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Cold Atmospheric Plasma-Aerosol (CAP-A) technology has emerged as a novel,
contactless approach for antimicrobial treatment. This study evaluates the in vivo
efficacy of CAP-A in reducing microbial contamination on human skin, building
on obligatory in vitro testing. In vitro results demonstrated consistent 3-4.5 log
unit microbial reductions across five standard organisms. In vivo evaluation using
Escherichia coli revealed a mean log reduction factor of 4.77 (SD + 0.44), exceeding
the 4-log threshold considered clinically relevant. Notably, CAP-A showed comparable
efficacy to an alcohol-based reference disinfection method (p = 0.134), without
associated drawbacks such as thermal effects or ozone accumulation. Results
suggest that CAP-A offers equivalent in vivo efficacy compared to previously
documented CAP methods while minimizing tissue damage, thermal changes,
and discomfort. The results underscore the potential of CAP-A as an effective and
tolerable alternative to established CAP approaches, warranting further comparative
research under standardized conditions. Future studies should examine both CAP
and CAP-A technologies, broadening the spectrum of tested microorganisms,
incorporating additional parameters, and rigorously assessing benefits and risks.
This research could elucidate the underlying mechanisms driving differences in
efficacy and side effect profiles, ultimately contributing to the optimization of
plasma-based treatments in clinical and industrial settings.
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1 Introduction

Plasma, the fourth state of matter, is a partially ionized gas composed of charged particles.
In medical applications, Cold Atmospheric Plasmas (CAP) are increasingly explored for their
antimicrobial effects. Particularly, plasmas generated from oxygen and water vapor yield
reactive oxygen species (ROS) capable of modifying surfaces, liquids, and even ambient air
through energy transfer during ionization processes (Lerouge et al., 2001; Graves and Bauer,
2018; Ehlbeck et al., 2011). Until recently, most research has focused on direct plasma
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applications, where plasma is applied directly to the target surface.
These methods have shown strong microbiocidal effects in wound
sanitation, effectively reducing bacterial load regardless of wound size,
location or cofactors (e.g., tobacco abuse, cardiovascular diseases)
(Brany et al., 2020; Apelqvist et al., 2024; Daeschlein et al., 2015).
Notably, Daeschlein et al. (2015) demonstrated in vivo efficacy against
both Gram-positive and Gram-negative bacteria, including resistant
strains such as MRSA and MRGN, indicating that cold plasma
damages microbial structures in a way that bypasses typical
resistance mechanisms.

A drop in wound pH after plasma treatment further supports its
antimicrobial efficacy, as pathogenic bacteria typically alkalize the
wound environment. CAP treatment restores the acidic milieu
necessary for optimal healing (Hammerle et al., 2023). Moreover,
studies report significantly accelerated wound healing and increased
healing rates, up to 60% higher compared to supportive therapy alone
(Abu Rached et al., 2023; Strohal et al., 2022; Stratmann et al., 2020;
Isbary et al., 2012; Isbary et al., 2010; Schachl et al., 2025). According
to Strohal et al. (2022), these improvements are independent of wound
type or location. The observed efficacy is attributed primarily to the
antimicrobial action, suggesting that indirect plasma methods may
yield similar results.

Building on these findings, a novel indirect plasma approach -
Cold Atmospheric Plasma-Aerosol (CAP-A) - has been introduced.
CAP-A combines reactive species from CAP with nebulized water,
enabling antimicrobial action without direct contact between the
plasma source and the treated surface (Tischendorf et al., 2024; Schaal
and Schmelz, 2024). Energy input is limited to plasma generation,
making the method safer and more flexible in clinical applications.
Indirect methods like CAP-A target the transient skin flora via redox
disruption and induce a “selective short circuit” in microbial
membranes, collapsing the membrane potential and disabling
transmembrane transport (Brany et al., 2020).

Importantly, these effects are highly selective. Human cells remain
unaffected due to protective antioxidant enzymes such as catalase,
superoxide dismutase, and alpha-1-antitrypsin (Masur et al., 2018).
Toxicological evaluations of CAP-A, including the Ames test (EN ISO
10993-3) and cytotoxicity tests (EN ISO 10993-5), confirm its safety
profile. No mutagenic or cytotoxic effects were detected in bacteria or
human cells, respectively. Clinical use of direct CAP devices has also
shown no adverse effects, reinforcing the biological selectivity and
clinical safety of this emerging technology (Masur et al., 2018).

