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Introduction: Soil pore-scale aeration is a crucial yet often overlooked factor 
influencing the effectiveness of nitrous oxide (N2O) emission mitigation strategies. 
Our previous work revealed a hundred-fold variation in N2O emissions among soils 
under apparently aerobic conditions and texture-dependent mitigation effects of 
biochar–manure co-compost (BM) compared to manure compost (M).
Methods: We analyzed soils of three textures—clay loam (CL), silt loam (SL), 
and sand (SA)—amended with BM or M. Metagenomic sequencing was used to 
profile microbial community composition and functional genes, with a focus on 
aeration-sensitive taxa and pathways.
Results: We demonstrate that these changes of N2O emissions are aligned 
with variations in aeration-sensitive microbes and genes. SA, with the highest 
N2O emissions, was most abundant in obligate and facultative anaerobes and 
denitrification-related genes, while CL, with the lowest emissions, had more genes 
related to fermentation and dissimilatory nitrate reduction. Compared to M, BM in CL 
favored genes for microbial processes requiring a more reducing environment, likely 
because biochar-induced finer pores, exacerbating oxygen diffusion limitations. 
This severe oxygen restriction in CL after BM addition was substantiated by greater 
reductions in CO2 efflux and C-cycling genes than in the other soils.
Discussion: Our findings suggest that hypoxic pore abundance and the severity 
of pore anaerobiosis imparted by degradation of organic amendments varied 
with soil texture and are the overriding factors of soil greenhouse gas (GHG) 
emissions. Metagenomic traits provide a sensitive tool for detecting pore-
scale environmental shifts, improving our mechanistic understanding of soil-
dependent GHG emissions following organic amendments.
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1 Introduction

It is a daunting challenge to mitigate soil N2O emission despite a considerable 
understanding of responsible microbes, processes and conditions (Bakken et al., 2012; Barnard 
et al., 2005; Butterbach-Bahl et al., 2013; Zhu et al., 2013). The emission of N2O has shown a 
continued rise in the past four decades (1980–2020), primarily through agricultural practices 
such as nitrogen fertilization and waste recycling (Cui et al., 2024; Tian et al., 2023). While 
agricultural management has been reformed, emphasizing not only productivity but also 
environmental sustainability, the N2O emission from the arable land remain unabated, 
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suggesting overlooked ecological factors limit the translation of 
mechanistic understanding into effective mitigation strategies.

One such factor is soil pore-scale aeration, which directly governs 
oxygen availability. Pore size and network control both the movement of 
gases within the soil matrix and across the soil-atmosphere interface 
(Bahlmann et al., 2020). Pore architecture may dominate over other soil 
properties (e.g., soil moisture) to influence N2O emissions (Kim et al., 
2022; Pulido-Moncada et al., 2024). Often, high microporosity can create 
oxygen shortage through severe tortuosity of gas diffusion by capillary-
filled water and therefore favor denitrification and N2O production 
(Groffman and Tiedje, 1989; Zaman et  al., 2012), while high 
macroporosity can also lead to drastic emissions of N2O under certain 
circumstances (Kim et al., 2022; Kravchenko and Guber, 2017). When 
macropores are enriched with organic substances (e.g., root exudates or 
soil amendments), known as “hot moments,” the initially rapid 
decomposition will deplete oxygen, making pores oxygen-limited and 
conducive niches for N2O production. Such a cascading impact 
underscores the potential risk of unintended N2O emissions from 
management practices designed to enhance soil carbon sequestration, 
including organic amendments (Chen et al., 2013).

Soil pore heterogeneity also shapes microbial diversity, 
composition, and interactions (Carson et al., 2010; Hassink et al., 
1993; Li et al., 2024a; Wolf et al., 2013; Xia et al., 2023; Xia et al., 2022). 
Distinct microbial groups may preferentially inhabit pores of different 
sizes; for example, alpha- and beta-Proteobacteria and Bacteroidetes 
are likely more abundant in large pores, whereas Actinobacteria and 
Chloroflexi may be favored in relatively smaller pores (Hemkemeyer 
et al., 2018; Seaton et al., 2020; Xia et al., 2020). The underlying drivers 
are implicitly attributed to variations of resource allocation (e.g., 
carbon and nutrients) and environment (e.g., pH, water, and oxygen) 
at the pore scale. While soil pore heterogeneity can be gauged or 
predicted by, for example, water retention curve and X-ray computed 
tomography (Helliwell et al., 2013; Jiang et al., 2025; Lawrence, 1977; 
Pires et al., 2020), pore-scale variations in resource availability and 
environmental conditions cannot be  easily quantified, leaving 
uncertainty about how these microenvironments translate into whole 
soil N2O fluxes. Since microbes reside in pores and are within the 
immediate range of pore-scale environmental influences, their 
community traits could serve as reliable indicators of pore hypoxic 
status, nutrient availability, and associated denitrification potential 
(Højberg et al., 1994; Jin and Sengupta, 2024; Khalil et al., 2004).

To address this gap, we  used soils of different textures to create 
systematic differences in pore architecture and aeration, as fine-textured 
soils generally have more numerous but smaller pores compared to 
coarse-textured soils. Compost inputs were applied to induce oxygen 
consumption through microbial respiration (Kravchenko and Guber, 
2017; Krull et al., 2001; Negassa et al., 2015; Robertson and Paul, 2000). 
Chicken manure was selected in this study as the compost substrate 
because it is one of the most abundant livestock wastes in the United States 
and is rich in nitrogen that contributes substantially to N2O emissions. 
Biochar was added as a co-composting agent due to its high porosity and 
capacity to modify pore size distribution, aeration, and nutrient retention, 
making it a promising strategy for mitigating greenhouse gas emissions 
(Mujtaba et al., 2021; Umair Hassan et al., 2024).

