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Introduction: The recovery of slopes in high-altitude areas is often challenging
due to insufficient nutrients in the soil, with phosphorus deficiency being a
key limiting factor for plant growth. This study aimed to screen highly efficient
phosphate-solubilizing bacterial (PSB) strains from undisturbed regions of
the Qinghai-Tibet Plateau and investigate their growth-promoting effects on
Lespedeza bicolor Turcz, and explore the optimal configuration and mechanism
of bacterial strain—plant combinations.

Methods: Three strains, Bacillus atrophaeus (Q4), B. megaterium (Q7), and B.
megaterium (YG1), were obtained through screening experiments.

Results: The results of potted plant experiments showed that the inoculation
of the three strains increased the biomass of the seedlings to varying degrees
(29.9% - 133.5%) and improved the soil nutrient content and enzyme activity.
Among these, Q4 and L. bicolor Turcz were a relatively ideal combination, and
the Q4 treatment had a better growth-promoting effect (133.5% total biomass
increase) compared with the Q7 and YG1 treatments. Compared to the control
(CK), inoculation with strain Q4 significantly reduced soil microbial community
diversity (p < 0.05) and shifted community composition toward dominance by
specific taxa. In addition, environmental factors were positively correlated with
the abundance of Q4 bacterial strains, indicating that the inoculation of bacterial
agents helped improve the release of soil nutrients. The relative abundance of
metabolic genes was significantly higher under the Q4 treatment compared
with the CK treatment, with metabolism-related products constituting the
largest proportion. The abundance of secondary functional genes, such as those
related to the metabolism of cofactors and vitamins, carbohydrate metabolism,
and amino acid metabolism, increased under the Q4 treatment compared with
the CK treatment.

Conclusion: The results suggested that phosphate-solubilizing bacteria could
promote the growth of leguminous plants. The study provides a novel approach
by leveraging the indirect effects of microbes, that is, increasing soil nutrient
content and enzyme activity, to improve the soil environment, which may
provide new ideas and methods for ecological restoration in China and similar
high-altitude areas in the world.
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1 Introduction

Phosphorus (P), accounting for approximately 0.2% of plant dry
weight, is vital for plant growth and development. The total soil P
content is typically high (ranging from 400-1,200 mg kg™'); however,
less than 1% is bioavailable to plants (Zhu et al., 2018). This limitation
is attributed to the predominant existence of organic phosphorus (Po)
forms, accounting for 20-80% of the soil P pool (Dalal, 1997).
Inorganic phosphorus (Pi), the primary form of phosphorus utilized
by plants, presents a global challenge due to its low bioavailability,
which results from limited mobility and strong adsorption in soils
(Yuefen and Guanghui, 2022). Given its vital role in plant’s metabolic
processes (Li et al., 2018), P scarcity consequently severely restricts
plant growth (Raymond et al., 2020). P deficiency has become a key
limiting factor in vegetation restoration in ecologically fragile regions.
A large number of high and steep slopes in northern China generally
have characteristics such as thin soil layers, poor nutrients, and poor
water retention capacity (Paz-Ares et al, 2022). Traditional
engineering measures often lead to vegetation degradation due to
insufficient effective P content in soil, aggravating the risk of soil
erosion (Li et al., 2020).

Plant growth-promoting rhizobacteria (PGPR) offer an
eco-efficient solution to enhance land productivity amid climate
change and land degradation (Castagno et al., 2021; Kalayu, 2019;
Manuel et al., 2023; Tian et al., 2021). PGPR strains improve nutrient
uptake, confer abiotic stress tolerance, and suppress the activity of
pathogens, thereby promoting plant growth (Chauhan et al., 2021).
Among these, phosphate-solubilizing bacteria (PSB) solubilize or
mineralize immobilized soil P (Barra et al., 2018). PSB-mediated P
solubilization primarily relies on proton and organic acid secretion,
which acidifies the rhizosphere, besides the enzymatic mineralization
of organic P via phytases and phosphatases (Alori et al., 2017). Well-
characterized PSB genera include Pseudomonas, Bacillus, Burkholderia,
and Rhizobium, which are known to enhance soil P mobilization
(Raymond et al., 2020; Kalayu, 2019; Alori et al., 2017).

Unlike earlier studies focusing on temperate or agricultural soils
(Bakhshandeh et al., 2017; Shah et al., 2022), this work investigates
PSB from the high-altitude alpine ecosystems of the Qinghai-Tibet
Plateau. The Qinghai-Tibet Plateau, an extreme habitat, harbors
unique microbial communities adapted to low temperatures, drought,
and intense ultraviolet (UV) radiation (Du et al., 2025; Zhang et al.,
2024). PSB native to this region may exhibit superior P-solubilizing
mechanisms and environmental adaptability (Xie et al., 2024; Zhou
et al., 2025), thereby offering novel bioaugmentation strategies for
vegetation restoration in alpine barren soils. However, investigations
on plateau PSB resources remain limited, and their growth-promoting
effects on pioneer plants are poorly understood.

Lespedeza bicolor Turcz, a leguminous perennial shrub distributed
in mid- to low-altitude mountains of the Qinghai-Tibet Plateau, serves
as a key pioneer species for soil conservation. Its stress tolerance (cold,
drought, and low-nutrient adaptation) and extensive root-nodule
symbioses (Wan et al., 2023) enable ecological resilience. Regarding
soil reinforcement, the roots at higher elevations possess greater
biomass and tensile strength, making them more resistant to soil
erosion under extreme environmental conditions (Qi et al., 2024).
However, its growth and ecological functions are often constrained by
P deficiency on steep slopes, limiting biomass accumulation and
slope stabilization.
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In summary, the objectives of this study were to (i) isolate PSB
strains from the plateau soils; (ii) evaluate the plant growth-promoting
effects of selected PSB strains and identify optimal microbial-plant
combinations; and (iii) explore PSB-induced changes in microbial
community abundance and structure in the rhizosphere of L. bicolor
Turcz, while conducting the correlation analysis of soil nutrients and
other environmental factors, to elucidate the mechanisms underlying
the promoting effect of microbial inoculants on plant growth. This
study provides critical insights into utilizing indigenous PSB for
ecological restoration in extreme environments, offering a microbial-
based solution to enhance soil fertility and improve plant stress
resilience under nutrient-limited conditions.

