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Introduction: This study developed an integrated strategy to significantly 
enhance astaxanthin production from wild-type Phaffia rhodozyma GDMCC 
2.218, addressing the need for improved natural astaxanthin yields through non-
genetically modified approaches.
Methods: The research combined traditional parameter optimization with LSTM 
(Long Short-Term Memory) intelligent modeling. Systematic optimization of 
fermentation conditions was conducted in 500 mL bioreactors, followed by 
scale-up to 5 L systems. An innovative LSTM prediction model was constructed 
to predict astaxanthin concentration throughout the fermentation process.
Results: Optimal fermentation conditions were determined as temperature 20°C, 
pH 4.5, and dissolved oxygen 20%, achieving an astaxanthin yield of 387.32 mg/L 
within 144 hours in 500 mL bioreactors. Upon scale-up to 5 L, the yield improved 
to 400.62 mg/L within 165 hours, demonstrating process robustness. The LSTM 
prediction model showed excellent performance with R2 = 0.978. The achieved yields 
represented a 10- to 20-fold improvement over previously reported wild-type strain 
levels and reached or surpassed the production levels of most engineered strains.
Discussion: This research confirms the feasibility of achieving commercial-
scale production of high-value natural astaxanthin through non-genetically 
modified approaches. The resulting product combines high productivity, safety, 
and regulatory advantages, providing an innovative solution for industrial-scale 
natural astaxanthin production that offers significant commercial potential.
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1 Introduction

Astaxanthin-producing strains primarily encompass wild-type and engineered strains. Among 
wild-type strains, Phaffia rhodozyma (P. rhodozyma) and Haematococcus pluvialis represent key 
microorganisms for natural astaxanthin production. Compared to H. pluvialis, P. rhodozyma 
exhibits several advantages, including rapid heterotrophic metabolism that utilizes diverse sugars, 
shorter cultivation cycles, higher biomass utilization efficiency, and more industrially feasible 
fermentation processes (Gervasi et al., 2020; Nutakor et al., 2022; Guan et al., 2023). However, wild-
type strains typically exhibit low product concentrations, presenting significant cost challenges for 
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downstream separation and purification. The prevalent low-yield problem 
in wild-type strains, commonly reported at 1–30 mg/L levels in literature 
(Xiao et al., 2011; Mussagy et al., 2022; Lin, 2024), not only constrains 
production costs but also highlights the necessity of enhancing 
fermentation efficiency through process innovation. Engineered strains 
primarily include Escherichia coli, Saccharomyces cerevisiae, Yarrowia 
lipolytica, and genetically modified P. rhodozyma. These strains can 
improve astaxanthin fermentation efficiency and yield, attracting 
considerable research attention both domestically and internationally. 
Reports indicate that engineered strains can achieve final yields of tens to 
hundreds of milligrams per liter (Park et al., 2018; Zhou et al., 2019). 
However, products from engineered strains require strict regulatory 
oversight to ensure that no environmental or health risks are present. In 
contrast, wild-type strain (non-genetically modified organism) products, 
due to their higher safety profile, typically achieve easier regulatory 
approval and consumer acceptance (Zhang et al., 2020).

Traditional fermentation optimization primarily relies on parameter 
regulation (temperature, pH, dissolved oxygen, etc.) and culture medium 
composition adjustment (Villegas-Méndez et al., 2021). However, these 
approaches exhibit two significant limitations: first, single-factor or 
response surface methods struggle to capture multi-parameter dynamic 
coupling effects; second, experimental trial-and-error approaches incur 
high costs and difficulty in achieving real-time prediction. Culture 
medium composition and fermentation conditions represent critical 
factors affecting astaxanthin yield and production costs in P. rhodozyma 
fermentation. Cultivation temperature, pH, dissolved oxygen conditions, 
carbon-to-nitrogen ratio, carbon source composition, and nitrogen 
source composition all significantly influence astaxanthin production 
(Villegas-Méndez et al., 2021). Therefore, this study selected wild-type 
P. rhodozyma as the research subject.

