation of fat metabolism
molecular mechanisms through metabolite analysis (Bovo et al.,
2016). For instance, Yu et al. (2023) utilized serum metabolomics
in Qinchuan cattle divergent for BFT, identifying key sphingolipid
metabolites implicated in the systemic regulation of backfat
thickness. Currently, research on the impact of BFT on ovine
meat quality and adipogenesis remains limited, warranting further
exploration into the molecular mechanisms underlying ovine
lipid deposition.

The intestinal microbiota significantly modulates lipid
metabolism, through diverse mechanisms, it influences lipid
absorption, synthesis, and breakdown, thereby regulating host
adipogenesis (Moszak et al, 2020; Hou et al, 2024). Research
indicates that gut microbes enhance lipid absorption and storage
by suppressing the expression of the long non-coding RNA Snhg9
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(Wang et al., 2023). Moreover, alterations in microbial community
composition and function can direct the efficiency and trajectory of
lipid metabolism. Supporting this, Kang et al. (2024) investigated
correlations between gut microbiota and phenotypic traits in Sunit
sheep under varying feeding regimens. Their findings suggest that
shifts in lipid metabolism may be partially linked to differences in
bacterial populations.

This study is premised on the complex crosstalk between host
metabolism and intestinal microbiota composition (Li et al., 2023;
Yang et al., 2024). We hypothesize that the compositional profile
and metabolic output of the ileal microbiota in Hu sheep modulate
host adipogenesis via serum metabolic mediators, consequently
influencing backfat thickness (BFT). To test this hypothesis, we
employed integrated metagenomic and metabolomic analyses to
characterize differences in ileal microbial community structure and
associated metabolites in Hu sheep cohorts with shared genetic
backgrounds and body weights, but divergent BFT phenotypes.
This research aims to elucidate the mechanisms through which
microbial community composition and metabolic activity govern
host lipid metabolism.

2 Materials and methods

2.1 Experimental animals and experimental
design

A total of 160 unsold Hu sheep ewes (8-month-old) from
Xinzhongsheng Sheep Farm (Yulin City, Shaanxi Province) were
subjected to body the weight and backfat thickness measurements.
Backfat thickness was measured using A-mode ultrasonography
(Renco Lean-Meater®, Minneapolis, MN, USA). To examine the
relationship between these parameters, body weight data were
visualized through scatter plots and analyzed via linear regression.
Figure 1 demonstrates a statistically significant positive correlation
between backfat thickness and body weight (r = 0.3340, P < 0.001),
with both variables adhering to normal distribution patterns. From
the cohort of 160 sheep, two experimental groups were established
under same body weight (41 £ 0.5kg) conditions: High Backfat
(HBF) group (Backfat thickness = 19 & 0.5mm; n = 6) and Low
Backfat (LBF) group (Backfat thickness = 11 £ 0.5mm; n = 6).
The dietary information for all participating Hu sheep is presented
in Table 1.

2.2 Sample collection

On the morning following the completion of the trial period,
ileum contents were collected from the 12 Hu sheep in both the
HBF and LBF groups. Immediately transfer approximately 10 g of
ileal digestate sample into liquid nitrogen for rapid freezing, then
store the frozen specimen at —80°C until required for subsequent
analytical procedures. Then, in order to balance experimental costs
and necessary repetition times, six ileal contents samples were
selected from each group for further metabolomic analysis.
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TABLE 1 Composition and nutrient levels of basal diets.

Items Concentrate Alfalfa hay

supplement

Ingredients %

Corn 61.54

Soybean meal 12.32

Wheat bran 6.15

DDGS*? 15.38

Premix ® 2.69

CaHPO4 0.92

NaHCO3 0.54

NaCl 0.31

Desorbent 0.15

Total 100.00

Nutrition levels © %

Dry matter 90.46 90.94
Crude protein 19.5 7.93

Ether extract 2.8 0.76

Neutral detergent 17.84 53.62
fiber

Acid detergent fiber 7.04 31.49
Phosphorus 1.14 0.27

calcium 1.91 2.01

Gross energy, MJ/Kg 16.84 16.70

2 DDGS stands for Distillers dried grains with soluble.

b The premix provided the following per kg of diet: vitamin A, 3,50,000 IU; biotin, 50 mg;
manganese, 1,300 mg; cobalt, 15mg; vitamin D3: 70,000 IU; niacinamide, 550 mg; zinc,
1,500 mg; calcium, 10%; vitamin E, 1,100 IU; copper, 180 mg; iodine, 20 mg; sodium chloride,
16%; vitamin B6, 1,000 mg; iron, 500 mg; selenium: 8 mg.