2 Materials and methods
2.1 Experimental materials

The soil samples for screening microbes were collected from the
unmanned interference zone (94°3'9”E, 31°55’56”N) in Baqing
County, Nagqu City, Tibet Autonomous Region, China (Figure 1).

The experimental soil was collected from the topsoil (0-15 cm
depth) of a farmland at the Baguadao experimental field (118°50’E,
32°11'N) in Qixia District, Nanjing, China. The basic soil contents
were as follows: available nitrogen, 26.77 mgkg™; available
phosphorus (AP), 28.18 mgkg™; available potassium (AK),
183.79 mg kg™'; pH, 7.66; and organic carbon, 15.60 g kg™'. The soil
was sieved through a 5 x 5 mm mesh to remove debris, including
rocks and plant tissues, followed by autoclave sterilization to eliminate
plant seeds, soil fauna, and microorganisms.

The preparation of media needed [e.g., Luria broth (LB), Monkina
organic phosphorus, inorganic phosphate (Pi), Ashby’s nitrogen-free

0 450 900 1800 2700
- —

FIGURE 1
Remote sensing image of the research area (a) and the soil source of
screened strain (b).
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agar, and O-CAS] for microbial screening and functional tests are
described in Supplementary materials.

2.2 Strain screening and functional analysis

Six soil samples collected from the Qinghai-Tibet Plateau were
processed separately. For each sample, 5g soil was aseptically
transferred into a 250 mL conical flask containing 45 mL of sterile
distilled water and glass beads. The suspension was vigorously shaken
for 20 min at 180 rpm to achieve homogenization. Subsequently, I mL
of the soil suspension was transferred into a test tube containing 9 mL
of sterile physiological saline (0.9% NaCl solution) and mixed
thoroughly to obtain a 10~ dilution. This serial dilution process was
repeated sequentially to prepare gradient dilutions of 107> ~ 107°.
Aliquots (100 pL) from the 107, 107°, and 10° dilutions were spread
onto solid LB agar plates supplemented with 2% NaCl (pH 8.0) using
sterile glass spreaders. The agar plates were incubated at 28 °C for 6 d.
Single colonies were picked and purified by repeated streaking.

Monkina organic phosphorus and Pi culture media were used to
screen strains with the phosphate-solubilizing effect from the isolated
strains. Three replicates were prepared for each strain and then
incubated in a constant-temperature incubator at 28 °C for 7 d. The
appearance of a transparent circle on the medium indicated that the
strains had the phosphate-solubilizing effect. The diameter of the
single colony (d) and of the transparent circle (D) was measured. The
value of D/d was used to evaluate the strength of PSB.

Based on the D/d values, three strains with a more pronounced
phosphate-solubilizing effect were selected for evaluating the
phosphate-solubilizing effect of bacteria at different temperatures. The
strains exhibiting transparent rings were activated and inoculated into
100 mL of LB liquid medium. The cultures were incubated in a
constant-temperature shaker at 30 °C and 200 rpm for 24 h to prepare
the seed culture, ensuring that the optical density (ODg) of the seed
culture was between 0.8 and 1.2 with UV-Vis spectrophotometer (T6,
Purkinje General Co., China). Subsequently, 3 mL of the seed culture
from each strain was transferred into 250 mL conical flasks containing
100 mL of both Monkina organic phosphorus and Pi liquid media. A
noninoculated control (CK) was also included. Each strain was tested
in triplicate. The cultures were incubated at 0 °C, 4 °C, 16 °C, 22 °C,
30 °C, 35 °C, and 40 °C, with shaking at 200 rpm, for 7 d. After
incubation, the cultures were centrifuged at 4 °C for 10 min at
6000 rpm. The supernatants were then analyzed for effective P content
using the molybdenum blue colorimetric method, 2 mL of centrifuged
supernatant was transferred to a 50 mL volumetric flask.
Approximately 20 mL of deionized water was added, followed by one
drop of 2,4-dinitrophenol indicator. The solution pH was adjusted to
a faint yellow endpoint using 2 mol/L NaOH and 2 mol/L HCL. Then,
5 mL of freshly prepared Molybdenum antimony anti-coloring agent
was added using a micropipette. The solution was brought to 50 mL
final volume with deionized water, mixed thoroughly, and incubated
at room temperature for 30 min. Absorbance was measured at 700 nm
using a UV-Vis spectrophotometer. The effective P concentration was
determined from a standard phosphorus calibration curve.

Strain derivatives (1-mm-diameter disks) were inoculated on
O-CAS medium (5 days) or Ashby’s nitrogen-free agar (6 d) and
incubated at 35+ 0.2 °C (Ustiatik et al., 2021). Positive nitrogen
fixation was

confirmed by growth on Ashbys medium
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(Supplementary Figure S1), while siderophore secretion was indicated
by color changes on O-CAS medium (Supplementary Figure S2).
Based on the results of phosphate-solubilizing experiments,
nitrogen-fixing experiments, and siderophore secretion experiments,
strains Q4, Q7, and YGI were selected for potting experiments
(Supplementary Figure S3) and stored in the Soil and Water
Conservation Laboratory of Nanjing Forestry University.

2.3 Pot experiment

Three microbial inoculants were fermented in 400 mL of sterile
LB liquid medium for 5h (Ibiang et al., 2020). In the process of
fermentation, the value of ODy, of the suspension was measured. And
make sure the value of is in the range of 0.8 ~ 1.2 by diluting or
continuing the fermentation. The bioinoculant was sealed and stored
in a refrigerator at 4 °C for later use. At the time of inoculation, the
stored bioinoculant was diluted 100 times, and 100 mL of the diluted
bioinoculant was applied to the rhizosphere soil for the pot experiment
of L. bicolor Turcz.

