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Background: Wild birds are increasingly recognised as sentinels for antimicrobial
resistance (AMR) in environments impacted by human activity, yet the role
of seabirds in the dissemination and maintenance of extended-spectrum f-
lactamase (ESBL)-producing Escherichia coli in Brazil remains unclear.
Methods: Cloacal swabs were collected from fifteen magnificent frigatebirds
(Fregata magnificens) from the Cagarras Islands, a coastal archipelago. Bacterial
isolation was performed using MacConkey agar supplemented with ceftriaxone,
followed by identification using MALDI-TOF MS. Antimicrobial susceptibility
testing was conducted using the disc diffusion method, and PCR screening was
performed for ESBL genes. WGS and bioinformatics analysis were employed to
characterise the isolate.

Results: One ceftriaxone-resistant E. coli isolate was recovered from an adult
female bird. The isolate was identified as sequence type ST5614 and serotype
027:H14, carrying the blacrx.m.1s gene on an IncB/O/K/Z plasmid closely related
to those described in human isolates. The strain showed resistance to multiple
antimicrobials and harboured additional resistance genes including tet(A), sull,
sul2, mph(A), gnrS1, mrx(A), aph(3”)-lb, aph(6)-Id, and ant(3")-la.

Conclusion: Detection of blacry.u.1s in F. magnificens may reflect the movement of
clinically significant resistance genes at the human—wildlife interface, underscoring
the value of seabirds as sentinels for environmental AMR surveillance. The findings
highlight the interconnectedness of environmental, animal, and human health and
reinforce the importance of wildlife surveillance in One Health AMR strategies.
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1 Introduction

Multidrug-resistant (MDR) bacteria, defined as non-susceptibility to
at least one agent in three or more antimicrobial categories (Magiorakos
et al.,, 2012), have been detected in environmental sources such as rivers,
sewage, and coastal waters. Wild birds are recognized as reservoirs and
potential vectors of these pathogens, yet their role in the dissemination of
antimicrobial resistance (AMR) remains poorly studied worldwide,
including in Brazil (Sanganyado and Gwenzi, 2019; Paschoal et al.,, 2020).
AMR is a major global health threat, exacerbated by improper disposal of
antimicrobial-laden waste. Wild birds may acquire resistant strains from
contaminated environments and contribute to their spread. The presence
of MDR bacteria in birds without direct antimicrobial exposure highlights
their potential as sentinels in AMR surveillance (Wang et al.,, 2017;
Athanasakopoulou et al., 2022).

Extended spectrum f-lactamase (ESBL)-producing Escherichia
coli (ESBL-EC) are a growing concern due to their resistance to critical
antibiotics. While widely reported in hospitals, livestock, and
companion animals, ESBL-EC have also been increasingly identified
in wildlife and natural environments, suggesting broader ecological
dissemination. In wild birds, especially those not exposed to
antimicrobials, the detection of such resistant strains points to
environmental acquisition and highlights the possible role of these
animals as sentinels of antimicrobial resistance (Stedt et al., 2015;
Fernandes et al., 2018; Silva et al., 2018; Salgado-Caxito et al., 2021).

The magnificent frigatebird (Fregata magnificens), a seabird widely
distributed along tropical and subtropical coasts, nests on islands and
disperses over large distances (Saviolli et al., 2016). Despite this, little
is known about the occurrence of antimicrobial-resistant bacteria in
its populations. Given its ecological role and exposure to
anthropogenically influenced habitats, E. magnificens may help reveal
resistance dynamics in coastal ecosystems (Zaluski et al., 2019).
Expanding such investigations is crucial to support One Health
strategies and address environmental dimensions of AMR.

This study investigated the presence of ESBL-producing E. coli in
cloacal samples from 15 E magnificens individuals inhabiting the
Cagarras Islands, a coastal archipelago near Rio de Janeiro, Brazil.
Microbiological analyses and whole genome sequencing were
employed to characterize phenotypic and genotypic resistance profiles,
providing new insights into the environmental dissemination of
clinically relevant resistant bacteria and reinforcing the role of wildlife
in One Health AMR surveillance strategies.