The analysis builds on previous work demonstrating the
microbicidal efficacy of CAP-A technology in diverse experimental
and practical settings including the disinfection of thermolabile
medical devices under routine hospital conditions (Schaal et al.,
2025) and the successful treatment of clinical infections in veterinary
patients (Kurras et al., 2025). This study represents a first EN
1500-compliant in vivo investigation of CAP-A on human skin using
a specified test germ for clear statistical and clinical evidence. Further,
the test setting combines two standards for assessing plasma
techniques. EN 1500 presents the closest standard to CAP-A for
surface-active reduction of microbial load in a clinical setting and
DIN SPEC 91315 defines the measurement of inactivation potency
of plasma sources. The two norms applied for both chemical
disinfectants (EN 1500) and plasma devices (DIN SPEC 91315)
demonstrate the reliability of microbial inactivation results of
CAP-A. This article critically examines how effective is the CAP-A
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procedure in reducing microbial contamination on human skin
under in vivo conditions, following the obligatory preliminary
in vitro testing as required by best practice. Furthermore, directly
comparing its antimicrobial performance with the established
alcohol-based reference method, this work addresses a critical gap
between laboratory-based findings and clinically relevant,
standardized testing.

How does the antimicrobial performance of CAP-A, evaluated in
alignment with the reference alcohol-based disinfection method
under EN 1500 conditions, compare with the documented efficacy of
existing CAP procedures in current literature? Can these findings
provide insights into the future role and integration of CAP and
CAP-A methods in clinical treatment practices?

2 Subsections relevant for the subject
2.1 Working principle

The PLASMO®HEAL device (WK-MedTec GmbH, Biickeburg)
operates via an indirect plasma method. A defined alternating voltage
(1.45 kV, 38 kHz, sinusoidal) generates cold plasma reaction products,
primarily hydroxyl radicals, from ambient air, while only negligible
amounts of ozone are produced. Distilled water (stabilized according
to German pharmacopoeia for hygienic reasons) is nebulized
ultrasonically and activated by the plasma-enriched air, thereby
increasing the electrophysical potential of the aerosol without altering
its material composition. The resulting aerosol (CAP-A) is then
applied to the targeted surface (e.g., skin or wounds) at a distance of
7.5 cm for three minutes, as specified in the manufacturer’s operating
instructions to ensure homogeneous distribution across the treatment
area and optimal antimicrobial efficacy. In accordance with EN 1500
test conditions, post-treatment sampling in this study was performed
40 min after application, allowing a preliminary assessment of the
medium-term persistence of the antimicrobial effect.

2.2 In vitro testing

Microbial reduction efficacy was assessed in vitro against five
standard organisms (Staphylococcus aureus ATCC 6538, Staphylococcus
epidermidis ATCC 14990, Escherichia coli NCTC 10538, Pseudomonas
aeruginosa ATCC 10145, and Candida albicans ATCC 10321) according
to DIN 91315:2014, with each organism tested three times.
Identification of the organisms was confirmed by Gram staining,
metabolic profiling, and indole production. Cultures were grown on
Caso agar in 60-mm Petri dishes and adjusted to McFarland standard
8 with sterile, pyrogen-free 0.9% NaCl. A microbial suspension was
applied to stainless steel specimens (100 x 10 x 1 mm; surface
roughness 100 pm) using a sterile swab, followed by a five-second
immersion, drainage, and two-hour air drying. The specimens were
then exposed to the PLASMO®HEAL aerosol for three minutes.
Microorganisms were recovered by vortexing each sample in 10 mL
sterile 0.9% NaCl for 30 s; serial tenfold dilutions (effective dilution
from 100 to 10~*) were plated (0.1 mL per dilution) alongside untreated
controls. Following incubation, colony counts (from plates with 10-100
colonies) were used to calculate microbial loads and determine the log
reduction factors.
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2.3 In vivo testing