The study was conducted in a greenhouse facility at Nanjing
Forestry University, with controlled environmental conditions
maintaining an average temperature of 32 °C and relative humidity of
72%. The test soil, collected from agricultural fields at 0-20 cm depth,
had the following physicochemical properties: available nitrogen
(26.77 mgkg™"), available phosphorus (28.18 mgkg™), available
potassium (183.79 mg kg™'), pH 7.66, and organic carbon content
(15.60 g kg™). Prior to experimentation, the soil was air-dried, sieved,
and manually cleared of debris. A growth substrate was prepared by
mixing soil: vermiculite: perlite at a 3: 1:1 (v/v/v) ratio, followed by
sterilization in an autoclave at 120 °C for 15 min. The sterilized
substrate was then transferred to cultivation pots (50 cm x 20 cm),
with each pot containing 8 L of the prepared growth medium.

L. bicolor Turcz seeds were pretreated prior to the pot experiment.
First, the seeds were soaked in distilled water for 12 h. The water was
then filtered, and the seeds were subsequently soaked in a 0.5%
sodium hypochlorite solution for 1 min to disinfect them. Later, the
disinfected seeds were washed with pure water and kept in the
seedling cup to germinate for 2 weeks. Seedlings of uniform height
(6-8 cm) were transplanted into pots at a density of four plants per
pot, with 10 cm spacing between plants. Four treatments with 3
replicates were designed, resulting in a total of 12 pots. The main
treatments were as follows: (1) sterile water (CK); (2) inoculation with
B. atrophaeus (Q4); (3) inoculation with B. megaterium (Q7); and (4)
inoculation with B. toyonensis (YG1). During the whole experimental
period, potted plants were randomly placed in the greenhouse and
rearranged every other month. Identical agronomic management
measures were then implemented across all treatments for the study.

The pot experiment was terminated after 3 months, and plant and
rhizosphere soil samples were collected for index measurements. For
plants, use vernier calipers and tape to measure the ground diameter
and height of the seedlings; use a root scanner to measure the root
system; and the plants were oven-dried at 60 °C to constant weight
(48 ~ 72 h). For potted soil, use the mettler toledo pH meter to
determine its pH value (water-soil ratio is 5:1); use the molybdenum-
antimony anti-colorimetric method to determine soil AP (Murphy
and Riley, 1962); use the Olsen-P method to determine soil available
P (Olsen, 1954); use alkali-hydrolyzable nitrogen (HN) diffusion
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method to determine soil hydrolyzed nitrogen (Walkley and
Black, 1934).

In addition, a variety of soil enzyme activities were analyzed.
Including soil catalase (S-CAT), soil alkaline phosphatase (S-ALP),
soil invertase (S-SC), soil urease (S-UE), and soil dehydrogenase
(S-DHA), were analyzed. Each assay included three independent
technical replicates per sample. The S-CAT activity was determined
by measuring the decomposition of H,O, at 240 nm (Johnson and
Temple, 1964). The S-ALP activity was quantified using p-nitrophenyl
phosphate as substrate by a previously described method (Tabatabai,
1969). S-SC activity was assessed through 3,5-dinitrosalicylic acid
colorimetry by measuring the reducing sugar content (Frankeberger
and Johanson, 1983). S-UE activity was evaluated by ammonium
release using urea as the substrate (Schinner and Mersi, 1990). S-DHA
activity was determined by measuring the reduction of
triphenyltetrazolium chloride to triphenylformazan at 485 nm
(Maachowska-Jutsz and Matyja, 2019).

2.4 Extraction and PCR amplification of
total soil microbial DNA

Portions of soil samples collected from potted plants were stored
at —20 °C. After combining samples from the same treatment into a
composite sample, 0.25 g was used for DNA extraction. The entire
genomic DNA was isolated using the E.Z.N.A.® Soil DNA Kit (Omega
Bio-Tek, GA, USA), following the manufacturer’s guidelines. The
concentration of extracted DNA was detected by Nanodrop
RND-2000 (NanoDrop Technologies, Wilmington, DE, United States).
Post-extraction, the integrity of the DNA was assessed through 1%
agarose gel electrophoresis. Then, the universal primers 338F
(5-ACTCCTACGGGAGCAGCAG-3) and 806R
(5-GGACTACHGGGTWTCTAAT-3") (Ke et al., 2021) were used to
perform PCR amplification and MiSeq sequencing on the V3-V4
region of the bacterial 16SrRNA gene. The PCR reaction consisted of
12.5 pL 2 x Premix Taq™ (TaKaRa. Bio Inc. Shiga, Japan), 1 pL of
each primer (10 pm), 2 uL of DNA extract (5-20 ng), and 9 pL of dd
H,O to a final volume of 25 pL. The PCR amplification conditions as
follows: denaturated at 95 °C for 3 min, followed by 35 cycles of
denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, annealing
at 55 °C for 30 s, and a final extension step at 72 °C for 10 min. The
PCR products of the same samples were mixed and detected by using
2% agarose gel electrophoresis and purified by using an AxyPrepDNA
gel recovery kit (Axygen Biosciences, U.S.). Based on the initial
electrophoretic assessment, the PCR products’ concentration was
measured with a QuantiFluor-ST blue fluorescent quantification
system from Promega. The DNA samples were carefully measured and
combined in accordance with the specific sequencing requirements
for each sample. Sequencing was carried out using Mothur (V.1.36.1).
During data processing, columns were cleaned to eliminate chimeric
sequences and to refine the final dataset. The steps involved are as
follows: initially, FASTP (V.0.19.6) was employed to perform a
thorough quality check on the raw sequences, filtering out any
low-quality reads. Next, the sequences were assembled into longer
reads using FLASH (V.1.2.11) (Edgar et al., 2011; Fukami et al., 2018).
Following this, UPARSE (V.11) facilitated the clustering of sequences
into operational taxonomic units (OTUs) after quality filtering.
Chimeras were identified and removed based on a 97% similarity
threshold to ensure the purity of the resulting sequences, which were
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then categorized into OTUs (Edgar et al., 2011). The high-throughput
sequencing of the purified amplicons was performed by Guangzhou
Jidi'ao Technology Service Co., Ltd. (Guangzhou, China) using an
Mumina MiSeq sequencer (Illumina, CA, USA).