2 Materials and methods
2.1 Study area and sample collection

The study was conducted in the Cagarras Islands Natural Monument
(MONA Cagarras), located off the coast of Rio de Janeiro State, Brazil
(23°01°S, 43°12'W), approximately 5km from Ipanema Beach. The
archipelago comprises six main landforms: the Cagarras, Palmas,
Comprida, and Redonda islands, as well as the islets Filhote da Cagarras
and Filhote da Redonda (Figure 1). Samples were collected in October
2023 on Redonda Island—the largest and highest landmass in the region,
covering approximately 395,500 m* and located 8.5km from the
mainland. This island is the main breeding and roosting site for
E magnificens and other marine bird species. Cloacal swabs were collected
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from each individual, placed in Cary Blair transport medium, kept
refrigerated at 4 °C, and processed within 48 h. All sampling procedures
were conducted under SISBIO permit no. 73163-6 and approved by the
Animal Ethics Committee of the Oswaldo Cruz Institute (IOC),
FIOCRUZ (Protocol L-019/2021).

2.2 Bacterial isolation and identification

Cloacal samples were streaked onto MacConkey agar plates
supplemented with ceftriaxone (2 pg/mL) and incubated overnight at
35 + 2 °C for 18-20 h to select for ESBL-EC strains. After incubation, a
limited bacterial growth was observed. Colonies displaying growth under
these selective conditions were subcultured in BHI broth containing
ceftriaxone (2 pg/mL) for confirmatory screening. Following this selective
enrichment process, only one cloacal sample yielded growth of a single
bacterial species in pure culture. This isolate was identified by Matrix-
Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry
(MALDI-TOF MS, Bruker Daltonik, Germany).

2.3 Antimicrobial susceptibility testing

Acquired antimicrobial resistance genes were detected with ResFinder
(Bortolaia et al.,, 2020), and insertion sequences and transposable elements
were detected with ISfinder (Siguier et al., 2006). Comparative plasmid
analysis was performed using BLAST Ring Image Generator (BRIG) v0.95
(Alikhan etal,, 2011). Antimicrobial susceptibility profiles were determined
by the disc diffusion method using the following antimicrobial agents:
sulbactam/ampicillin [SAM, 20 (10/10 pg)], tetracycline (TET, 30 pg),
imipenem (IPM, 10 pg), meropenem (MEM, 10 pg), ciprofloxacin (CIP,
5 pg), amikacin (AK, 30 pg), gentamicin (CN, 10 pg), sulphamethoxazole/
trimethoprim (SXT, 25 pg), clindamycin (DS, 2 pg), levofloxacin (LEV,
5 pg), nalidixic acid (NAL, 30 pg), tigecycline (TGC, 15 pg), ceftriaxone
(CRO, 30 pg) and ceftazidime (CAZ, 30 pg). Phylogenetic tree was
constructed using Parsnp v2.1.4 (Kille et al., 2024) based on the whole-
genome alignment of E. coli 99RCEE Publicly available genomes of E. coli
isolates belonging to the same ST were retrieved from EnteroBase5 and
included in the analysis. The resulting core genome alignment was used to
infer a maximum likelihood phylogeny with IQ-TREE (Minh et al., 2020).
employing the best-fit substitution model selected by ModelFinder
(Kalyaanamoorthy et al., 2017) and performing 1,000 ultrafast bootstrap
(Hoang et al.,, 2018) replicates to assess branch support. The final tree was
visualized, edited, and annotated using Interactive Tree Of Life (iTOL) v76
(Letunic et al.,, 2024). Polymyxin B minimum inhibitory concentration
(MIC) was determined by the broth microdilution method, in accordance
with BrCast/EUCAST guidelines."