Although soil texture and amendment properties such as nutrient 
content and porosity can influence microbial community composition, 
our study focuses on how microbial traits can serve as proxies for pore-
scale oxygen availability, which cannot be  directly measured. Our 

previous work demonstrated that biochar-manure co-compost mitigated 
N2O emissions compared to manure compost alone, but its effectiveness 
hinged on soil texture, with the strongest effects on CO2 in fine-textured 
clay loam and on N2O in coarse-textured sand (Hu et al., 2024; Yuan 
et al., 2017). Building on these findings, we hypothesize that soil texture-
specific pore size distribution regulates pore-scale oxygen availability, 
which in turn drives distinct microbial community structures and 
functional gene profiles associated with organic carbon decomposition 
and nitrogen transformations, ultimately leading to texture-dependent 
N2O emissions. To test this hypothesis, we conducted metagenomic 
analysis of soils treated with manure compost (M) and biochar-manure 
co-compost (BM) across different textured soils. Specifically, our 
objectives were to (1) characterize microbial community composition 
and functional gene profiles associated with carbon decomposition and 
nitrogen transformations under different treatments and soil textures; 
(2) use these microbial traits as proxies to infer pore-scale oxygen 
availability; and (3) evaluate whether such microbial indicators can 
explain texture-dependent differences in N2O emissions.

2 Materials and methods

2.1 Microcosm experiment and greenhouse 
gas efflux

A 107-day laboratory microcosm experiment was conducted to 
assess the effectiveness of soil microbiome as an indicator to reflect 
soil pore-scale aeration status. Soils of three texture classes (clay loam, 
silt loam, and sand) were selected to provide contrasting pore size 
distributions that influence gas diffusion and aeration. Surface soils 
(0–10 cm) were collected in October 2021 from forested areas at two 
research stations in North Carolina, USA. Clay loam (Georgeville clay 
loam, Fine, kaolinitic, thermic Typic Kanhapludults; 32% sand, 41% 
silt, 28% clay) and silt loam (Herndon silty loam, Fine, kaolinitic, 
thermic Typic Kanhapludults; 29% sand, 58% silt, 14% clay) were 
sampled from Breeze Farm (36°09′42″N, 79°06′29″W) in the 
Piedmont region. Sandy soil (Candor sand, Sandy, kaolinitic, thermic 
Grossarenic Kandiudults; 89% sand, 8% silt, 3% clay) was collected 
from the Sandhills Research Station in Jackson Springs (35°10′59″N, 
79°40′39″W). After collection, soils were sieved (<2 mm) to remove 
debris and stored at 4 °C until use in microcosm experiments.

Two organic amendments that differed not only in 
biodegradability but also in pore size distribution were used, including 
chicken manure compost (M) and biochar-chicken manure 
co-compost (BM, 20% of biochar generated at high temperature). 
Briefly, the biochar was produced from pine woodchips (Newton 
County, NC, USA) using top-lit updraft gasification at an airflow of 
20 L min−1 and a peak temperature of 840.5 °C. Chicken manure 
compost was prepared from manure and bedding materials collected 
from the Department of Poultry Science, NC State University and 
stored in sealed containers at 4 °C until the initiation of the 
composting process. Biochar–manure co-compost (BM) was 
generated by adding 20% biochar (v/v) to chicken litter. All composts 
were produced from ~18 kg of raw material in ~140 L FCMP outdoor 
IM4000 dual-chamber tumbling composters (Ontario, Canada), 
which are equipped with aeration holes and deep fins to facilitate 
aerobic composting. The composting materials were turned two to 
three times daily to maintain an aerated and fluffed state. The turning 
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accelerated the composting process, as the composting materials could 
reheat themselves. The temperature of the composting materials was 
monitored daily and exhibited a 2-day mesophilic, 1–2 week 
thermophilic (50–60 °C), and the rest mesophilic fluctuations 
throughout the 4-week composting process.

The M- and BM-amended soils (~20 g dry weight equivalent) were 
packed into 135 mL glass jars for the incubation experiment. In detail, 
each soil was amended with 5% (w/w) M or BM and packed to 1.10 g cm−3 
(CL and SL) and 1.45 g cm−3 (SA) to create six treatments (2 organic 
amendments × 3 soils), each with three replicates. The 5% application rate 
was selected as a low but effective level within the range (1–10% or higher) 
commonly reported in compost and biochar incubation studies 
(Frimpong et al., 2021; Masmoudi et al., 2018; Yuan et al., 2017), ensuring 
detectable effects on microbial activity and greenhouse gas fluxes while 
remaining representative of practical soil amendment levels.