In recent years, deep learning has provided new insights for 
overcoming traditional optimization bottlenecks (Tavasoli et al., 2019; 
Wang et al., 2021). Long Short-Term Memory (LSTM) networks, due to 
their exceptional temporal feature extraction capabilities, have 
demonstrated precise predictive performance in modeling fermentation 
processes, such as Monascus pigment, penicillin, and ethanol production 
(Sousa et  al., 2021; Sun et  al., 2023; Huang et  al., 2024). However, 
intelligent modeling research specifically targeting P. rhodozyma 
astaxanthin fermentation remains relatively unexplored. This study 
innovatively combines LSTM neural networks with traditional parameter 
optimization methods: systematically optimizing key fermentation 
parameters to enhance baseline yield while establishing LSTM-based 
multi-parameter dynamic prediction models to analyze the temporal 
coupling patterns among pH, temperature, dissolved oxygen (DO), and 
biomass (wet weight). This dual-track strategy of “experimental 
optimization-data modeling” ensures process scalability (based on 
physical parameter control) while achieving real-time fermentation 
process prediction through data-driven approaches, providing a new 
paradigm for intelligent upgrading of natural astaxanthin production.

2 Materials and methods

2.1 Culture medium

All reagents in the following media were purchased from China 
National Pharmaceutical Group Chemical Reagents Co., Ltd. The 
composition of the medium and the sterilization treatment are as 

follows. Solid agar medium: Yeast extract (10 g/L), peptone (20 g/L), 
glucose (20 g/L), agar powder (20 g/L). Autoclaved at 121°C for 
20 min and cooled to 40–50°C to prepare solid plates. Seed Medium 
(Optimized in the Laboratory): Yeast extract (10 g/L), peptone 
(20 g/L), glucose (20 g/L), KH₂PO₄ (3 g/L), MgSO₄·7H₂O (1 g/L). 
Autoclaved at 121°C for 20 min. Fermentation and Feeding Medium 
(Optimized in the Laboratory): Yeast extract (10 g/L), peptone 
(20 g/L), glucose (20 g/L), KH₂PO₄ (3 g/L), MgSO₄·7H₂O (1 g/L). 
Autoclaved at 121°C for 20 min. Supplement Feed Medium: Glucose 
(500 g/L), MgSO₄·7H₂O (15 g/L). Autoclaved at 121°C for 20 min.

2.2 Preparation of seed culture in shake 
flasks

The P. rhodozyma strain (GDMCC 2.218, Guangdong Microbial 
Culture Collection Center), stored at −80°C, was streaked on solid 
agar plates and incubated in a 20°C incubator for 2–3 days until clear 
red colonies were visible. A 100 mL seed medium was placed in a 
500 mL baffled Erlenmeyer flask, sterilized, and cooled to room 
temperature. One loop of the colony was picked from the solid plate 
and inoculated into a flask. The flask was then placed on a shaker at 
220 rpm and 20°C for 2–3 days.

2.3 Cultivation in bioreactors

The experimental design involved fermentation in 500 mL 
(CloudReady, T&J Bio-engineering.) and 5 L bioreactors (Intelli-Ferm 
A, T&J Bio-engineering), with the parameters set in Table 1. A batch-
feeding strategy was adopted, and as the biomass grew, oxygen 
consumption increased. To ensure optimal oxygen supply, the stirring 
speed was continuously improved. If a downward trend in stirring speed 
was observed, it indicated nutrient depletion, prompting feeding control.

2.4 Process optimization experiments in 
the 500 mL bioreactor

After confirming that the seed culture was free from 
contamination under the microscope, a 5% inoculum was 
introduced into the bioreactor for fermentation. The CloudReady 
500 mL bioreactors were used for optimization experiments, 
focusing on temperature, pH, and DO gradients. For all three 
groups, agitation speed was maintained at 300–1,200 rpm 
(positively cascaded with dissolved oxygen), aeration rate at 0.5 
vvm, and feeding was initiated at 0.8 mL/h when the agitation speed 
began to decrease continuously.