In vivo antimicrobial efficacy was evaluated in accordance with
EN 1500 using Escherichia coli NCTC 10538, a non-pathogenic
reference strain specified for standardized hygienic handrub testing.
Eighteen subjects participated as part of routine hospital hand hygiene
quality assurance (not as a clinical trial). Both hands were
contaminated by immersing the fingers in a test suspension for five
seconds, then drained. The left hand provided a pre-treatment
bacterial count, while the right hand, after contamination, was
exposed to the PLASMO®HEAL aerosol for three minutes before
post-treatment sampling. Serial dilutions and culture methods
analogous to the in vitro procedure produced log reduction factors.
E. coli, an apathogenic yet resilient organism, served as a suitable
surrogate for pathogenic microbes. The number of test subjects
(n = 18) was determined in accordance with the requirements of EN
1500 in order to ensure sufficient statistical significance for the
evaluation of hygienic hand disinfection procedures. All procedures
were conducted in accordance with relevant guidelines; participants
provided written informed consent, and an ethical waiver was secured
from the institutional review board (recruitment: January 2-9, 2023).

2.4 Statistical analysis

Descriptive and inferential statistics were performed using IBM
Statistics Version 30 for Mac. Given the small sample size, the
Shapiro-Wilk test assessed normality for the log-CFU parameter (pre:
p=0.025; post: p=0.191) and for the log-CFU reduction factor
(p <0.001), with normal distribution confirmed only for post-
treatment log-CFU values. Simulation studies support the t-test’s
robustness to normality violations (Rasch and Guiard, 2004).
Accordingly, a paired samples t-test (a = 5%, two-tailed) compared
pre- and post-treatment log-CFU values in the in vivo testing, while
an independent samples t-test (o = 5%, two-tailed), preceded by
Levene’s test for equality of variances (p = 0.0502), compared the
log-CFU reduction factors between the CAP-A and the alcohol-based
reference disinfection. The complete data set is included as an
e-supplement.

3 Results

Detailed analyses of the in vitro results (Table 1) and in vivo
outcomes (Table 2) provide a comprehensive assessment of the
dynamic effects of this innovative wound treatment method. In the
in vivo evaluation employing the CAP-A procedure, the mean log
CFU prior to application was 7.23 (SD * 0.59), which decreased to
2.52 (SD + 0.38) post-procedure, yielding a mean log reduction factor
of 4.77 (SD £ 0.44). A paired samples t-test confirmed that the
reduction in log CFU values was statistically significant (p < 0.001).
Furthermore, comparison of the log CFU reduction factors between
the CAP-A treatment and the alcohol-based reference disinfection
revealed no significant difference, as indicated by Levene’s test for
homogeneity of variances (p = 0.0502) and an independent samples
t-test (p = 0.134). Based on the in vivo results, the CAP-A procedure
achieved a disinfection efficacy exceeding a 4-log reduction, thereby
confirming its effectiveness. Moreover, the statistical analyses
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indicated no significant difference between the CAP-A method and
the alcohol-based reference disinfection, suggesting that the two are
equivalent in performance, even though current EN 1500 standards
are not yet tailored to accommodate such innovative approaches.

4 Discussion

This study evaluated the in vivo antimicrobial efficacy of the
CAP-A procedure using the WK-MedTec GmbH PLASMO®HEAL
device against the test organism E. coli. Our findings demonstrated a
mean log reduction factor of 4.77, indicating a robust antimicrobial
effect that is statistically significant. When considered alongside
previous reports on CAP-based interventions, these results suggest
that CAP-A can achieve antimicrobial reductions in a range
comparable to those documented for other CAP methods, despite
differences in organisms tested, exposure times, device configurations,
and application sites across studies. For instance, Zimmermann
(Zimmermann et al., 2011) achieved a mean log reduction factor of
over 3 CFU in vitro, while Boekema et al. reported an in vivo log
reduction factor of 2.9 (Boekema et al., 2021). Similarly, Perni et al.
(2007) demonstrated a reduction factor of 2.5 following a 2.5-min
CAP treatment. In contrast, our study’s achieved value of 4.77
supports the consideration of CAP-A as a viable, EN 1500-compliant
alternative to direct CAP. Lan et al. (2024) have shown that both CAP
and CAP-A techniques are capable of producing high log reduction
factors. However, where CAP procedures have been associated with
heightened power input and consequential effects, such as increased
production of nitrate and ozone and augmented local temperature
(Daeschlein et al., 2012; Gelker et al., 2019), CAP-A appears to achieve
comparable bacterial inactivation while potentially reducing these
secondary side effects. In addition to antimicrobial efficacy, potential
skin-related adverse effects were evaluated. Skin irritation testing
performed in accordance with DIN EN ISO 10993-23:2021-10
demonstrated no evidence of erythema or edema at any observation
point, resulting in a Primary Irritation Index (P. I. ) of 0.0. These
findings indicate that CAP-A treatment, when applied as described in
this study, is unlikely to induce skin irritation, supporting its potential
suitability for repeated or prolonged clinical use. In particular, CAP-As
lower energy requirement, combined with its high antimicrobial
efficacy, positions it as a promising alternative in applications where
minimizing thermal alterations and chemical by-products is desirable.