After adjusting soil water content to 60% water-filled pore space, 
microcosms were incubated at 25 °C for 3.5 months with periodic 
water addition to replenish evaporative losses and maintain soil 
moisture over the incubation. Since the volume of water added was 
minimal, soil porosity was not substantially altered. Water was always 
added immediately after gas sampling and/or jar aeration to prevent 
short-term disturbance of gas flux measurements. The incubation was 
terminated after 3.5 months because cumulative CO2 emissions had 
reached a plateau, indicating that microbial respiration had slowed 
markedly and that the added organic substrates were largely 
decomposed. Soil effluxes of CO2 and N2O were measured at day 1, 2, 
3, 4, 5, 6, 7, 9, 11, 14, 17, 21, 25, 28, 35, 42, 64, 71, 78, 81, 85, 92, 99, 
and 107. The 18 jars (i.e., 6 treatments × 3 replicates) used for the 
collection of soil samples after 107 days of incubation were used to 
repeatedly measure CO2 and N2O fluxes over the incubation period. 
The jars were aerated by letting their lids open for 30 min after gas 
sampling on the measurement days. During the sampling interval 
days, the jars were aerated for 30 min daily during the initial three 
weeks of incubation and were aerated every two to three days during 
the fourth to ninth weeks of incubation. From the tenth week to the 
end of incubation, aeration was only implemented after gas sampling. 
Gas concentrations were quantified using a gas chromatography 
system with μECD detector (Agilent Technologies, PA, USA) for N2O 
and LI-870 CO2/H2O Analyzer (LI-COR, Lincoln, NE, USA) for CO2. 
A summary of greenhouse gas emissions on days 4, 21, and 107 across 
six treatments is shown in Supplementary Figure S1. The N2O and 
CO2 flux was calculated using the following equation:

	
( )− × × ×

=
× × × ×1000

sample airC C P V M
F

R T t m

Where F is the flux of N2O or CO2 (mg N kg−1soil h−1); Csample and 
Cair are the gas concentrations in the jar headspace and ambient air 
(ppb), respectively; P is the air pressure in the jar, assumed to be 1 atm 
(101.325 Kpa); V is the total volume of the jar headspace plus the free 
pore volume (cm3); M is the molar mass of the gas (g mol−1); R is the 
ideal gas constant (8.31432 J mol−1 K−1); T is the jar air temperature 
(298 K); t is the measurement time (h); and m is the dry weight of soil 
(g) (Hu et al., 2024).

For shotgun metagenomic sequencing, soil samples were collected 
on days 4, 21, and 107 days of incubation, with 18 incubated jars 
(representing six treatments with three replicates) being taken from a 

total of 54 incubated jars (i.e., 6 treatments × 3 replicates × 3 sampling 
times) at each sampling time. The three sampling times represent 
rapid degradation of organic material, peak of cumulative CO2 or N2O 
emissions, and late-stage stabilization, respectively.

2.2 DNA extraction, shotgun metagenomic 
sequencing, and bioinformatics

Metagenomic DNA was extracted from ~ 0.25 g soil-compost mixture 
using DNeasy PowerSoil Kit (Qiagen, Germany) according to the 
manufacturer’s protocol. After quantification using NanoDrop One 
spectrophotometry (NanoDrop Technologies, Wilmington, DE), DNA was 
stored at −20 °C before library preparation. Due to financial constraints, 
replicates were composited, resulting in a total of 18 samples (3 soils × 2 
composts × 3 sampling times). Libraries were prepared and shallow-depth 
sequenced (~ 40 million paired-end reads) on Illumina NovaSeq platform 
(150 bp × 2) by the Genome Sciences Laboratory, NCSU.

On average, 83.2 million raw reads per sample were obtained 
(range: 59.5–148.4 million reads) (Supplementary Table S1). 
Variations among samples were moderate, with ~ 32% of the 
coefficient of variation. After quality assessment with FastQC 
(Andrews, 2010), reads were trimmed by Trimmomatic (Bolger et al., 
2014) to remove adapters and to filter out low-quality reads with “N” 
base and short reads < 100 bp. Approximately 99% of raw reads passed 
quality control and were ~ 141 bp in length. These reads were then 
subjected to the taxonomy analysis using KrakeN2 (Wood et al., 2019) 
and the functional gene examination using two pipelines: (1) blast of 
short reads against reference databases and (2) gene prediction and 
annotation following short reads assembly.

For the BLAST pipeline, the local BLASTx (Altschul et al., 1990) 
was used to align the trimmed clean reads of each sample against 
functional gene databases of nitrification and denitrification: ammonia-
oxidizing archaea (AOA) amoA, ammonia-oxidizing bacteria (AOB) 
amoA, nirK, and nosZ with an E-value < 1 × 10−5. The relative 
abundance of functional genes was normalized as reads per kb per 
genome equivalent (RPKG), which was calculated as RPKG = (reads 
mapped to gene)/(gene length in kb)/(number of genome equivalents). 
The number of genome equivalents was estimated by MicrobeCensus 
(Nayfach and Pollard, 2015).

For the assembly and gene annotation pipeline, de novo assembly 
via succinct de Brujin graph approach was performed using the 
MEGAHIT assembler (Li et al., 2015). Then, the contigs (≥ 1,000 bp) 
were analyzed for open reading frames (ORFs) prediction using 
MetaGeneMark (Zhu et al., 2010). Non-redundant gene catalog (i.e., 
unigenes) was constructed with predicted ORFs using CD-HIT (Li 
and Godzik, 2006) at 95% identity and 90% coverage. All high-quality 
reads were aligned against the unigenes via Bowtie2 (Langmead and 
Salzberg, 2012) and Samtools (Danecek et al., 2021) to obtain the gene 
abundance in each sample. The relative abundance of each unigene in 
a sample was calculated as read counts per kilobase million (CPM), 

by the equation: =

∑

i

i
i

j
j j

x
La

x
L

 (Le Chatelier et al., 2013), where ia  is 

CPM of gene i; ix  is the read counts of gene i; iL  is the length of gene 
i; and the denominator is the sum of all mapped reads (genes) 
normalized to respective gene lengths.

https://doi.org/10.3389/fmicb.2025.1670657
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Hu et al.� 10.3389/fmicb.2025.1670657

Frontiers in Microbiology 04 frontiersin.org

The annotation of unigenes was conducted by both KEGG 
GhostKOALA (Kanehisa et al., 2016) and eggNOG (Huerta-Cepas et al., 
2019) to reveal gene orthology and ontology information, respectively. 
The raw sequencing data can be accessed from NCBI Sequence Read 
Archive (SRA) Database, BioProject No. PRJNA1165301.