2.5 Bioinformatics and statistical analyses

The raw sequence data and quality control files were derived from
FASTA format files. According to Schloss, data processing and analysis
were carried out using the Mothur software. Microbial diversity in the
potted soil, along with the dominance of key species, was assessed
through alpha diversity metrics and relative abundance measures such
as Chaol, Simpson, and Shannon indices, based on OTU counts. To
visualize species composition, the standard ggplot2 package in R was
employed, while the vegan package facilitated environmental
correlation analyses to explore the links between environmental
factors, sample types, and plant types.

The nucleotide sequences of B. atrophaeus (Q4), B. megaterium
(Q7) and B. toyonensis (YGI) have been uploaded to the NCBI
database (registration numbers: PP733356, PP733357, and PP733360,
respectively).

3 Results
3.1 Phosphate-solubilizing capacity of PSB

The Q4, Q7, and YGI strains produced obvious transparent
phosphate-solubilizing circles on both Po and Pi media (Figure 2). Of
these, the Q4 strain had the strongest solubility of Po with a phosphate-
solubilizing index of 1.88. Q7 had the strongest solubility of Pi, with a
phosphate-solubilizing index of 1.72. The results showed that the three
strains could solubilize both Po and Pi, with Q4 and YG1 significantly
stronger solubilization ability for Po than for Pi (p < 0.05).

The phosphate-solubilizing capacity of tested strains was
temperature-dependent (Figure 3). While growth was inhibited below
4 °C, all strains grew and solubilized both Po and Pi between 16-40
°C. Strain Q4 showed the highest Po solubilization, peaking at 30 °C,
followed by Q7 with similar temperature dependence. The three
strains exhibited organic phosphorus solubilization capacities ranging
from 110.56-170.80 mg mL™" at 22 °C, Q4 demonstrated a phosphorus
solubilization efficiency of 89.72% (relative to 30 °C), which was
significantly higher than other strains (p < 0.05). For Pj, all strains
displayed maximum solubilization at 30 °C, with decreasing efficiency
at higher temperatures.

3.2 Plant growth

All inoculated L. bicolor Turcz seedlings showed significantly
increased biomass compared to CK (Figure 4). Q4 treatment produced
the most pronounced enhancement (133.5% total biomass increase),
followed by Q7 (95.8%) and YG1 (29.9%) (Figure 5). Aboveground
fresh weight increased by 106.3% (Q4), 98.1% (Q7), and 37.5% (YG1),
with corresponding dry weight increases of 181.4, 126.8, and 44.3%.
Underground portions showed fresh weight gains of 260.9% (Q4),
147.8% (Q7), and 133.3% (YG1), with dry weight increases of 67.1,
52.9, and 10.0%.
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Phosphate-solubilizing index of PSB strains (a) Organic P index; (b) Inorganic P index. Different lowercase letters indicate significant differences among
treatments (p < 0.05), while uppercase letters denote significant differences in the ability of the same strain to solubilize Po versus Pi (p < 0.05).
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All indices related to the root system of L. bicolor Turcz showed
significant improvements under different microbial treatments
(p <0.05) (Table 1). Among these, the Q4 treatment exhibited the
most pronounced growth-promoting effects. The root length was
403.99 cm in the Q4 group, which was a significant increase by
206.37% (p < 0.05). The root surface area was 45.64 cm?, with an
increase of 223.28%, and the root volume was 0.41 cm®, with an
increase of 244.42%. The inoculation effect of Q7 was superior to that
of YGI, whereas YG1 outperformed the CK treatment.

Inoculation with PSB significantly enhanced photosynthetic
parameters in L. bicolor Turcz seedlings (p < 0.05, Table 2). Compared
to CK, Q4 treatment increased net photosynthetic rate (Pn), stomatal
conductance (Gs), and intercellular CO, concentration (Ci) by 94.1,
27.6, and 41.4% respectively, while Q7 and YG1 showed greater
(103.3%/52.0%/70.0 and  39.1%/63.1%/77.9%,
respectively). Transpiration rate (Tr) and water use efficiency (WUE)

improvements
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were also significantly improved, with Q4 demonstrating the most
pronounced effects, followed by Q7 and YGI.

Inoculation significantly increased photosynthetic pigment
content in L. bicolor Turcz seedlings (Figure 6). Compared to CK,
chlorophyll a increased by 100.7% (Q4), 113.0% (Q7), and 45.7%
(YG1); chlorophyll b by 100.0, 169.2, and 48.3%; and carotenoids
by 45.8, 20.8, and 9.7%, respectively. Q7 treatment yielded the
highest chlorophyll content, while Q4 showed the greatest
carotenoid enhancement.

3.3 Soil nutrients, enzyme activities, and P
fraction

The content of soil nutrients is closely related to plant growth and
development, and plays a crucial role in determining soil fertility
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FIGURE 4
Effects of different treatments on Lespedeza bicolor Turcz growth.
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FIGURE 5

Effects of different treatments on the biomass of Lespedeza bicolor
Turcz. Letters indicate significant differences (p < 0.05) among
different treatments.