Although the current corpus of literature does not provide an
exhaustive depiction of the pooled log reduction factors achievable
by CAP procedures, the results presented here underscore that
modern CAP-A technologies are not necessarily inferior. On the
contrary, the promising log reduction factor of 4.77 achieved in our
study supports the hypothesis that CAP-A may serve as an efficacious
alternative to traditional CAP methods without the concomitant
drawbacks of increased reactive species production and thermal
side effects.

In accordance with EN 1500 and DIN SPEC 91315, E. coli NCTC
10538 was selected for the in vivo evaluation to ensure standardization
and comparability with established disinfectant testing protocols. The
in vitro component was designed to extend this evaluation to a
broader microbial spectrum, including Gram-positive and Gram-
negative bacteria, thereby enabling a representative evaluation within
the framework of recognized validation standards for plasma-based
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TABLE 1 Results of the in vitro test of the germ-reducing effect of the CAP-A method.

Cfu/ CfU/ Dilution CfU/ Log CfU/ Log
Agar Approach Proband Proband reductions
plate factor
Staphylococcus aureus 3 min
1.1.A-3 10.0 mL 0.1 mL 87 8,700 10,000 87,000,000 7.94
1.1.B-3 10.0 mL 0.1 mL 28 2,800 1 2,800 3.45 4.49
12.A3 10.0 mL 0.1 mL 56 5,600 10,000 56,000,000 7.75
1.2.B-3 10.0 mL 0.1 mL 26 2,600 1 2,600 3.41 4.33
13.A-3 10.0 mL 0.1 mL 78 7,800 10,000 78,000,000 7.89
1.3.B-3 10.0 mL 0.1 mL 22 2,200 1 2,200 3.34 4.55
Staphylococcus epidermidis 3 min
L1 A3 10.0 mL 0.1 mL 56 5,600 10,000 56,000,000 7.75
1.1.B-3 10.0 mL 0.1 mL 31 3,100 1 3,100 3.49 4.26
12.A-3 10.0 mL 0.1 mL 44 4,400 10,000 44,000,000 7.64
1.2.B-3 10.0 mL 0.1 mL 25 2,500 1 2,500 3.40 4.25
1.3.A-3 10.0 mL 0.1 mL 76 7,600 10,000 76,000,000 7.88
1.3.B-3 10.0 mL 0.1 mL 37 3,700 1 3,700 3.57 431
Escherichia coli 3 min
1.1 A3 10.0 mL 0.1 mL 92 9,200 10,000 92,000,000 7.96
1.1.B-3 10.0 mL 0.1 mL 54 5,400 1 5,400 373 4.23
12.A-3 10.0 mL 0.1 mL 78 7,800 10,000 78,000,000 7.89
1.2.B-3 10.0 mL 0.1 mL 34 3,400 1 3,400 3.53 4.36
1.3.A-3 10.0 mL 0.1 mL 65 6,500 10,000 65,000,000 7.81
1.3.B-3 10.0 mL 0.1 mL 39 3,900 1 3,900 3.59 4.22
Pseudomonas aeruginosa 3 min
1.1.A-3 10.0 mL 0.1 mL 72 7,200 10,000 72,000,000 7.86
1.1.B-3 10.0 mL 0.1 mL 26 2,600 1 2,600 3.41 4.44
12.A3 10.0 mL 0.1 mL 61 6,100 10,000 61,000,000 7.79
1.2.B-3 10.0 mL 0.1 mL 34 3,400 1 3,400 3.53 4.25
1.3.A-3 10.0 mL 0.1 mL 93 9,300 10,000 93,000,000 7.97
1.3.B-3 10.0 mL 0.1 mL 45 4,500 1 4,500 3.65 4.32
Candida albicans 3 min
L1 A3 10.0 mL 0,1 mL 78 7,800 10,000 7,800,000 6.89
1.1.B-3 10.0 mL 0,1 mL 31 3,100 1 3,100 3.49 3.40
1.2.A-3 10.0 mL 0,1 mL 59 5,900 10,000 59,000,000 7.77
1.2.B-3 10.0 mL 0,1 mL 27 2,700 1 2,700 3.43 4.34
1.3.A-3 10.0 mL 0,1 mL 86 8,600 10,000 86,000,000 7.93
1.3.B-3 10.0 mL 0,1 mL 29 2,900 1 2,900 3.46 4.47