2.3 Quantitative PCR for N-cycling genes 
regulating N2O efflux

The samples were also quantified for the abundance of nitrification 
and denitrification functional genes, including AOA amoA, AOB 
amoA, nirK, nirS, and nosZ. Given the prevalence of nirK-type 
denitrifiers over nirS-type denitrifiers in our samples and the 
constraints associated with conventional primer pairs (such as bias, 
coverage, and specificity) used for amplifying prokaryotic nirK genes, 
we employed novel primers to target various prokaryotic nirK clades. 
This approach was undertaken to provide a more comprehensive 
understanding of which specific clade(s) of nirK were predominantly 
involved in nitrite reduction under soil treatments.

The qPCR was performed on a CFX96 Optical Real-Time 
Detection System (Bio-Rad, Laboratories Inc., Hercules, CA, USA). 
The 20-μl qPCR reaction mixture contained 10 μL Maxima SYBR 
Green qPCR Master Mix (2X) (Thermo Scientific, USA), 1 μL PCR 
forward and reverse primer (both 10 μM), 2.5 μL DNA template, and 
5.5 μL nuclease-free water. Primer sets and reaction parameters are 
listed in Supporting Information (Supplementary Table S2).

2.4 Statistical analysis

Two-way ANOVA was applied to test the effects of soil texture, 
compost type, and their interaction on the relative abundance of 
functional genes related to oxygen response, C degradation, N cycling, 
and antioxidant resistance. Log-transformation was conducted for 
non-normally distributed data. The impacts of soil texture and 
compost type on soil microbial communities were tested by 
permutational multivariate analysis of variance (PERMANOVA) 
based on Bray-Curtis distance matrix and visualized by non-metric 
multidimensional scaling (NMDS) conducted in R with packages 
vegan (v 2.5–7), phyloseq (v 1.38.0), and ggplot2 (v 3.3.5). DESeq 
analysis with DESeq2 (v 1.34.0) was also conducted to evaluate 
differences in the relative abundance of KEGG genes between M and 
BM (i.e., |log2-fold change| > 1). Correlation analysis was performed 
by Spearman rank correlation coefficient on SPSS as this 
nonparametric method is robust to non-normal data distributions and 
more appropriate than Pearson’s correlation for ecological and 
metagenomic datasets. Statistically significant difference level at 
p < 0.05 was used in this study unless otherwise noted.

3 Results

3.1 Microbial diversity and anaerobic 
microbial taxa in response to soil texture 
and amendment

On average, ~25% of high-quality reads were classified into 
microbial superkingdoms, with 99% of classified reads belonging to 

bacteria and 1% to fungi, archaea, and viruses 
(Supplementary Table S3). Shannon diversity index was significantly 
lower in SA compared to CL and SL (p < 0.001) and was lowest in SA 
with M amendment (Supplementary Figure S2A). SA also responded 
positively to BM over M addition and declined considerably over time 
(Supplementary Figure S2A). The Simpson index varied little with soil 
texture and amendment, except for a decrease over time in SA 
(Supplementary Figure S2A).

Community composition at the phylum and class levels clustered 
mainly by soil texture (PERMANOVA R2 = 0.625–0.669 and 
p < 0.001) (Supplementary Figure S2B). For example, abundant 
phyla showed distinct patterns among soil textures, with 
Actinomycetota (synonym Actinobacteria) declining from ~ 61% in 
CL to ~ 49% in SL and ~ 42% in SA and Pseudomonadota (synonym 
Proteobacteria) increasing from ~32% in CL to ~ 47% in SL and ~ 
43% in SA (Supplementary Figure S2C). SA also contained ~10% 
Bacillota (synonym Firmicutes). At the lower taxonomy level (i.e., 
genus and species), interactions of soil texture and amendment 
(R2 = 0.531–0.541 and p < 0.001) and incubation time (R2 = 0.109–
0.110 and p < 0.05) explained significant variations 
(Supplementary Figure S2B). Community separation between M and 
BM was obvious in SA but not in CL and SL. Yet, community 
variation along with the incubation time was more apparent in CL 
and SL than in SA.

Despite relatively lower abundance (i.e., < 0.5%), obligate and 
facultative anaerobes responded differently to amendments across soil 
types (i.e., CL, SL, and SA) (Figure 1). In CL, all the 9 genera peaked 
at the first (i.e., day 4) of the three sampling times, with BM showing 
greater abundances than M. In contrast, SA showed inconsistency 
regarding the timing when the 9 genera reached their maximal 
abundance and when they exhibited the greatest differences between 
M and BM. Among the three soils, SL generally showed the lowest 
abundance and minimal amendment-induced variation regardless of 
sampling times.