2.4 PCR screening
Screening for ESBL genes was performed by PCR using specific

primers for each target gene. The blacrx . gene was amplified with
primers Ctx-m-FW (5-AAAAATCACTGCGCCAGTTC-3") and

1 http://www.eucast.org
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FIGURE 1

Map showing the location of the Cagarras Islands Natural Monument (MONA Cagarras) off the coast of Rio de Janeiro, Brazil, highlighting Redonda
Island, where samples were collected. The inset indicates the position of MONA Cagarras along the southeastern Brazilian coast. The scale bar is
provided, and Redonda Island is located approximately 5 km from the mainland at Ipanema Beach. The image also features a Fregata magnificens, a
common seabird in the region (source: Generated by authors using QGIS 3.32.2 based on public governmental shapefiles).

Ctx-m-RV (5-CCGTCGGTGACGATTTTAGCC-3") (Saladin et al.,
2002). For blargy, primers Tem-F (5-ATGAGTATTCAACATT
TCCGTG-3") and Tem-R (5-TTACCAATGCTTAATCAGTGAG-3")
were used, and for blaggy, primers Shv-FW (5-TTTATCGGCCCTCAC
TCAAGG-3") and Shv-RV (5-GCTGCGGGCCGGATAACG-3") were
employed (Yuan et al,, 2021). PCR cycling parameters (applied to all
three assays): initial denaturation 94 °C for 3 min; 35 cycles of 94 °C
for 45 s, 56 °C for 45 s, 72 °C for 45 s; final extension 72 °C for 10 min.
As a positive control, the Klebsiella pneumoniae strain CCBH6556,
harboring all three ESBL genes (GenBank: NZ_JBHFPY000000000.1),
obtained from the Culture Collection of Hospital-Acquired Bacteria
(CCBH), registered with the World Federation for Culture Collections
(WFCC, WDCM 947), was used.

2.5 Whole genome sequencing and
bioinformatics analysis

Genomic DNA was extracted using the QIAamp DNA Mini Kit
(QIAGEN), according to the manufacturer’s protocol. Illumina libraries
were prepared using the Illumina DNA Prep Kit and sequenced on a
MiSeq platform (MiSeq Reagent Kit v2, 500 cycles). Raw Illumina reads
were quality-filtered and adapter-trimmed using the CABGen web
application (Duré et al., 2022). Oxford Nanopore Technologies (ONT)

Frontiers in Microbiology

libraries were constructed with the Rapid Barcoding Kit 24 V14 (SQK-
RBK114.24, ONT) and sequenced on a MinION Mk1B with an R10.4.1
flow cell, operated via MinKNOW software. Basecalling of ONT signal
data was performed using Dorado.”

Hybrid de novo assembly was performed with Unicycler v0.4.9
(conservative mode) (Wick et al., 2017). Assembly completeness and
contamination were evaluated using CheckM (Parks et al., 2015), and
taxonomic classification and contaminant screening were performed
with Kraken2 (Wood et al., 2019). Genome annotation was carried
out using Prokka (Seemann, 2014). Plasmid replicon typing was
performed with PlasmidFinder (Carattoli et al., 2014), serotyping
with SerotypeFinder (Joensen et al., 2015), and multilocus sequence
typing (MLST) using the Achtman scheme.’ Acquired antimicrobial
resistance genes were detected with ResFinder (Bortolaia et al., 2020),
and insertion sequences and transposable elements were detected
with ISfinder.* Comparative plasmid analysis was performed using
BLAST Ring Image Generator (BRIG) v0.95.