No., identification of the test run, where the first two digits stand for the test person number; ‘A, test run before disinfection (initial bacterial count); ‘B} test run after disinfection (initial
bacterial count); V1, total volume approach to leaching; V2, volume of the batch from V1, which was applied to the agar plate; CfU, colony forming unit.

and chemical disinfectants. In summary, our findings indicate that
CAP-A, by achieving a significant in vivo log reduction factor while
mitigating the adverse effects noted in conventional CAP treatment,
holds considerable potential as an alternative antimicrobial strategy.
This study provides a meaningful impetus for further investigation
into the comparative efficiencies and mechanistic underpinnings of
CAP versus CAP-A procedures.

Frontiers in Microbiology

5 Limitations and future research

This study has certain limitations that should be considered when
interpreting the results. The in vivo evaluation was performed
exclusively on healthy volunteers under standardized EN 1500
conditions, which may not fully reflect the complexity of clinical
environments such as chronic wound care or high-contamination
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TABLE 2 Results of the in vivo test of the germ-reducing effect of the CAP-A method.

Cfu/ Dilution Cfu/ Log CfU/ Log Mean
Approach Proband Proband reductions values
factor Log RF
01before =~ 10.0mL 0.1 mL 46 4,600 10,000 46,000,000 7.66
01 after 10.0 mL 0.1 mL 3 300 1 300 248 519 5.19
02before | 10.0mL 0.1 mL 18 1,800 10,000 18,000,000 7.26
02 after 10.0 mL 0.1 mL 5 500 1 500 2.70 4.56 456
03 before | 10.0mL 0.1 mL 16 1,600 100,000 160,000,000 8.20
03 after 10.0 mL 0.1 mL 14 1,400 1 1,400 3.15 5.06 5.06
04 before | 10.0 mL 0.1 mL 23 2,300 1,000 2,300,000 636
04 after 10.0 mL 0.1 mL 2 200 1 200 2.30 4.06 4.06
05 before | 10.0 mL 0.1 mL 84 8,400 10,000 84,000,000 7.92
05 after 10.0 mL 0.1 mL 5 500 1 500 2.70 523 523
06 before | 10.0 mL 0.1 mL 15 1,500 10,000 15,000,000 7.18
06 after 10.0 mL 0.1 mL 3 300 1 300 248 470 4.70
07 before | 10.0mL 0.1 mL 4 400 10,000 400,000 5.60
07 after 10.0 mL 0.1 mL 1 100 1 100 2.00 3.60 3.60
08 before | 10.0 mL 0.1 mL 92 9,200 10,000 92,000,000 7.96
08 after 10.0 mL 0.1 mL 17 1,700 1 1700 323 473 473
09 before | 10.0 mL 0.1 mL 39 3,900 10,000 39,000,000 7.59
09 after 10.0 mL 0.1 mL 5 500 1 500 2.70 4.89 4.89
10before | 10.0mL 0.1 mL 24 2,400 10,000 24,000,000 7.38
10 after 10.0 mL 0.1 mL 1 100 1 100 2.00 538 538
11before ~ 10.0 mL 0.1 mL 17 1,700 10,000 17,000,000 7.23
11 after 10.0 mL 0.1 mL 5 500 1 500 2.70 453 453
12before | 10.0mL 0.1 mL 11 1,100 10,000 11,000,000 7.04
12 after 10.0 mL 0.1 mL 1 100 1 100 2.00 5.04 5.04
13before | 10.0mL 0.1 mL 26 2,600 10,000 26,000,000 7.41
13 after 10.0 mL 0.1 mL 2 200 1 200 230 5.11 5.11
14before | 10.0mL 0.1 mL 14 1,400 10,000 14,000,000 7.15
14 after 10.0 mL 0.1 mL 4 400 1 400 2.60 4.54 4.54
15before  10.0 mL 0.1 mL 14 1,400 10,000 14,000,000 7.15
15 after 10.0 mL 0.1 mL 1 100 1 100 2.00 5.15 5.15
16 before | 10.0mL 0.1 mL 39 3,900 10,000 39,000,000 7.59
16 after 10.0 mL 0.1 mL 9 900 1 900 2.95 4.64 4.64
17 before | 10.0mL 0.1 mL 21 2,100 10,000 21,000,000 7.32
17 after 10.0 mL 0.1 mL 3 300 1 300 248 485 4.85
18before ~ 10.0 mL 0.1 mL 14 1,400 10,000 14,000,000 7.15
18 after 10.0 mL 0.1 mL 4 400 1 400 2.60 4.54 4.54
Mean value log RF 4.77
Median log RF 4.79