3.2 Metagenomic profiles of 
oxygen-responsive genes as affected by 
soil amendment

Oxygen-responsive genes were annotated with both KEGG 
orthology (KO) and eggNOG gene ontology (GO) databases. From 
the KO database, we selectively analyzed genes pfor (i.e., por/nifJ, 
porA, porB, porC, and porD) that encodes pyruvate:flavodoxin 
oxidoreductase and anr (i.e., fnr, dnr, and nnrR) that encodes 
transcriptional regulator for expression of anaerobic respiratory 
processes (Figure  2A). Pairwise comparisons showed that anr 
tended to be more abundant in BM than in M regardless of soils. 
However, pfor in response to amendments was soil-specific, 
inclining higher abundance in BM in CL yet no difference in 
SL and SA.

From the GO database, oxygen-responsive genes that were 
significantly different in the relative abundance between M and BM 
treatments (i.e., Log2 foldchange > 1 and Padj < 0.05) are included in 
Figure 2B. There were large variations among soils, meaning that a 
gene differing between M and BM did not appear in all three soils. 
Nonetheless, three soils expressed similar trends, with anaerobic 
process-related genes more abundant in BM and aerobic process-
related genes more abundant in M (Figure 2B).
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3.3 Metagenomic profiles of C-degradation 
and oxidative-stress responsive genes

Functional genes related to C degradation (30 genes related to the 
degradation of galactose, lactose, starch, hemicellulose, pectin, 
cellulose, chitin, polyphenol, vanillin, and lignin) were collected from 
the samples based on KO database (Supplementary Table S5). 
PERMANOVA results showed that the beta diversity of these genes 
was primarily affected by soil texture (R2 = 0.570, p < 0.001), as 
visualized by NMDS (Figure 3A). Regardless of soil texture, however, 
gal and galD involved in galactose degradation, amyA in starch 
degradation, pel in pectin degradation, and chitinase-encoding gene 
were significantly affected by compost type, being more abundant in 
M than in BM (p < 0.05). The remaining genes showed soil- and 
incubation time-specific effects of compost type. In CL, most 
C-degradation genes were more abundant in M than in BM, especially 
at early stage of incubation (day 4). Such a variation became less 
pronounced by the middle stage of incubation (day 21) and nearly 
vanished by the end of the incubation (Figure 3B). A comparable yet 
less pronounced pattern was observed in SL 
(Supplementary Figure S3A) while the trend was less obvious in SA 
(Supplementary Figure S3B).

The data derived from the GO database exhibited analogous 
trends. Specifically, the number of C-degradation genes displaying 
significant differences between BM and M was greater in CL compared 
to SL and SA (Figure 3C; Supplementary Figures S3C,D). Furthermore, 
in CL, all these genes exhibited significantly reduced levels in BM 

when compared to M (Figure 3C), but this distinction is less apparent 
in SL and SA, with a few genes even showing a contrasting trend 
(Supplementary Figures S3C,D).

As a result of organics degradation, the functional genes related 
to oxidative-stress response were detected from all the samples. Based 
on GO database, the distribution patterns of genes related to 
antioxidant enzymes, DNA repair mechanisms, and detoxification 
were distinct between BM and M and varied with soils (Figure 4). In 
CL, most detected antioxidant- and DNA repair-related genes were 
more abundant in M than in BM (p < 0.05), especially at early stage of 
incubation (day 4). This pattern was less obvious in SL and 
SA. However, detoxification-related genes were significantly more 
abundant in BM than in M regardless of soil textures (Figure 4). Based 
on the KO database, however, the genes related to antioxidant enzymes 
(e.g., superoxide dismutase, catalase, and peroxidase) were not 
significantly different between BM and M (Data not shown).

3.4 Population size of N-cycling microbes 
and metagenomic profiles of N-cycling 
genes

Populations of nitrifiers, represented by the copy number of AOA 
and AOB amoA, and denitrifiers, represented by the copy number of 
nirK, nirS, and nosZ varied significantly with soil and incubation time 
(Supplementary Figure S4A). Little difference in the copy numbers of 
all these genes was observed between BM and M. However, in SA, 

FIGURE 1

Relative abundances of facultative and obligate anaerobic bacterial genera at three time points (day 4, day 21, and day 107) during 3.5 month’s 
incubation following the addition of BM (biochar-manure co-compost) and M (manure compost) in clay loam (CL), silt loam (SL), and sand (SA).
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nirK-clade III at all the three time points and nirK-clade I on day 4 and 
day 21 were more abundant in M than in BM (p < 0.001) 
(Supplementary Figure S4B).

Forty-two functional genes involved in seven N-cycling processes 
(nitrification, denitrification, dissimilatory nitrate reduction to 
ammonia (DNRA), assimilatory nitrate reduction to ammonia 
(ANRA), N mineralization, ammonium assimilation, and N fixation) 
were selected from the KO database (Supplementary Table S6). 
PERMANOVA showed that the distribution pattern of microbial N 
metabolism functional genes was strongly influenced by soil texture 
(R2 = 0.799, p < 0.001) (Figure 5A). In general, soil texture significantly 
influenced the relative abundances of N-cycling genes or pathways, 
except for nirS and glsA (p < 0.01). Nitrification- and denitrification-
related genes/pathways were more abundant in SA or SL, while 
DNRA-, ANRA-, N mineralization-, ammonium assimilation-, and N 
fixation-related genes/pathways were more abundant in SL or CL 
(Figure 5B). Only a few genes/pathways were affected by compost type 
alone (hao and ureABC, p < 0.05 for both) or by compost-soil 
interactions (nifDHK, p < 0.01; nasDE, p < 0.05) (Figure 5B). While the 
relative abundance of key functional genes involved in N2O production 
(specifically amoABC, nirK, and nirS) and the gene responsible for N2O 