TABLE 1  Parameters for cultivation of Phaffia rhodozyma.

Parameter 500 mL 5 L

Initial volume (mL) 200 2,000

Stirring speed (rpm) 300–1,200 300–1,200

Aeration rate (VVM) 0.5 0.5

Inoculation volume 5% 5%

Feeding control (Constant rate) 0.8 mL/h 16 mL/h
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Effect of temperature gradient on astaxanthin production According 
to the parameters in Table 1, the influence of different fermentation 
temperatures on astaxanthin production by P. rhodozyma was 
investigated, with temperature gradients set at 20°C, 22°C, 25°C, and 
28°C, pH 5.0, and DO 30%.

Effect of pH gradient on astaxanthin production Based on the 
temperature gradient optimization results, the influence of different 
fermentation pH values on astaxanthin production was assessed, with 
pH gradients set at 3.5, 4.0, 4.5, and 5.0. The temperature from the 
previous experiments was optimal, with DO set at 30%.

Effect of DO gradient on astaxanthin production Following the 
temperature and pH gradient optimizations, the influence of various 
DO levels on astaxanthin production was studied, with DO gradients 
set at 10, 20, 30, and 40%. The temperature and pH used were those 
determined to be optimal in previous experiments.

2.5 LSTM model construction and training

This study constructed an LSTM prediction model based on time-
series data from 15 batches of 500 mL four-parallel bioreactor 
fermentation experiments. The original dataset encompassed four key 
process parameters: pH, dissolved oxygen (DO), temperature (temp), and 
wet weight (ww), along with the target variable astaxanthin concentration 
(AST). Four process parameters were acquired through online sensors, 
while the target variable was obtained via offline detection. Data 
preprocessing comprised three steps: (1) Batch identification—Regular 
expressions were used to match four input features and one target value 
corresponding to offline sampling time points across different 
fermentation batches. (2) Time series alignment—Since fermentation 
duration and sampling points varied between batches, each batch 
employed an independent time series as baseline, with variable-length 
sequences efficiently handled through mask synchronization, dynamic 
padding, and packing/unpacking mechanisms. (3) Standardization—
Input variables underwent Z-score normalization to eliminate 
dimensional differences, as shown in the equation:

	
µ

σ
−

=z x

Where μ and σ represent the mean and standard deviation of the 
four input variables (pH, DO, temperature, and wet weight) calculated 
from the training set.

Model architecture and hyperparameters were determined through 
grid search. The gating mechanism comprised Sigmoid functions 
(controlling information forgetting and updating) and tanh functions 
(regulating candidate memory cell states). The input layer received four-
dimensional time series data (pH, DO, temp, and WW), while the 
output layer employed a linear activation function to predict astaxanthin 
concentration directly. The validation set was randomly split from the 
original dataset at a 10% ratio. During training, mean squared error 
(MSE) between predicted and experimental values served as the loss 
function, with Adam optimizer employed for parameter updates, and 
an early stopping mechanism implemented to prevent overfitting.

All modeling work was implemented using the PyTorch 2.7.1 
framework, with a hardware platform comprising a 12th-generation 
Intel Core i7-1260P processor.

2.6 5 L bioreactor scale-up experiments 
and LSTM model validation

After confirming that the seed culture was free from 
contamination, a 5% inoculum was introduced into the bioreactor 
for fermentation. The 5 L bioreactor was employed for scale-up 
cultivation, adhering to the parameters outlined in Table  1 and 
utilizing the optimal temperature, pH, and DO determined from 
the 500 mL bioreactor optimization. To systematically evaluate 
process scalability, the LSTM prediction model established at 
500 mL scale was applied to process monitoring of the 5 L reactor: 
pH, DO, and temperature data were collected in real-time through 
online sensors, biomass wet weight was determined by sampling, 
and the time-series data were subjected to standardization 
processing before being input into the pre-trained model, ultimately 
outputting predicted astaxanthin concentration trends. To validate 
the reliability of model prediction results, simultaneous offline 
sampling and determination of astaxanthin concentration 
were conducted.