¢ All nutritional components in the experimental diets were measured according to Chinese
National Standards (GB/T). Specific analytical methods included: dry matter (GB/T 6435-
2014), crude protein (GB/T 6432-2018), neutral/acid detergent fiber (GB/T 6434-2006),
crude fat (GB/T 6433-2006), crude ash (GB/T 6438-2022), calcium (GB/T 6436-2018), and
phosphorus (GB/T 6437-2018). Gross energy content was determined using a C6000 bomb
calorimeter (Germany).

2.3 Serum sampling and analysis

Blood samples were collected with non-anticoagulation
vacuum blood vessels before morning feeding after a 12-hr
fast the day before slaughter. Serum was harvested following
centrifugation at 3,000 x g for 10min at 4°C and subsequently
frozen at —80°C until analysis. The centrifuge model used in this
process is TDL-80-2B, manufactured in Shanghai, China.

The concentrations of serum albumin (ALB), alkaline
phosphatase (ALP), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), total cholesterol (CHO), high density
lipoprotein (HDL), low density lipoprotein (LDL), triglycerides
(TG), total protein (TP), y-glutamylaminotransferase (y-GT)
and superoxide dismutase (SOD) were determined using
corresponding commercial kits (Zhongsheng Beikong Bio-
technology and Science Inc., Beijing, China) and an automatic
biochemical analyzer (BS-420, Shenzhen Mindray Bio-medical
Electronics Co., Shenzhen, China).
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2.4 Metabolic analysis based on liquid
chromatography-mass spectrometry
(LC-MS)

The sample stored at —80°C was thawed on ice and vortexed
for 10s. A 50 wL aliquot of the sample and 300 L of extraction
solution (methanol: acetonitrile = 1:4, V/V) containing internal
standards were added into a 2mL microcentrifuge tube. The
mixture was vortexed for 3 min and then centrifuged at 12,000 rpm
for 10 min at 4°C (The centrifuge model used in this process is
TGL-16B, manufactured in Shanghai, China.). A 200 pL aliquot
of the supernatant was collected and placed at —20°C for 30 min,
followed by centrifugation at 12,000 rpm for 3min at 4°C. A
180 pL aliquot of the supernatant was transferred for LC-MS
analysis. Each sample was analyzed using two LC/MS methods.
One aliquot was analyzed under positive ion conditions and eluted
from a T3 column (Waters ACQUITY Premier HSS T3 Column,
1.8 m, 2.1 mm x 100mm) using 0.1% formic acid in water as
solvent A and 0.1% formic acid in acetonitrile as solvent B with the
following gradient: 5% to 20% in 2 min, increased to 60% in the next
3 min, increased to 99% in 1 min, held for 1.5 min, then returned
to 5% mobile phase B within 0.1 min, and held for 2.4 min. The
analytical conditions were as follows: column temperature, 40°C;
flow rate, 0.4 mL/min; injection volume, 4 pL. The second aliquot
was analyzed under negative ion conditions using the same elution
gradient as the positive mode.

2.5 Microbial DNA isolation, metagenomic
sequencing, and functional annotation

According to the manufacturer’s standard protocol, microbial
DNA from the ileal contents was isolated using the E.Z.N.A.® Fecal
DNA Kit (Omega Bio-tek Inc., Norcross, GA, USA). After genomic
DNA extraction, the quality of the isolated DNA was evaluated by
1% agarose gel electrophoresis, and qualified DNA samples were
stored at —80°C until subsequent sequencing.