reduction (nosZ) were not statistically different between BM and M 
across soil textures, their ratios were lower in BM compared to M in 
CL and SL (p < 0.1 and p < 0.01, respectively) (Figure 5C). The relative 
abundance of amoA, nirK or nosZ derived from the BLAST pipeline 
also differed mainly among soils textures (p < 0.01 for all), being lower 
in SA than in CL and SL for amoA, but opposite for nirK and nosZ 
(Figure 5D). Compost type and interaction with soil texture did not 
show a significant effect. However, compost type exhibited a marginally 
significant effect on nosZ clade II (p = 0.054), with the relative 
abundance in SA being higher in BM than in M treatment (p < 0.05).

4 Discussion

Compared to M, BM has been found to reduce CO2 and N2O 
emissions; yet the degree in reduction is soil-texture dependent (Gao 
et al., 2023; Yuan et al., 2017). The underlying mechanism has been 
linked to biochar-modulations in soil structure and thus soil aeration 
(Hu et al., 2024). Our study provided multiple lines of evidence that 
microbiome traits effectively reflect pore-scale environments that 
could not be  reliably inferred by bulk soil properties. While soil 

FIGURE 2

Oxygen-responsive genes based on KEGG orthology database (A) and eggNOG ontology database (B), respectively, at three time points (day 4, day 21, 
and day 107) during 3.5 month’s incubation following the addition of BM (biochar-manure co-compost) and M (manure compost) in clay loam (CL), silt 
loam (SL), and sand (SA). Data are the means of three sampling times and standard errors for n = 3. Scale represents the normalized relative abundance 
by dividing the relative abundance by the average value across three time points. The abbreviations of functional genes shown in (B) are provided in 
Supplementary Table S4. PFOR, pyruvate:ferredoxin oxidoreductase; ANR, anaerobic regulator.
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texture and compost/biochar characteristics undoubtedly influence 
microbial communities, our objective here was not to disentangle 
these individual effects but to determine whether microbial traits can 
serve as reliable indicators of pore-scale oxygen status across different 
soil-amendments.

4.1 Bacterial community diversity and 
compositional traits of soil aeration status

Biochar in BM increased soil microporosity, leading to slower 
drainage and reduced air diffusion, thereby raising the likelihood of 
hypoxia (Gentry et al., 2021). Consequently, we expected a higher 
abundance of obligate anaerobic bacteria in BM than in M. Unlike 
obligate anaerobes that lack defense mechanisms against reactive 
oxygen species (ROS) (Lu and Imlay, 2021), facultative anaerobes can 

tolerate oxygen but thrive better under anaerobic conditions (Bowden, 
1996). Our findings showed that both obligate and facultative 
anaerobic bacteria were more abundant in BM than in M across soil 
textures, though still relatively low (< 0.5%). This suggested that BM 
created localized hypoxic or anoxic conditions more effectively than M.

The compositional trait of the soil microbiome seemed 
reliable for indicating soil aeration status. Previous analyses of soil 
properties and enzyme activities suggested that SL was more 
aerated than CL and SA (Hu et al., 2024). This aligned with the 
interaction between organic amendments and soil textures 
affecting relative abundance of anaerobes. The least difference in 
SL implied that microporosity variations between M and BM were 
insufficient to generate discernable differences in soil aeration 
when soil structure could provide better aeration. This was further 
supported by the lack of microbial diversity differences between 
BM and M in SL, unlike in CL and SA. In SL, the significant 

FIGURE 3

Carbon-degradation genes based on metagenomic sequencing analysis. (A) Non-metric multidimensional scaling (NMDS) of carbon-degradation 
genes based on KEGG KO number. (B) Relative abundances of carbon-degradation genes in clay loam (CL) based on KEGG orthology database. The 
bar plot shows the difference of relative abundance between BM (biochar-manure co-compost) and M (manure compost) treatment. Error bars are 
standard errors for n = 3. The scatter plot compares the difference between BM and M among three time points (day 4, day 21, and day 107) during the 
incubation period. (C) Relative abundances of carbon-degradation genes in clay loam (CL) based on eggNOG ontology database. The heatmap shows 
the relative abundance at three time points (day 4, day 21, and day 107) during 107 days’ incubation. Scale represents the normalized relative 
abundance by dividing the relative abundance by the average value across three time points.
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change in pore size distribution would likely impact microbial 
diversity by influencing trophic interactions and the resource 
heterogeneity (Xia et al., 2020). In contrast, our data from CL and 

SA aligned with Hartmann et al. (2014), showing that a significant 
increase in the proportion of small pores would promote the 
proliferation of anaerobes (Hartmann et al., 2014).

FIGURE 4

Relative abundances of oxidative-stress responsive genes based on eggNOG Ontology database in clay loam (CL), silt loam (SL), and sand (SA), 
respectively, following the addition of BM (biochar-manure co-compost) and M (manure compost). The bar plots compare the difference between BM 
and M. Error bars are standard errors for n = 3. The heatmaps show the relative abundance at three time points (day 4, day 21, and day 107) during 
107 days’ incubation. Scale represents the normalized relative abundance by dividing the relative abundance by the average value across three time points.
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It was unsurprising that microbial composition varied across soils, 
since they came from different field sites and environmental conditions. 
However, we were surprised by the sensitivity of anaerobes to pore-
scale aeration changes in SA. In fine-textured CL, anaerobic conditions 
emerged rapidly after the addition of biochar-manure co-composts. In 
contrast, coarse-textured SA exhibited different outburst patterns, with 
some anaerobes being more abundant at the end of incubation. This 
may be due to persistent anaerobic conditions in small pores, where 
slow or limited oxygen diffusion prevented recovery (Li et al., 2024b).