2.7 Treatment of astaxanthin

After optimization, the procedure was as follows (Jiang et al., 
2024). 1 mL of fermentation broth was placed in a 1.5/2 mL 
centrifuge tube and centrifuged at 9,660 g (MiniSpin® plus, 
Eppendorf AG, Germany) for 5 min to remove the supernatant. 
Then, 1 mL of 3 mol/L hydrochloric acid was added, followed by 
a boiling water bath for 4 min, rapid cooling, and another 
centrifugation at RCF 9,660 × g for 5 min to remove the 
supernatant. Subsequently, 1 mL of acetone was added for 
extraction for 30 min until the biomass was colorless, followed by 
centrifugation at RCF 9,660 × g for 5 min to retain the extract for 
HPLC (Waters Arc) analysis.

2.8 Analysis of astaxanthin by HPLC

Astaxanthin standard was obtained from Sigma-Aldrich (purity ≥ 
97%). A standard curve was prepared with concentrations (20 mg/L, 
40 mg/L, 60 mg/L, 80 mg/L, 100 mg/L). Liquid chromatography 
equipment: Waters, with the following chromatographic conditions: 
Waters XBridge® C18 column (4.6 × 50 mm); mobile phase: methanol–
water (95:5); flow rate: 1 mL/min; detection wavelength: 475 nm (Lu 
et al., 2010).

2.9 OD600 measurement

OD600 measurement is based on the Beer–Lambert law, where the 
absorbance of a solution is proportional to the concentration of 
absorbing substances. Using a spectrophotometer (V-1100D 
Spectrophotometer, Shanghai Meipuda Instrument Co., Ltd.) set at 
600 nm, the culture medium without bacteria was the blank for 
calibration. The bacterial culture was then measured in the 
spectrophotometer to obtain the OD600 value, which correlates with 
bacterial cell concentration.
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2.10 Measurement of wet weight

An empty 1.5 mL/2 mL centrifuge tube was accurately weighed 
on an analytical balance to record its weight. Then, 1 mL of 
fermentation broth was added to the empty centrifuge tube and 
centrifuged at RCF 9,660 × g for 5 min to remove the supernatant. The 
wet weight of the biomass was determined by subtracting the weight 
of the empty tube from that of the tube containing the biomass.

2.11 Statistical analysis

Data are presented as mean ± standard deviation (SD) and 
statistical analysis was performed using Origin 2024.

3 Results

3.1 Temperature gradient optimization in 
the 500 mL bioreactor

As illustrated in Figure 1A, P. rhodozyma GDMCC 2.218 exhibited 
slow growth at fermentation temperatures of 25°C and 28°C, with an 
OD600 of less than one after 46.4 h, necessitating termination of 
cultivation for off-gassing treatment. Conversely, at 20°C and 22°C, 
the culture transitioned into a rapid growth phase following the lag 
period, continuing until 168 h before off-gassing. Figure 1B shows that 
the optimal result for the current strain was achieved at a fermentation 
temperature of 20°C, with an OD600 of 24.84 and an astaxanthin 
concentration of 88.76 mg/L after 118 h of fermentation. Thus, 20°C 
was most conducive to astaxanthin production among the tested 
temperature gradients by this strain.