Phylogenetic tree was constructed using Parsnp v2.1.4
(10.1093/bioinformatics/btae311) based on the whole-genome

2 https://github.com/nanoporetech/dorado
3 https://pubmlst.org/organisms/escherichia-spp
4 https://isfinder.biotoul.fr/blast.php
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FIGURE 2
Genomic comparison between IncB/O/K/Z plasmids in relation to p99RCEF_blaCTX-M-15 from E. coli 99RCEF. Inside out, the first ring is plasmid
P99RCEF_blaCTX-M-15 from E. coli 99RCEF. The second ring is the plasmid GC content. The outer rings represent the nucleotide sequence of the
corresponding DNA region of the following IncB/O/K/Z plasmids in different colors against the reference genome (p99RCEF_blaCTX-M-15): p1-S1-
KEN-04-A from E. coli (blue), p1_A24359 from E. coli (green), and pJNQH940-1 from Salmonella enterica (purple). The last one is the gene
annotations (black).

alignment of E. coli 99RCEF. Publicly available genomes of E. coli
isolates belonging to the same ST were retrieved from EnteroBase’
and included in the analysis. The resulting core genome
alignment was used to infer a maximum likelihood phylogeny
with IQ-TREE (v2.2.010.1093/molbev/msaa015), employing the
best-fit substitution model selected by ModelFinder and
performing 1,000 ultrafast bootstrap replicates to assess branch
support. The final tree was visualized, edited, and annotated
using Interactive Tree Of Life (iTOL) v7.

3 Results

A total of 15 E magnificens individuals (10 adults and five
juveniles; comprising two males, eight females, and five juveniles of
undetermined sex) were captured on Redonda Island, Cagarras

5 https://enterobase.warwick.ac.uk/species/index/ecoli
6 https://itol.embl.de/

Frontiers in Microbiology

Archipelago. Cloacal swabs were obtained from all apparently healthy
birds. Among the 15 samples, one ceftriaxone-resistant E. coli isolate
was recovered from an adult female bird (6.6%; 95% CI: 0.16%-
31.95%). Identification by MALDI-TOF MS confirmed the isolate as
E. coli, and PCR detected the presence of the blacrxy gene.

The antimicrobial susceptibility profile revealed that the isolate
was resistant to tetracycline, nalidixic acid, trimethoprim-

sulfamethoxazole,  clindamycin, ciprofloxacin, ceftriaxone
and ceftazidime.

Whole genome sequencing identified the strain as sequence type
ST5614 and serotype O27:H14. The analysis also revealed the presence
of a 126,204 bp plasmid, named p99RCEF_blaCTX-M-15 (Figure 2),
classified within the IncB/O/K/Z incompatibility group. This plasmid
harbored the blacrxw.s gene, as well as tet(A), sull, sul2, mph(A),
qnrS1, mrx(A), aph(3”)-Ib, aph(6)-1d, and ant(3")-Ia.

The blacrxy.is gene was located within a Tn2-like element flanked
by intact inverted repeats, although the element lacked a complete
transposition module. The plasmid encoded a full set of conjugal
transfer genes (traA to traY), toxin-antitoxin systems, pilus assembly
proteins, colicin operons, recombinases, and components of a type IV

secretion system.
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Comparative genomic analysis showed that p99RCEF_blaCTX-
M-15 shares high nucleotide sequence identity and structural
similarity with three previously characterized IncB/O/K/Z plasmids
carrying blacrxis: p1-S1-KEN-04-A (126,176 bp; GenBank NZ_
CP145691.1) and p1_A24359 (131,757 bp; GenBank CP183674.1),
both isolated from E. coli strains recovered from human faecal
material in Germany and Switzerland, respectively, and pJNQH940-1
(127,061 bp; GenBank NZ_CP136142.1) from Salmonella enterica
isolated from a renal transplant patient in China. These plasmids share
a conserved genetic backbone, including mobile genetic elements and
regions conferring antimicrobial resistance.

The isolate 99RCEF was identified as a phylogenetically distinct and
basal lineage within the maximum likelihood phylogenetic tree compared
to all other E. coli isolates of the same sequence type included in this study
(Figure 3). While most isolates, predominantly derived from human,
livestock or environmental sources, formed multiple well supported and
genetically diverse clades, 99RCEF branched independently from the rest
of the dataset. This separation was marked by a considerably long branch
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length and a strongly supported internal node with a bootstrap value of
100, providing robust statistical evidence for the phylogenetic
distinctiveness and divergence of 99RCEF within the sequence
type examined.