A total of 1 pg of genomic DNA per sample was used as
the starting material for library preparation. Sequencing libraries
were generated using the NEBNext® Ultra™ DNA Library
Prep Kit for Illumina (NEB, USA) following the manufacturer’s
recommendations. Index codes were added to assign sequences to
each sample. Briefly, we utilized the Diagenode Bioruptor® UCD-
300 TS non-contact focused ultrasound shearing device (Belgium)
to fragment DNA samples into an average length of 350 base pairs
(bp). DNA fragments were end-polished, A-tailed, and ligated with
Mumina adapters. Further PCR amplification was performed to
enrich the ligated DNA fragments. PCR products were purified
using the AMPure XP system. Libraries were analyzed for size
distribution using the Agilent 2,100 Bioanalyzer and quantified
using real-time quantitative PCR (qPCR). The clustering of index-
coded samples was performed on a cBot Cluster Generation
System according to the manufacturer’s instructions. After cluster
generation, library preparations were sequenced on an Illumina
Nova-Seq platform, and paired-end sequencing was performed to
generate reads.

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1667088
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Lietal.

2.6 Microbiome and metabolomics

In the omics data analysis, n = 6 indicates six biological
replicates were used. For between group differential analysis,
Student’s t-test was applied when homogeneity of variance was
satisfied; otherwise, the Wilcoxon rank-sum test was used, with
statistical significance defined at P < 0.05. For integrative
analysis of microbial metagenomics and metabolomics, we
systematically evaluated associations among three key elements
through Spearman’s rank correlation analysis: 1) the relative
abundance of bacterial taxa within the microbial community, 2)
previidentified microbial genera, and 3) standardized individual
metabolic profiles.

2.7 Statistical analysis

Use one-way analysis of unpaired t-test for inter group
statistical comparison. Data are expressed as means + standard
error of the mean (SEM). Statistical thresholds were designated as
follows: P < 0.05 (significant) and 0.05 < P < 0.10 (trend-level). All
analyses and visualizations were conducted employing GraphPad
Prism 8.0 (San Diego, USA).

3 Results

3.1 Serum biochemical indices

As summarized in Table 2, the HBF cohort demonstrated
significantly higher HDL concentrations vs the LBF group (P <
0.05). Notably, the HBF group exhibited a trend toward elevated
LDL and AST levels (0.05 < P < 0.10).

3.2 Serum metabolomic characteristics of
groups with different BFT

Untargeted serum metabolomic profiling of Hu sheep cohorts
was performed using UHPLC-Q-Exactive MS to characterize
thickness
phenotypes (Figure 2a). Multivariate analyses revealed distinct

metabolic  disparities between divergent backfat
intergroup clustering via PCA and PLS-DA, with model validity
confirmed through permutation testing (Figure 2b). The OPLS-DA
model demonstrated exceptional robustness (R*Y = 0.997, P =
0.05; Q*> = 0.604, P < 0.05), indicating high predictive fidelity
(Figure 2¢c). The identified metabolites were compared with
KEGG compound database and HMDB to obtain metabolite
classification spectra (Figure 2d). We found that the majority of
these metabolites are organic acids and their derivatives in each
group, followed by organic heterocyclic compounds and amino
acids and their derivatives.

Using Student’s f-test (P < 0.05) and variable importance in
projection (VIP) values (VIP > 1), a total of 297 differentially
expressed metabolites (84 upregulated and 213 downregulated)
were identified between the two groups (Figure3a). The
analysis demonstrated significant differences in metabolite
levels between the groups (Figure 3b). As shown in Figure 3c,
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TABLE 2 Blood nutrients characteristics and antioxidant capacity of the
Hu sheep.