3.2 pH gradient optimization in the 500 mL 
bioreactor

Building on the temperature gradient optimization results, pH 
gradient optimization was conducted at the optimal fermentation 
temperature of 20°C and DO of 30%. Figure  2A illustrates that 
P. rhodozyma GDMCC 2.218 exhibited slow growth at a fermentation 
pH of 3.5, yielding an OD600 of only 2.1 after 48 h, leading to the 
termination of cultivation for off-gassing treatment. Other pH levels 
rapidly transitioned into the growth phase after overcoming the lag 
period, continuing until 144 h before off-gassing. Figure 2 indicate that 
the strain’s optimal result was achieved at a pH of 4.5, with an OD600 of 
35.8 and a biomass wet weight of 84.1 g/L. This resulted in an astaxanthin 
concentration of 327.73 mg/L after 119 h of fermentation. Thus, pH 4.5 
was found to be more favorable for astaxanthin production by this strain.

3.3 DO gradient optimization in the 500 mL 
bioreactor

Following the optimization of temperature and pH gradients, the 
optimal fermentation conditions were established at 20°C and a pH of 
4.5. Figure 3 demonstrate that, compared to the temperature and pH 
gradient optimization experiments, P. rhodozyma GDMCC 2.218 

swiftly transitioned through the lag phase into the growth phase across 
all DO treatments. The differences in astaxanthin yield post-
fermentation were insignificant, indicating that DO levels had a less 
pronounced effect on astaxanthin production for this strain. 
Nonetheless, at DO 20%, the strain achieved the best results, with an 
OD600 of 34.8 and a biomass wet weight of 80.8 g/L, culminating in an 
astaxanthin concentration of 387.32 mg/L after 144 h of fermentation.

3.4 Training and validation of LSTM model 
on 500 mL fermentation data

The predictive performance of temporal models is highly 
dependent on hyperparameter configuration. To systematically 
determine the optimal parameter combination, this study employed 
grid search to evaluate different architectural performances with 
varying hidden unit numbers (32, 64, and 128). The three 
configurations achieved R2 values of 0.771, 0.978, and 0.882 on the 
training set, respectively (Supplementary Figure S1). Based on these 
results, a single-layer LSTM architecture was selected with 64 hidden 
units, Adam optimizer with a learning rate of 0.001, and a batch 
size of 4.

The LSTM model was constructed following the training 
methodology described above. Data preprocessing strictly adhered to 
fermentation process characteristics, with raw data processed through 
interpolation and forward/backward filling to ensure temporal 
continuity. After 4,058 iterations, the loss function gradually 
converged to its minimum value. An early stopping mechanism was 
triggered when validation loss showed no improvement for 1,000 
consecutive epochs, with the model parameters corresponding to the 
minimum validation loss retained as the optimal configuration.

The parameters corresponding to the minimum validation loss 
were retained as the optimal model. As shown in Figure  4, the 
predicted astaxanthin concentrations from 15 fermentation batches 
exhibited high concordance with measured values. The proximity of 
data points to the line y = x reflects minimal prediction error, with a 
correlation coefficient R2 of 0.978, demonstrating the LSTM model’s 
excellent regression performance on the training set. Notably, data 
points from different batches and reactors were closely distributed 
around the fitted line, indicating the model’s robustness to inter-
reactor variability.

3.5 Process scale-up results and LSTM 
model predictions for 5 L bioreactor

Based on the parameters outlined in Table  1, the optimal 
conditions, temperature 20°C, pH 4.5, and DO 20%, determined from 
the 500 mL bioreactor experiments, were implemented in the 5 L 
bioreactor for validation. Figure  5 indicates that this batch 
fermentation lasted 172 h, during which the astaxanthin yield 
gradually increased. It was observed that the yield slightly declined 
during the late growth stage. The optimal outcome was achieved after 
165 h of fermentation, yielding an OD600 of 52.1, a biomass wet weight 
of 124.1 g/L, and an astaxanthin concentration of 400.62 mg/L. This 
indicates that the process effectively scaled up tenfold, achieving 
results that met or slightly exceeded those from the 500 mL bioreactor. 
The HPLC analysis spectra of the highest astaxanthin yield from the 
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5 L bioreactor (cultured for 165 h) and the standard (100 mg/L) 
demonstrated that the retention time of the astaxanthin peak in this 
analytical method was approximately 1 min, with a peak profile 
consistent with that of the standard (Supplementary Figure S2).