(Figure 7A). The contents of HN, AP, AK, electrical conductivity (EC),
and SOC were significantly higher in the microbial agent treatment
with the CK group (p<0.05)
(Supplementary Table S1). Specifically, the HN content increased by
48.19% and the AP content by 43.55%. The SOC content showed the
most significant increase under the Q4 treatment (142.77%) and the
smallest increase under the YG1 treatment (48.9%). Soil EC also
exhibited varying degrees of increase, with Q4 treatment showing a
64.26% increase, Q7 a 15.92% increase, and YG1 a 15.87% increase.
Soil enzyme activity is a key indicator of soil fertility. The

groups  compared

bacterial agent treatments significantly enhanced soil enzyme
activities (p < 0.05) (Figure 7B). The S-CAT and S-ALP activities
increased by 50.99 and 94.88%, and 61.38 and 37.44%, respectively,
under the Q4 and Q7 treatments compared with the CK treatment.
In addition, soil invertase (S-SC), urease (S-UE), and dehydrogenase
(S-DHA) activities were significantly higher under the Q4 treatment
compared with the CK treatment (p <0.05), with increases of
1327.27, 49.67, and 537.50%, respectively. No significant changes
were observed in the other treatment groups.
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The correlation analysis between soil enzyme activities and
physical and chemical properties revealed that S-CAT activity in
L. bicolor Turcz soil (Figure 8) was positively correlated with HN, AP,
AK, and SOC contents and EC, and negatively correlated with
pH. S-ALP, S-DHA, and S-SC activities were significantly positively
correlated with AK and SOC contents and EC (p < 0.05), positively
correlated with the HN content, and negatively correlated with
pH. Additionally, S-UE activity was significantly positively correlated
with HN content (p < 0.05), positively correlated with AP, AK, and
SOC contents and EC, and negatively correlated with pH.

3.4 Microbial community diversities and
structure

This study specifically focused on strains with the stongest plant
growth—promoting effects on L. bicolor. Results from the potted plant
experiment indicated that the Q4 treatment exhibited the most
pronounced growth-promoting effect on L. bicolor.

The bacterial community of rhizosphere soil samples was analyzed
using 16S high-throughput Illumina MiSeq sequencing technology. A
total of 532,543 bacterial sequences were obtained from all samples,
which were clustered into 38,164 OTUs. The OTU dilution curve of the
samples tended to be flat, indicating that the high-quality sequencing
data were reasonable and reliable (Supplementary Figure S4). Table 3
shows that the Chaol, ACE, Shannon, and Simpson indices in the
bacterial agent treatment group were lower than those in the CK group,
indicating that the microbial agent application could reduce the
richness of the potted community and make the species categories of
soil microbial flora more concentrated to form a dominant group.

Further, the beta diversity analysis (Figure 9A) revealed that the
CK and Q4 treatments were separated along the non-metric
multidimensional scaling (NMDS) axis. Part of the CK treatment
was distributed on the positive axis of NMDSI. In contrast, the Q4
treatment was distributed on the negative axis of NMDSI,
indicating that the soil bacterial community structure was
significantly different after PSB treatment. The CK and Q4
treatments were separated along the NMDS?2 axis. The CK treatment
was distributed on the positive axis of NMDS2, and the Q4
treatment was distributed on the negative axis of NMDS2. This
further confirmed the impact of PSB on the bacterial community
structure of L. bicolor Turcz potted soil. The analysis of similarities
(ANOSIM) test (Figure 9B) revealed that the between-group
distance (Between) was greater than the within-group distance
among soil samples under each treatment (R = 0.7407). Therefore,
the composition of the bacterial community in L. bicolor Turcz
rhizosphere soil varied among treatments.

The shifts in bacterial (phylum and genus) community
composition across all treatments were investigated based on the
hypervariable V3-V4 region (16S rDNA) during the 16S rRNA gene
sequencing. Figures 10, 11 demonstrate the bacterial community at
the phylum and genus levels in the soil samples. Of these phyla,
Chloroflexi,
Planctomycetota, Verrucomicrobiota, Actinobacteriota, Firmicutes,

Proteobacteria, Bacteroidota, Acidobacteriota,
Cyanobacteria, and Gemmatimonadota were the dominant phyla in
bacterial communities (relative abundance of these species exceeding
1% in all treatments). The abundance of Proteobacteria and Firmicutes
significantly increased, by 17.63 and 87.40%, respectively, under the

Q4 treatment compared with the CK treatment.
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TABLE 1 Effects of different microbial agents on the plant roots.

Treatment Root length (cm) Root area Average Root volume Tips (pcs) Forks (pcs)
(cm?) diameter (cm3)
(mm)
CK 131.86 + 22.68b 14.12 + 2.99b 0.34 +0.02a 0.12 +0.03¢ 639 + 243b 680 + 138b
Q4 403.99 + 188.70a 45.64+ 16.65a 0.37 +0.05a 041+0.11a 2094 + 782a 3,815 + 1834a
Q7 260.65 + 101.48ab 30.08 + 9.97ab 0.37 + 0.04a 0.28 + 0.08ab 1,446 + 573ab 1,387 + 1123b
YG1 221.39 + 55.07ab 22.84 +3.49b 0.34 + 0.04a 0.19 + 0.03bc 1,211 + 359ab 1,283 + 411b

Univariate analysis of variance, n = 3. Different small letters represent significant differences in data between treatment groups (p < 0.05). The same below.

TABLE 2 Effects of different microbial agents on the photosynthetic parameters of seedlings.

Treatment Pn [pmolCO,/ Gs [mmol/ Ci [pmol/(m?:s)]  Tr [mmol H,O/ WUE [pmolCO,/
(m?s)] (m2:s)] (m?-s)] mmol H,0]

CK 7.54 +1.95¢ 0.05 +0.01c 104 + 1.00¢ 1.31+0.30b 12,09 + 0.06d

Q4 14.63 + 0.15a 0.10 + 0.01a 145 +10.79b 270 + 0.24a 16.58 + 0.08a

Q7 9.62 + 0.28bc 0.08 + 0.01b 170 + 13.61a 259 +0.19a 13.52 + 0.07b

YG1 10.66 + 1.01b 0.09 + 0.02ab 185 + 16.70a 230 +0.48a 12,60 + 0.07¢

—@&— Carotenoids
0.0 . : : '

Chlorophyll-b
)

3

B e,
1 —@— Chlorophyll-a
0 1 1 1 1
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FIGURE 6
Effects of different treatments on photosynthetic pigments.