Items HBF Group LBF Group P-value
ALB (gL7") 28.17 £ 3.57 26.60 + 0.96 039
ALP (U-L™)) 224.83+£2648 | 273.83+19.95 0.17
ALT (U-L7) 18.02 + 1.92 1353+ 1.9 0.13
AST (U-L™) 127.88 + 11.89 10055 + 6.94 0.08
CHO (mmol-L™") 1.71 4 1.87 1.43 4 0.07 0.18
HDL (mmol-L~") 1.08 4 0.08 0.85 = 0.03 0.03
LDL (mmol-L 1) 0.77 £ 0.09 0.57 + 0.04 0.09
TG (mmol-L") 0.18 + 0.02 0.19 + 0.02 0.82
TP (gL ") 69.27 +3.20 66.27 + 1.37 0.41
y-GT (U-L 1) 52.67 4 3.05 54.50 + 2.06 0.63
SOD (U-mL’l) 135.83 £ 13.20 136.50 4+ 8.53 0.97

these metabolites were primarily enriched in the following
metabolic pathways: fat digestion and absorption, glycerolipid
metabolism, glycerophospholipid metabolism, and primary bile
acid Dbiosynthesis. Significantly altered metabolites included
1-(9Z-octadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphate,
PE-NMe (15:0/20:3[5Z,8Z,11Z]), PE-NMe2 (18:1[9Z]/20:0),
PE-NMe2 (18:1[9Z]/22:1[13Z]), and Coenzyme Q8 (Figure 3d).
1-(9Z-octadecenoyl)-2-(11Z-eicosenoyl)-glycero-
3-phosphate, ~PE-NMe  (15:0/20:3[5Z,8Z,11Z]), PE-NMe2
(18:1[9Z]/20:0), and PE-NMe2 (18:1[9Z7]/22:1[13Z]) are involved
in glycerophospholipid metabolism (Figure 3e).

Among these,

3.3 Prediction of diversity, composition,
and function of intestinal bacterial
communities

Gut microbiota differences among experimental groups were
analyzed using metagenomic sequencing. Functional annotation of
sequencing data against the KEGG database revealed functional
profiles and taxonomic abundance. No significant differences
in alpha diversity were observed between groups (Figure 4a).
Principal coordinates analysis (PCoA) demonstrated distinct
clustering of microbial community structures (Figure4b). At
the phylum level, Firmicutes, Proteobacteria, Campylobacterota,
and Actinobacteriota predominated (Figure 4c). Dominant genera
included Staphylococcus, Streptococcus, Enterococcus, and Klebsiella
(Figure 4d). Metastats analysis identified significant inter-group
differences in microbial composition and function, revealing the
top 20 differentially abundant genera (Figure4e) and top 30
differentially abundant KEGG features (Figure 4f). Notably, the
HBF group exhibited significantly higher relative abundances of
Enterobacter, Parabacteroides, and Lactiplantibacillus compared to
the LBF group (P < 0.05).

Functional profiling of the microbiome was assessed through
annotation of genes encoding Carbohydrate-Active Enzymes
(CAZymes). Protein sequences derived from non-redundant
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Identification and classification of serum metabolites from Hu sheep with high and low BFT. (a) cluster analysis plot of 12 samples (b) OPLS-DA score
plot (c) OPLS-DA permutation test plot (d) metabolite classification spectra.
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gene catalogs were classified into the six primary CAZyme
classes. Among these, Glycoside Hydrolases (GHs) and Glycosyl
Transferases (GTs) constituted the most abundant classes
(Figure 52). Notably, CAZyme families PL35, CE13, GT24,
and GT15 exhibited significant differential abundance between
the experimental groups (Figure 5b). KEGG pathway analysis
revealed that microbial gene functions were predominantly
enriched in pathways associated with lipid metabolism, including
the sphingolipid signaling pathway, yeast MAPK signaling
pathway, p53 signaling pathway, and arachidonic acid metabolism
(Figure 5c).