The astaxanthin concentration prediction model, constructed 
based on fermentation experimental data from 15 batches at a 500 mL 
scale, was further applied to scale-up experiments in 5 L bioreactors for 
predictive validation, with the results shown in Figure  6. As 

FIGURE 1

Effect of cultivation temperature on OD₆₀₀ (A) and astaxanthin production (B).
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FIGURE 2

Effect of different pH levels on the OD600 (A), the wet weight (B), and the production of astaxanthin (C).
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FIGURE 3

Effect of different DO levels on the OD600 (A), the wet weight (B), and the production of astaxanthin (C).

https://doi.org/10.3389/fmicb.2025.1667396
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al.� 10.3389/fmicb.2025.1667396

Frontiers in Microbiology 08 frontiersin.org

demonstrated in Figure  6A, the model predictions showed high 
consistency with actual measured values at a 5 L scale, with the 
correlation coefficient (R2 = 0.947) indicating good generalization 
capability of the model for astaxanthin concentration prediction in 
bioreactors of different scales. From Figure 6, it can be observed that 
the predicted and measured astaxanthin concentrations showed high 
concordance in their trends over fermentation time, particularly in the 
mid-to-late fermentation phase (after 75 h), where the prediction 
curves accurately reflected the rising trend and dynamic changes of 
astaxanthin concentration, demonstrating the model’s effective 
learning of the nonlinear kinetic characteristics of astaxanthin synthesis.

4 Discussion

This study significantly enhanced astaxanthin production from 
wild-type P. rhodozyma GDMCC 2.218 through systematic 
optimization of fermentation parameters combined with LSTM 
modeling technology, providing important guidance for industrial-
scale natural astaxanthin production. The results not only confirmed 
the effectiveness of traditional parameter optimization but also 
offered new insights for process scale-up through intelligent 
modeling techniques.

Regarding fermentation parameter optimization, temperature 
experiments demonstrated that 20°C was most favorable for astaxanthin 
synthesis, which aligns with the optimal growth characteristics of 
P. rhodozyma within the 17–21°C range. The yield reduction observed at 
high temperatures (25–28°C) may result from inhibition of DNA/RNA 
synthesis, reflecting the strain’s evolutionary adaptation to 
low-temperature environments (Miao et  al., 2021; Shi et  al., 2022; 
Mussagy et al., 2023). pH optimization results indicated that pH 4.5 
represents the optimal condition for achieving the best balance between 
cell growth and astaxanthin synthesis. This weakly acidic environment 
maintains both cell membrane integrity and promotes metabolic enzyme 
function (Xie et al., 2014; Jia et al., 2024). Notably, this pH range also 
provides the natural advantage of inhibiting microbial contamination 
(Flores-Cotera et al., 2021; Mussagy et al., 2022), which is particularly 
important for industrial production. Dissolved oxygen experiments 
revealed that different DO levels (10–40%) had minimal impact on yield. 
However, yield was slightly higher at 20% DO, indicating that the 
GDMCC 2.218 strain possesses a robust oxygen utilization mechanism. 
This finding holds significant economic value, as maintaining high DO 
levels at industrial scale requires substantial energy consumption 
(Jahanian et  al., 2024). Notably, during scale-up experiments from 
500 mL to 5 L, the yield increased from 387.32 mg/L to 400.62 mg/L. This 
improvement may be attributed to enhanced mixing and oxygen transfer 

FIGURE 4

LSTM model prediction performance for astaxanthin concentration. b represents batch category, r represents reactor number. For example, b1-r1 
represents reactor 1 of batch category 1.
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efficiency in larger vessels, while also validating the robustness of the 
optimized parameters.