No., identification of the test run; V1, total volume approach to leaching; V2, volume of the batch from V1, which was applied to the agar plate; CfU, colony forming unit; RE, reduction factor.

scenarios. The use of a single non-pathogenic test organism  variability, and the study did not investigate possible cumulative
(Escherichia coli) provides a controlled model but does not account for  effects or durability of microbial reduction over time. Future research
the spectrum of microorganisms encountered in practice, including  should therefore focus on assessing CAP-A performance in patient
resistant strains, spore-formers, or fungal biofilms. In addition, the ~ populations with different skin conditions, compromised immunity,
relatively small sample size may limit the detection of inter-individual ~ or existing infections. Moreover, studies under realistic clinical
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workflow constraints, including integration within existing hygiene
protocols, will be important. In this study, post-treatment microbial
counts were obtained 40 min after the 3-min CAP-A application, as
recommended in the device’s operating protocol. While this interval
under EN 1500 conditions offers a preliminary indication of medium-
term persistence, it does not substitute for a dedicated long-term
evaluation of antimicrobial durability.

Given these observations, we advocate for further comparative
research that examines both CAP and CAP-A technologies in
parallel. Future studies should broaden the spectrum of tested
microorganisms, incorporate additional parameters such as energy
consumption and patient comfort, and rigorously assess both the
short- and long-term benefits and risks in extended follow up studies
associated with these antimicrobial methodologies. Such research
could elucidate the underlying mechanisms driving the differences
in efficacy and side effect profiles, ultimately contributing to the
optimization of plasma-based treatments in both clinical and
industrial settings.

6 Conclusion

This study demonstrates that the CAP-A method, as applied
with the PLASMO®HEAL device, achieves robust antimicrobial
activity both in vitro and in vivo. CAP-A achieved consistently
high log reduction factors for five standard microorganisms
in vitro, and in vivo tests against Escherichia coli showed a mean
reduction of 4.77, exceeding the clinically relevant threshold of 4.
Importantly, CAP-A’s performance is statistically equivalent to
that of an alcohol-based reference method, while in addition
avoiding potential drawbacks of conventional CAP techniques.
These results position CAP-A as a promising alternative
antimicrobial strategy with high efficacy, good safety, and broader
clinical applicability. By combining contactless application and
inactivation of microorganisms, CAP-A offers advantages in
situations where tissue preservation and patient comfort are
paramount. Future research should expand the range of target
microorganisms, evaluate long-term safety, and compare CAP-A
with other new disinfection technologies under standardized
clinical conditions. The integration of CAP-A as standardized
adjunctive therapeutic step into clinical protocols could represent
an effective, patient-friendly innovation. CAP-A has the potential
of improving infection control and wound care in human and
veterinary medicine.
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