3.4 Gut microbiota and metabolome

In order to determine the correlation between serum
metabolites and gut microbiota, Spearman’s correlation analysis
was conducted. According to the association analysis between
bacteria and lipid metabolites and fatty acids, intestinal bacteria

Frontiers in Microbiology

may also affect lipid metabolism in the body to some extent. As
shown in Figure 6A, Parabacteroids are positively correlated with
1-(9Z-octadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphate, PE-
NMe (15:0/20:3[5Z,8Z,11Z]), PE-NMe2 (18:1[9Z]/20:0). Building
upon the Parabacteroides species identified in Figure 6A as
significantly correlated with serum metabolites, we performed
Pearson correlation analysis between Parabacteroides and key
phenotypic traits from our prior research (intramuscular fat
content - IMF, backfat thickness, subcutaneous adipose tissue mass,
GR value, shear force, and C20:3 n-6) (Li et al., 2025). As shown in
Figure 6B, Parabacteroides distasonis exhibited significant positive
correlations with backfat thickness, subcutaneous adipose tissue
mass, and GR value, whereas a significant negative correlation was
observed with meat tenderness, as measured by shear force.

4 Discussion

Serum biochemical indicators serve as crucial biomarkers for
evaluating an organism’s production performance, physiological
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status, and health condition (Jiao et al., 2024). HDL and LDL not

primarily found in tissues such as liver and myocardium, typically
only regulate normal lipid metabolism but also exhibit altered levels
as key features of metabolic disorders (Durand et al., 1987). AST,

elevates in serum following tissue damage or metabolic dysfunction
(Mihas et al, 1981). In this study, sheep with HBF group
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demonstrated significantly higher HDL levels. This observation
may be attributed to HDLs essential role in lipid metabolism—
facilitating reverse cholesterol transport from peripheral tissues
to the liver for catabolism and excretion, thereby maintaining
cholesterol homeostasis (Liang et al., 2020). Concurrently, excessive
adipose tissue accumulation may promote cholesterol synthesis
and secretion, consequently elevating LDL levels (Aguilar et al.,
2014). Furthermore, heightened lipid metabolism in high-backfat
sheep could exert physiological stress on hepatic tissues, potentially
explaining the observed increase in AST levels (Xie et al., 2022).
Grzybowska et al. (2023) found a significant correlation between
backfat thickness and blood AST concentration in fatty liver cows.
This is similar to the results of this study, suggesting that high
backfat thickness may increase the risk of liver health in sheep.
Phosphatidylcholine (PC) and phosphatidylethanolamine
(PE) represent the primary and secondary most abundant
phospholipids, respectively, with PE serving as a metabolic
precursor for PC biosynthesis (Yang et al, 2018). TG and
BA concentrations significantly correlate with adiposity and
metabolic disorders (Gong et al., 2024; Huang et al, 2025).
In the HBF cohort, levels of specific glycerophospholipids
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including PE (22:6[4Z,7Z,10Z,13Z,16Z,19Z]/18:1[11Z]), PE-NMe,
(18:2[97,127]/24:1[15Z]), and PE-NMe (15:0/20:3[5Z,8Z,11Z])
were markedly higher compared to LBF controls.This phospholipid
signature suggests enhanced lipid metabolic flux in HBF sheep,
potentially contributing to increased backfat deposition. Branched-
chain amino acid abundance further associates with dysregulated
lipid homeostasis (Lackey et al., 2013). Dietary lipid catabolism,
mediated by pancreatic lipase and other hydrolases, generates
absorbable metabolites for energy production and essential fatty
acid provision (Omer and Chiodi, 2024). Key metabolic pathways
governing these processes include glycerolipid metabolism, which
regulates triacylglycerol biosynthesis/catabolism and substrate
interconversion (Prentki and Madiraju, 2008); glycerophospholipid
metabolism, essential for maintaining membrane phospholipid
dynamics critical to cellular integrity (Hermansson et al., 2011);
and primary bile acid biosynthesis, facilitating cholesterol
conversion and enterohepatic circulation while demonstrating
direct implications in lipid disorders when dysregulated (Cai
et al., 2022). These metabolic processes are critical determinants
of serum lipid profiles, with their dysregulation directly impacting
circulating metabolite levels and contributing to systemic.
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Gut microbiota composition and activity critically modulate
obesity development (Lin et al., 2022). Notably, Carnobacterium
spp. and Parabacteroides distasonis demonstrate therapeutic
potential against metabolic dysregulation, attenuating weight
gain, hyperglycemia, hyperlipidemia, and hepatic steatosis
(Qiu et al, 2024; Li et al, 2022).
supplementation with Bifidobacterium spp. ameliorates obesity

Similarly, probiotic
through metabolic reprogramming (Kim et al, 2022), while
Lactiplantibacillus plantarum HNUO082 enhances lipid catabolism
and stabilizes dysbiosis during hyperlipidemia (Shao et al., 2017).
Metagenomic analysis identified Carnobacterium, Parabacteroides,
Lactiplantibacillus, and Bifidobacterium as the most differentially
abundant genera, with P. distasonis exhibiting maximal species-
level differentiation. These taxa potentially govern ovine lipid
metabolism and backfat deposition.