Compared to conventional understanding, this study achieved 
a significant breakthrough: the obtained astaxanthin yields 
(387.32–400.62 mg/L) not only far exceeded reported wild-type 
strain levels (typically <50 mg/L) but even approached or 
surpassed the yields of some engineered strains (Park et al., 2018; 
Mussagy et al., 2022; Lin, 2024). This achievement demonstrates 
that through systematic parameter optimization rather than 
genetic modification, commercially competitive yields can 

be  obtained while maintaining the safety and regulatory 
advantages of wild-type strains.

This study achieved systematic innovation in intelligent modeling 
for Rhodotorula yeast. While current research predominantly focuses on 
biomass and astaxanthin prediction in Haematococcus pluvialis—such as 
Cui et al., who developed an ANN (artificial neural network) model 
based on light and temperature (R2 > 0.98), and Liyanaarachchi et al., 
who created a carbon source optimization model (R2 > 0.91)—this work 
represents the first temporal process model for Rhodotorula yeast and 
innovatively achieves cross-scale LSTM predictions from 500 mL to 5 L 

FIGURE 5

Time course of Phaffia rhodozyma growth and astaxanthin production in a 5 L bioreactor.

FIGURE 6

LSTM Model prediction results in 5 L bioreactor scale-up. (A) Fitting relationship between model-predicted values and measured values at a 5 L scale. 
(B) Temporal trends of predicted and measured astaxanthin concentrations at the 5 L scale.
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bioreactors (Cui et  al., 2019; Liyanaarachchi et  al., 2020). LSTM 
networks, with their unique gating mechanisms and memory units, 
more effectively handle nonlinear temporal features in fermentation 
processes. Experimental results demonstrated excellent generalization 
performance (R2 = 0.978), accurately capturing dynamic astaxanthin 
accumulation patterns during mid-to-late fermentation stages.

However, LSTM models require substantial high-quality 
training data and may exhibit underfitting or overfitting risks, as 
evidenced by prediction deviations in the initial stage (0–100 mg/L). 
This phenomenon may be attributed to mass transfer differences 
during scale-up (Oldshue, 1966) and insufficient temporal 
resolution in training data. Nevertheless, prediction errors at 
critical production nodes were significantly reduced, validating the 
universality of temporal feature extraction for scale-up applications. 
These achievements demonstrate significant advantages in strain 
specificity, model advancement, and prediction accuracy, providing 
a reliable theoretical foundation and technical support for 
industrial-scale cultivation of Rhodotorula yeast.

The achievements of this study are primarily attributed to the 
following: precise optimization of key parameters through systematic 
experimentation, effective feeding strategies that maintain optimal 
nutritional levels, the appropriate selection of culture medium 
components that support both growth and astaxanthin synthesis, 
strict monitoring of process parameters during fermentation, and 
auxiliary prediction by the LSTM model. These factors synergistically 
contributed to substantial yield improvements. Future research could 
explore other parameters such as illumination and trace element 
supplementation, develop fed-batch strategies for large-scale 
production, analyze metabolic flux distribution under optimized 
conditions, improve LSTM model prediction performance in early 
fermentation phases, and optimize downstream processes to enhance 
astaxanthin recovery rates. Through further integration of 
multidisciplinary approaches, comprehensive optimization of wild-
type P. rhodozyma astaxanthin production is anticipated.

5 Conclusion

This study achieved an astaxanthin yield of 400.62 mg/L from wild-
type Phaffia rhodozyma GDMCC 2.218 through systematic optimization 
of fermentation parameters combined with LSTM intelligent modeling, 
representing a 1–2 order of magnitude improvement over literature 
values and outperforming most engineered strains. Process scale-up 
validation demonstrated the excellent transferability of this technology 
(R2 = 0.947 at the 5 L scale), with the LSTM model accurately capturing 
the fermentation kinetic characteristics. The research findings not only 
confirm that non-genetically modified approaches can achieve 
commercial-scale yields, but their regulatory-friendly nature better 
aligns with current stringent requirements for natural products in the 
food and pharmaceutical industries, providing a reliable technological 
paradigm for industrial-scale natural astaxanthin production.
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