The species changes were analyzed in the rhizosphere soil bacterial
communities at the genus level. Compared with CK, the use of Q4
microbial agents increased the abundance of Bacillus, Flavisolibacter,
Terrimonas, Pseudobacillus, and Aquicella, and the relative abundance
increased from 0.84 to 2.47%, 1.03 to 1.63%, 0.59 to 1.16%, and 0.49 to
1.07% and 0.49 to 1.07%. In general, inoculation with the Q4 microbial
agent significantly improved the soil colony structure and influenced
the relative abundance of dominant microbial groups. Among these,
the significant increase in the relative abundance of Bacillus and
Fictibacillus may be an important factor in promoting plant growth.

3.5 Environmental factor analysis

The results of the canonical correspondence analysis (CCA) showed
that the samples in the CK and Q4 groups were aggregated separately. The
abundance of Bacillus had an obvious correlation with environmental
factors in the soil. CCA1 and CCA2 together explained 79.45% of the

Frontiers in Microbiology

Different small letters represent significant differences in data between treatment groups (p < 0.05).

changes in bacterial community structure. The environmental factors
SOG, EC, pH, AK, AP, and HN were positively correlated with the Q4
treatment (Figure 12A), indicating that the inoculation of microbial
agents helped improve the release of soil nutrients. As shown in
Figure 12B, the abundance of Bacillus was significantly positively
correlated with AP and SOC contents (p < 0.05), positively correlated with
HN, AK, and EC, and negatively correlated with pH (r* = 0.03). The
results suggested that Bacillus might be one of the potential reasons for
Q4 to improve soil fertility and exert its growth-promoting effects.

3.6 Functional prediction

The functional transformation of microbial communities is
intrinsically linked to environmental factors. KEGG functional
pathway analysis of L. bicolor Turcz soil microbial metabolites
(Figure 13) revealed significant differences in the relative abundance
of bacterial functional genes in L. bicolor Turcz soil samples under
different treatments. The relative abundance of genes related to
metabolism, genetic information processing, cellular processes, and
environmental information processing in the Q4 treatment group was
higher than that in the CK group, with metabolic genes showing the
highest relative abundance. Welch’s t test (Figure 14) showed that the
abundance of secondary functional genes related to cofactors and
vitamins, carbohydrate metabolism, and amino acid metabolism
increased under the Q4 treatment compared with the CK treatment.

4 Discussion

4.1 Phosphate-solubilizing capacity of
bacterial strains

The present study demonstrated that all bacterial strains isolated

from Qinghai-Tibet Plateau soils belonged to the genus Bacillus,
which aligned with the findings of Zhiyuan et al. (2021) reporting
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Bacillus as a dominant genus in extreme soil environments of
the plateau.

The phosphate-solubilizing capacity of these strains exhibited
significant temperature dependence, with no growth observed at
temperatures below 4 °C but robust growth and efficient phosphate
solubilization at temperatures of 16-40 °C, indicating their thermal
adaptability over a wide temperature range. This result may be because
increasing the temperature increased the production of organic acids
which decrease the pH of the solubilization medium, increasing P
solubilization (Whitelaw, 2000; Barroso et al., 2006). Among these
strains, Q4 (B. atrophaeus) exhibited optimal Po solubilization
(190.36 mg L") at 30 °C, whereas Q7 (B. megaterium) showed peak
Pi dissolution (132.39 mg L") at the same temperature, consistent

Frontiers in Microbiology

with the findings of Mahdi et al. (2021), indicating that the optimal
temperature for bacteria is 30 + 2 °C. The three strains exhibited
organic phosphorus solubilization capacities ranging from 110.56 to
170.80 mg mL™" at 22 °C, with phosphorus solubilization efficiencies
of 82.94-89.72% relative to their maximum capacities observed at 30
°C. Notably, Q4 showed significantly higher solubilization capacity
compared to Q7 and YG1 (p < 0.05). These results demonstrate that
strains can maintain high phosphorus-solubilizing capacity under
low-temperature conditions, indicating strong cold adaptability. YG1
could grow at 16 °C-40 °C, but its ability to dissolve Po was lower at
30 °C than at 35 °C, indicating that it was more suitable for high-
temperature environments. This might be because B. toyonensis, a new
species of B. cereus, has a stronger ability to produce auxin and
cytokinin and exhibits greater adaptability to extreme environments.
In addition, Q4, Q7, and YG1 strains were highly active in phosphate
solubilization, nitrogen fixation, and iron carrier production,
respectively, and had good growth-promoting characteristics.

4.2 Internal mechanism of action of the
strain on L. bicolor Turcz growth and soil
enzyme activity

This study found that inoculating three PSB strains improved the
seedling biomass, and root indices to varying degrees. This
phenomenon may be attributed to the ability of these three PSB strains
to solubilize and release insoluble P from soil, thereby enhancing
phosphorus uptake efficiency and promoting plant growth (Rafique
etal, 2017). Ashaduzzaman et al. (2016) demonstrated that adding
PSB significantly enhanced the availability of nitrogen and P in paddy
soil, promoted rice growth, and increased yield. Cruz and Ishii (2012)
found that the inoculation of PSB promoted the root development of
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TABLE 3 Diversity indices of potted soil.

10.3389/fmicb.2025.1669774

Treatment Shannon Simpson Goods-
Coverage
CK-1 1007.460 1046.655 941 7.876 0.988 0.990
CK-2 909.541 956.334 846 7.892 0.991 0.990
CK-3 884.328 918.849 830 7.923 0.990 0.990
Q4-1 887.961 929.449 823 7.551 0.986 0.990
Q4-2 882.573 919.364 831 7.729 0.989 0.991
Q4-3 936.938 975.488 860 7.534 0.986 0.990
a) stress = 0.000 b) R=0.7407.P=0.1
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(ANOSIM) test.

Beta diversity index of Lespedeza bicolor Turcz potting soil. (a) Non-metric multidimensional scaling (NMDS) analysis; (b) Analysis of similarities
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FIGURE 10
Stacked plot of phylum horizontal species distribution.