4.2 Gene evidence of soil aeration status

Anaerobic metabolism is another key indicator of soil aeration. 
We demonstrated that soil aeration status, inferred from CO2 and N2O 
emissions, was paralleled with changes in the relative abundance of 
genes for anaerobic metabolism (Hu et  al., 2024). Under anoxic 
conditions, microbes acquire energy via fermentation or anaerobic 
respiration. While denitrification and fermentation can occur 
simultaneously in soils with organic amendments, fermentation often 

requires more severe anaerobic conditions (Paul and Beauchamp, 
1989; Pidello et  al., 1996; Tiedje et  al., 1984). Compared to fine-
textured soils, SA was assumed to have fewer small pores and weaker 
anaerobic conditions. This supposition appeared to align well with the 
lower relative abundance of fermentation-related genes in SA than in 
other soils. Our data also indicated that BM increased the proportion 
of small pores, particularly in fine-textured CL, enhancing 
fermentation. Conversely, genes involved in O2/redox sensing 
transcription regulators, especially dnr and nnrR for denitrification, 
were more abundant in SA than in SL and CL, supporting the idea that 
denitrification was preferred over fermentation under milder 
anaerobic conditions (Tiedje et al., 1984). Although anaerobic pores 
existed in all three soils, our data suggested that BM addition 
promoted more hypoxic conditions in coarse-textured soils than in 
fine-textured soils.

Dissimilatory nitrate reduction to ammonium (DNRA) occurs 
under stricter anaerobic conditions than denitrification and 
fermentation (Tiedje et al., 1984). NADH-dependent nitrite reductase 
nirBD was significantly more abundant in CL than in SL and SA, 
suggesting DNRA-favorable pores were more prevalent in 

FIGURE 5

Nitrogen-cycling genes based on metagenomic sequencing analysis. (A) Non-metric multidimensional scaling (NMDS) of N-cycling genes based on 
KEGG orthology database. (B) Relative abundances of nitrogen-cycling genes or pathways. Different colors represent different nitrogen transformation 
pathways. (C) Relative abundances of key nitrogen-cycling functional genes (based on KEGG orthology database) related to N2O production and 
reduction as well as their ratios in different soil textures with BM or M amendment. (D) Relative abundances of key nitrogen-cycling functional genes 
(Blast result) related to N2O production and reduction in different soil textures with BM or M amendment. DNRN, dissimilatory nitrate reduction to 
nitrite; DNiRA, dissimilatory nitrite reduction to ammonium; ANRN, assimilatory nitrate reduction to nitrite; ANiRA, assimilatory nitrite reduction to 
ammonium; CL, clay loam; SL, silt loam; SA, sand; BM, biochar-manure co-compost; M, manure compost. RPKG, reads per kb per genome equivalent; 
AOA, ammonia oxidizing archaea; AOB, ammonia oxidizing bacteria. Error bars are standard errors for n = 3.
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CL. Although periplasmic cytochrome nitrate reductase nrfAH 
showed an opposite trend, being lower in CL than SL and SA, its 
relative abundance was substantially lower than the relative abundance 
of nirBD, perhaps implying that nirBD-containing bacteria dominated 
DNRA under our experimental conditions.

Based on GO database, different sets of reductive/oxidative genes 
were identified from three soils, with significant differences between BM 
and M. Still, fermentation-related genes were more abundant in CL than 
in other soils and in BM than in M. This augmented the findings from 
the compositional trait of the microbiome and the KO database-derived 
anaerobic metabolism, highlighting that in fine-textured CL, pores 
favoring fermentation might surpass pores favoring denitrification.

4.3 Development of anaerobic soil pores 
following organic amendments

In aerobic soils, temporary anaerobic conditions can be developed 
in pores where microbial respiration depletes oxygen. The intensity of 
microbial respiration can be perceived from the activation of antioxidant 
defenses and repair systems to scavenge aerobic respiration-induced 
ROS (Seixas et al., 2021). Greater aerobic respiration leads to increased 
ROS production, triggering more abundant antioxidant defenses and 
DNA/protein repair genes. Across soil textures, M-amended soils 
exhibited higher abundances of these genes than BM-amended soils, 
suggesting stronger aerobic respiration and thus higher CO2 emissions. 
This was corroborated with the relative abundance of genes involved in 
organic compound degradation. Sharp declines in the abundance of 
those genes over time, particularly in M-amended soils, likely resulted 
from the reduced availability of readily-degradable organic compounds 
and/or the cascading effect of microbial respiration-induced oxygen 
shortage slowing further degradation. Hypoxic/anoxic hotspots are 
expected in organic-rich microsites with limited oxygen diffusion (Borer 
et al., 2018). Among M-amended soils, fine-textured CL was most likely 
to face diffusion limitations due to its higher microporosity, leading to 
more oxygen-limited small pores and a more pronounced decline in 
organic decomposition genes compared to SL and SA.