PL35, a polysaccharide lyase that facilitates oligosaccharide
cleavage (Lu et al., 2024), which was significantly elevated in the
HBF group, suggesting enhanced oligosaccharide utilization by gut
microbiota in this group. Glycosyltransferases (GTs) catalyze the
synthesis of glycosidic linkages by transferring sugar residues from
donor to acceptor molecules (Lairson et al., 2008). Carbohydrate
Esterases (CEs) involve enzymes that catalyze de-O or de-N-
acylation to remove ester decorations from carbohydrates (Cantarel
et al,, 2009). Carbohydrate Esterase family 13 (CE13), the smallest
among CE families (Nakamura et al., 2017), along with GT24 and
GT15, were significantly elevated in the LBF group. We hypothesize
that CE13-mediated deacylation might affect Short-Chain Fatty
Acid production, while GT24/GT15 could participate in bile
acid glycosylation, modifying their fat emulsification capacity and
ultimately impacting host lipid metabolism. For KEGG pathway
analysis, microbial gene functions were primarily enriched in
lipidogenesis-related pathways including Sphingolipid signaling
pathway, MAPK signaling pathway - yeast, p53 signaling pathway,
and Arachidonic acid metabolism. Collectively, these findings
indicate that alterations in sheep gut microbiota composition lead
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to functional shifts, with lipid deposition playing a critical role in
this process. However, the specific mechanistic pathways involved
require further investigation.

Parabacteroides species generate acetic acid and succinate
as primary saccharolytic metabolite (Sakamoto and Benno,
2006). Notably, P. distasonis supplementation ameliorates weight
gain, hyperglycemia, and hepatic steatosis in metabolic disorder
models (Wang et al, 2019). While the succinate/SUCNRI
signaling axis is implicated in obesity pathogenesis (Keiran et al.,
2019), its association with serum metabolite profiles remains
unexplored. Integrated KEGG analysis of serum metabolomics
1-(9Z-
octadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphate, PE-NMe
(15:0/20:3[5Z,87,11Z]), PE-NMe, [18:1(9Z]/20:0), and PE-NMe,
(18:1[9Z]/22:1[13Z]). Critically, robust covariance was observed
between these phospholipids and Parabacteroides abundance.

identified lipid metabolism-associated phospholipids:

These findings suggest Parabacteroides modulates host lipid
homeostasis through serum glycerol-phospholipid remodeling
pathways, though precise mechanistic underpinnings warrant
further investigation.

5 Conclusion

This study preliminarily revealed the dynamic changes in
gut microbiota structure and serum metabolites associated
with differential backfat thickness in sheep. Parabacteroides
spp.  was  identified as microorganisms
distinguishing different backfat thicknesses. Key metabolites

discriminant

involved in glycerophospholipid metabolism included 1-(9Z-
octadecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphate, PE-NMe
(15:0/20:3[5Z,8Z,11Z]), PE-NMe2 (18:1[9Z]/20:0), PE-NMe2
(18:1[9Z]/22:1[13Z]). The findings provide novel insights into
the association between serum metabolites and gut microbiota in
sheep with varying backfat thickness, while uncovering potential
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mechanisms through which microbiota may influence host
lipid metabolism via metabolites. This research offers valuable
references for understanding lipid metabolism regulation in
ruminants. It should be noted that functional validation of
Parabacteroides distasonis on ovine lipid metabolism has not
been performed in the current work. Subsequent studies intend
to conduct targeted functional verification experiments for this

specific strain.
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