Prunus mume, enhanced soil P availability, and improved plant P
absorption. In this study, the P content in L. bicolor Turcz seedlings
inoculated with Q4 inoculant significantly increased by 33.07%
compared with that in the group without microbial inoculant.
Additionally, the growth-promoting effect was enhanced, indicating
that the Q4 inoculant could promote the growth of plant seedlings by
altering soil nutrient content. Specifically, Q4 inoculation increased
the absorption of soil nutrients such as N, P, and K by plants, thereby

Frontiers in Microbiology

09

Chryseolinea
W Pseudomonas
W Aguicella
W Bryobacter
Fictibacillus

Relative abundance(%)

67 M Terrimonas
Pir4 lineage

- -

47 - — W Sphingomonas
. . M Flavisolibacter

27 - Bacillus

0 T T T T T T

CK-1 CK-2 CK-3 Q41 Q4-2 Q4-3
samples
FIGURE 11
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increasing their concentrations in plant tissues. This improvement
enhanced the regulation of stomatal conductance and transpiration,
ultimately affecting the water status of seedling leaves (Mengel and
Kirkby, 1980).

The results of this study showed that PSB inoculation increased
chlorophyll content in the leaves of plant seedlings. This finding was
consistent with the results of Deng et al. (2013), who reported that
applying biofertilizers increased leaf chlorophyll content. Increased
chlorophyll content improved the photosynthetic capacity of plants,
leading to increased synthesis of organic matter, and, ultimately,
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enhanced tomato biomass. Sahu et al. (2023) found that the application
(EM) + PSB  significantly
increased the chlorophyll content in soybean leaves, thereby increasing

of NPK + effective microorganisms

the soybean yield. The content of carotenoids in the leaves of L. bicolor
Turcz seedlings significantly increased under different treatments.
Carotenoids are essential endogenous antioxidants in plants
(Borowiak et al., 2021). The increase in carotenoid content was
conducive to the resistance of L. bicolor Turcz seedlings to various
stresses. The photosynthetic parameters of plant leaves also increased
to varying degrees with the application of PSB (Table 2). The
application of biofertilizers can increase the stomatal conductance,
transpiration rate, WUE, and intercellular CO, concentration of
leaves, thereby improving the net photosynthetic rate (Pn) of plants
and promoting plant growth (Sheng et al., 2008). The experimental
results of this study also supported this finding.

As bioactive substances with catalytic function, a large proportion
of soil enzymes are secreted by microorganisms, animals, and plants,
and their activity is an essential indicator of the content of soil
nutrients (An et al, 2022). In this study, soil enzyme activity
significantly improved following PSB inoculation because PSB
inoculation significantly increased the organic matter content—an
essential carbon source for soil microorganisms. This promoted
microbial reproduction and activity. The substrate concentration of
enzyme-catalyzed reactions also increased, implying that more
enzymes could bind to substrates and enhance catalytic reaction rates,
further improving soil enzyme activity.

Daniel et al. demonstrated that the application of nitrogen-fixing
and PSB could significantly improve the activity of soil phosphatase
and effectively promote the transformation of soil P (Torres-Cuesta
et al., 2023). The results showed that the three strains of PSB could
significantly improve the activity of S-ALP, with Q4 treatment having
the most significant effect on L. bicolor Turcz seedlings. The ALP
activity directly influences the decomposition and transformation of
P in soil (Sardans et al., 2008). Therefore, the treatment with higher
ALP activity in this study led to a higher AP content.

CAT activity also significantly increased in soils inoculated with
the PSB inoculant, consistent with the findings of Yongqi et al. (2020),
who showed that B. subtilis inoculation enhanced the activities of CAT
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and other enzymes in maize soil. CAT could remove harmful
substances such as hydrogen peroxide from soil and played a critical
role in plant growth and stress response. S-UE could catalyze the
hydrolysis of organic nitrogen compounds to ammonia and played a
crucial role in the soil nitrogen cycle. Its activity reflected the supply
of soil nitrogen (Ni and Pacholski, 2022). In this study, S-UE displayed
a promoting effect after inoculation with different PSB, which was
positively correlated with soil nitrogen content. The S-SC activity was
closely related to the mineralization rate of SOC, reflecting the degree
of soil maturation and the level of soil fertility to a certain extent (Ji
etal,, 2014). In this study, the S-SC activity of PSB inoculant increased,
which was consistent with the research conclusion of Sun et al. (2019).
That is, the S-SC activity after treatment with Trichoderma harzianum
and Paenibacillus polymyxa was the highest, which was conducive to
improving soil fertility. Also, a series of biochemical reactions closely
related to improvements in plant growth indicators and physical and
chemical properties of the soil occurred. This study demonstrated a
significant positive correlation between enzyme activity and soil
nutrient content, consistent with previous research results (Torres-
Cuesta et al., 2023). It indicated a key role of soil enzymes in soil
nutrient transformation. The improvement in enzyme activity
indicated an increase in soil nutrient transformation efliciency, an
increase in soil available nutrient content, an improvement in soil
fertility level, and promotion of plant growth.

In summary, Q4 (B. atrophaeus) outperformed Q7 and YG1 in
promoting the growth of L. bicolor Turcz. This is probably because the
host plants show selectivity when adsorbing external bacteria, or
because the growth-promoting bacteria and host plants possess
structural and functional specificity. This suggests the existence of an
optimal host-microbe relationship.