Lower abundance of genes for carbon degradation in BM-amended 
soils validated that biochar promoted carbon stabilization during 
composting due to its high adsorption capacity, microporosity, and 
basic functional groups (Dissanayake et al., 2020; Oladele, 2019; Wang 
et al., 2023a). It often manifests at the soil scale as the suppression of 
soil enzyme activities (Feng et al., 2023; Foster et al., 2018). Unlike 
M-amended soils where carbon overflow might promote ROS and 
subsequently trigger DNA damage repair (Thomas et  al., 2014), 
microbes in BM-amended soils appeared not to deal with much 
oxidative stress or DNA repair, since involved genes with high CPM 
(e.g., DyPs) were less abundant. Besides lower organic carbon 
availability, more anaerobiosis in BM-amended soils might offer an 
alternative explanation to reduced C degradation. The presence of 
anaerobic pores in ‘apparent’ aerobic soils can considerably shift C 
cycling to less efficient anaerobic metabolism, leading to lower CO2 
emissions (Keiluweit et al., 2017). Genes with low CPM (~ 1–2 CPM 
on average) were more abundant in BM than M in SL and SA but not 
in CL, suggesting greater heterogeneity in pore size and associated 
resource distribution. It also suggested that biochar in BM exerted 
more impact in SA than in fine-textured soils. Similar soil-dependent 
effects of biochar on aeration were reported by Wang et al. (2023b).

Notably, genes related to detoxification, specifically those involved 
in Cu and As homeostasis and/or resistance, were more abundant in BM 
than in M-amended soils, indicating that biochar addition increased 
metal concentrations in composts. Biochar produced from treated or 
milled pine material contain certain levels of heavy metals due to the use 
of chromated copper arsenate, a common wood preservative (Askeland 
et al., 2019). The detected differences in these gene abundances between 
M and BM treatments suggested the high sensitivity of metagenomics as 
a tool to monitor environmental changes within the soil matrix.

4.4 Sensitivity of N-cycling genes in 
predicting N2O emissions

qPCR is widely used to assess soil N transformations (Hu et al., 
2021), despite limitations such as primer coverage and bias (Smith and 
Osborn, 2009). Our qPCR results aligned with soil properties and 
processes. AOA populations kept low in ammonium-dominant CL 
and reduced with decreasing ammonium in SA (Hu et al., 2024), 
consistent with the preference of AOA for low ammonium 
concentrations over AOB (Di et al., 2009; Lin et al., 2021; Martens-
Habbena et al., 2009). In contrast, AOB proliferated rapidly in SL and 
SA but much more slowly in CL, likely due to poor aeration from CL’s 
higher microporosity and rapid oxygen depletion by microbial 
respiration. As decomposition proceeded and bioavailable organics 
decreased, AOB growth accelerated in CL, suggesting gradual 
amelioration of anaerobic stress due to lower oxygen consumption 
through microbial respiration. However, the abundance of 
denitrification-related genes (nirK, nirS, and nosZ) did not consistently 
reflect BM’s N2O mitigation effects, as gene copy numbers were not 
consistently lower in BM than M across three soils. This may be due 
to qPCR primers targeting only subsets of denitrifiers, limiting 
sensitivity to treatment effects. To address this, we  used multiple 
primer sets targeting nirK clades, including α-, β- and γ-Proteobacteria 
in clade I; Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, 
Archaea, and other taxa in clade II; and Actinobacteria in clade III 
(Luo et al., 2021; Wei et al., 2015). Yet, these clade-specific gene copy 
numbers also failed to conclusively support the lower N2O emission 
in BM than in M across different soil textures. Notably, denitrifier 
abundance in CL was high (~ 1 × 108 copies of nirK and nosZ), yet 
N2O-emissions were ~ 100-fold lower than in SA, suggesting a large 
proportion of denitrifiers were inactive. This may explain the 
unexpectedly lower sensitivity of qPCR in detecting soil management 
effects in our study.

We then explored whether shotgun metagenomics would better 
link microbiome data to N2O emissions. The BLAST-based annotation 
approach did not establish a clear correlation between gene copy 
numbers and N2O emissions. However, de novo strategy could, to some 
degree, reflect N transformations at the soil scale. The ratio of genes for 
N2O production and consumption, i.e., (amoA+nirK+nirS)/nosZ was 
statistically lower in BM-amended soils compared to M-amended 
soils, suggesting BM’s greater potential for mitigating N2O emissions. 
Additionally, SA had the highest relative abundance of denitrification 
genes, aligning with its highest observed N2O emissions.

This study has several limitations that should be acknowledged. 
Pore-scale oxygen availability was inferred indirectly from microbial 
traits rather than measured directly, which introduces some 
uncertainty. The soils originated from different sites, so part of the 
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microbial variation may reflect site-specific history beyond texture 
differences. Functional gene profiles derived from metagenomics and 
qPCR also have inherent biases, and not all gene abundances aligned 
with observed N2O fluxes. Finally, the work was conducted under 
controlled incubation conditions, which may not fully capture the 
complexity of dynamic field environments.

Despite these limitations, our findings highlight the cascading 
effect of organic degradation on soil aeration and N2O emissions. It 
exemplifies how microbial respiration interacts with soil structure, 
influencing hypoxic and anoxic porosity. Metagenomic traits provide 
a sensitive tool for detecting pore-scale environmental shifts, 
improving our mechanistic understanding of soil-dependent GHG 
emissions following organic amendments. Further research is needed 
to identify robust indicator genes for predicting soil processes at the 
pore scale.
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