4.3 Effects of inoculants on rhizosphere
soil microorganisms of L. bicolor Turcz

Inoculation with beneficial microorganisms is one of the essential

factors influencing the rhizosphere microbial community (Micallef
et al, 2014). For example, PSB can promote the growth and
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development of plants by interacting with plant roots. They also
directly or indirectly impact the structure of the soil microbial
community and enhance the stability of the soil microbial ecosystem,
ultimately influencing the functional potential of associated
microbiota (Thokchom et al., 2017). In this study, the Chaol, ACE,
Shannon, and Simpson indices of L. bicolor Turcz rhizosphere soil
bacterial community decreased after PSB inoculation, which was
consistent with the findings of Zhang et al. (2024). That is, the
combined application of biofertilizers reduced the microbial
community abundance in grassland rhizosphere soil. Beta diversity
analysis showed that the bacterial community structure in the
rhizosphere of L. bicolor Turcz was significantly altered after PSB
inoculation, indicating that the addition of exogenous microbial
agents markedly impacted the community structure of soil
microorganisms. This finding was consistent with the research results
of Anestis et al., who reported that the addition of rhizosphere growth-
promoting bacteria A1501 significantly changed the local soil bacterial
community structure (Karkanis et al., 2018).

The composition of the soil microbial community reflects not only
its biogeochemical cycling capacity but also its impact on soil fertility
(Manasa et al., 2020; Moreira et al., 2020). This study found that
Proteobacteria and Bacteroidota accounted for the highest proportion,
which was consistent with the findings of Constantine et al. (2022) on
the composition of the bacterial community in the rhizosphere soil of
Lycium barbarum. That is, these bacteria may be common in the
rhizosphere soil microbial community. Studies have shown that most
members of these phyla usually display growth-promoting
characteristics, and the inoculation of PSB can improve the relative
abundance of beneficial microorganisms in soil (Zheng et al., 2020).
Proteobacteria and Bacteroidota are typically copiotrophic phyla,
whose relative abundance increases with soil nutrient availability.
Bacteroidota has the effect of dissolving P, which is positively
correlated with the AP content (Lidbury et al., 2020). The results of
this study were consistent with previous findings. The relative
abundance of Firmicutes in the PSB-inoculated group was significantly
higher than that in the CK group, which was due to the inoculated
PSB strain being a Bacillus species, belonging to the phylum
Firmicutes; moreover, the relative abundance of Firmicutes increased
with the increase in soil nutrient content (Liu et al., 2019).

The physicochemical properties of soil are the key determinants
of microbial community structure (Chen et al., 2016; Marschner et al.,
2001). Wang et al. (2023) demonstrated significant effects of SOC and
AK contents on soil microorganisms. Wang et al. (2018) found pH,
SOM, and AP as important factors influencing the bacterial
community in maize rhizosphere. In this study, the CCA analysis of
microbial community structure also reached a similar conclusion.
That is, SOC, AK, AP, HN, and EC had a significant impact (p < 0.05,
Figure 11) on soil microbial community structure. The contents of AP,
AK, HN, and SOC in L. bicolor Turcz soil increased significantly with
the addition of the Q4 strain. This influenced the abundance of
beneficial soil microorganisms, promoting the release of nutrients in
the soil that were conducive to plant absorption and utilization, and
thus promoting plant growth. The correlation analysis also revealed
that the difference in soil bacterial community structure was
significantly positively correlated with the difference in soil physical
and chemical properties. This indicated that the physical and chemical
properties and bacterial structure of soil were interactive and
interaction between  soil

interdependent, indicating the

microorganisms and plants. In contrast, the response of L. bicolor
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Turcz soil microbial community to the changes in environmental
factors was not significant. This might be because L. bicolor Turcz had
stronger environmental adaptability, or its soil microbial community
itself had high stability, effectively resisting the fluctuations in
environmental factors.

The microorganisms involved in soil nutrient transformation are
interconnected through gene-level interactions (Chen et al., 2019;
Srour et al., 2020). Some studies have highlighted that the metabolic
function is the main function of the soil bacterial community
participating in the biogeochemical cycle (Pan et al., 2020). For
example, carbohydrate metabolism is closely related to nitrogen
fixation and P release, which can promote the absorption of nitrogen
and P by plant roots (Liu et al., 2021). Additionally, some metabolic
processes can also produce antibiotics and hormones, promoting plant
growth and development (Halifu et al., 2019). In this study, the
PICRUSt2 method was used to infer differences in functional traits of
the microbial community through 16S rRNA gene data. The relative
abundance of genes related to metabolism, genetic information
processing, environmental information processing, and cellular
processes under the primary biological metabolic pathway increased
in the microbial inoculant treatment group, with a notable increase
observed in metabolism-related genes. The metabolic processes
mainly included carbohydrate metabolism, amino acid metabolism,
cofactors, and vitamins. The relative abundance of genes in these
metabolic pathways significantly increased, especially under treatment
with microbial agents. These metabolic processes can provide a carbon
source to further promote the symbiotic nitrogen fixation in legumes
or facilitate the degradation of amino acids to auxin and other growth-
promoting substances for plant roots and shoots. In addition, cofactors
can promote enzymatic reactions, and vitamins have a positive efefct
on the growth and development of plants. Microbial agents can
significantly increase the gene abundance of these metabolic pathways,
indicating their vital role in plant responses to environmental changes,
especially in interactions with exogenous microbial agents. They may
serve as an important factor in regulating plant growth.

5 Conclusion

This study demonstrated that inoculation with Bacillus
atrophaeus (Q4) significantly enhanced the growth of Lespedeza
bicolor Turcz. by modulating soil microbiota and improving soil
fertility. The Q4 strain elevated key soil nutrient contents and
increased the activity of urease, alkaline phosphatase, catalase,
and sucrase, thereby improving overall soil quality. These changes
were associated with a marked increase in plant biomass and root
system development compared to the non-inoculated controls
(CK). Mechanistically, the Q4 inoculant stimulated plant growth
by enriching beneficial bacterial communities (e.g., Bacillus,
Flavisolibacter, and Pseudomonas) and improved critical
environmental factors including nitrogen, phosphorus, potassium
availability and organic matter content. These findings provide
valuable insights into how Q4 inoculation enhances plant
adaptability and restoration capacity, suggesting that microbial-
plant collaborative ecological remediation represents a promising
strategy. Future studies should evaluate the practical application
of ‘Q4 + Lespedeza’ model in the ecological restoration of high
and steep slopes and other difficult places in high and cold
regions, in order to develop efficient bioremediation technology.
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