4 Discussion

The detection of an ESBL-EC strain carrying blacrxy.s in
E magnificens from the Cagarras Islands represents a significant
finding in the context of environmental AMR surveillance in Brazil.
Wild birds, particularly those inhabiting environments impacted by
human activities, have emerged as important sentinels for monitoring
the spread of AMR, yet their role in the dissemination and
maintenance of resistant bacteria remains underexplored in the
country. The MDR bacteria in environmental matrices such as rivers,
sewage, and coastal waters underscores the growing ecological
dimension of AMR and the need for integrated One Health approaches.
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Our study revealed the presence of an ESBL-EC strain resistant to
multiple antimicrobials critically important in both animal production
and human medicine, in a seabird species with no direct exposure to
antibiotics. Furthermore, findings from protected or uninhabited
islands show clinically relevant AMR in seabirds without clinical
treatment, consistent with indirect anthropogenic contamination and
environmental selection rather than direct medicinal use (Ewbank
etal,, 2021c¢). This finding aligns with previous reports from Brazil and
other countries, where wild birds have been shown to harbor MDR
bacteria, often with resistance profiles similar to those found in
clinical and livestock settings (Costa et al., 2006; Pinto et al., 2015;
Silva et al., 2020; Martin-Maldonado et al., 2022).

The acquisition of such bacteria by wild birds is likely linked to
environmental contamination, particularly in areas receiving untreated
domestic and hospital sewage, as is the case for Guanabara Bay adjacent
to the Cagarras Islands. Recent environmental studies in Guanabara Bay
and recreational beaches near the Cagarras Archipelago have already
reported the presence of multidrug-resistant bacteria and resistance
genes, including blacrxy variants in water and sediment samples
(Montezzi et al., 2015; de Araujo et al., 2016; Costa et al., 2023). These
findings highlight the chronic impact of untreated domestic and hospital
sewage on the region, creating hotspots for the selection and persistence
of antimicrobial resistance determinants. The proximity of the Cagarras
Islands to these impacted coastal areas, together with the opportunistic
foraging behavior of E magnificens, which includes scavenging on fishing
discards, kleptoparasitism, and feeding near coastal human-impacted
habitats, strongly suggests that these seabirds may acquire resistant
bacteria from such contaminated environments (Schunck et al., 2025).
This environmental context supports our findings and emphasizes the
role of anthropogenic pollution in shaping the resistome of wildlife in
the region.

The detection of a blacrxy 15-positive IncB/O/K/Z plasmid in E. coli
from E magnificens aligns with recent evidence of the same plasmid type
mediating multidrug resistance in clinical S. enterica isolate from blood
of a hospitalised renal transplant patient in China (Ma et al., 2024). The
strong genetic similarity between the p99RCEF_blaCTX-M-15 and
clinical plasmids underscores the potential for interspecies and inter-
environmental spread of critical resistance determinants, reinforcing the
importance of One Health surveillance strategies.

The detection of an IncB/O/K/Z plasmid in E magnificens
contrasts with the predominance of IncF and IncI1 plasmids typically
reported in seabirds (Wang et al., 2017; Athanasakopoulou et al.,
2022). Furthermore, the identification of serogroup O27:H14 and
ST5614 diverges from the more frequently observed serogroups in
seabirds, such as O25b (ST131), O78 (ST117), and those associated
with ST1159 and ST602 (Ewbank et al., 2022a; Dalazen et al., 2023).
Notably, while serogroup 027 has been identified as the predominant
serotype (75% of isolates) among Shiga toxin-producing E. coli strains
from wild mammals including wild boar, red deer, otter, and fox in
Portugal (Dias et al., 2022), its detection in marine birds appears to
be previously unreported in the literature. The absence of documented
027 detection in Brazilian coastal waters or clinical surveillance
studies further emphasizes the novelty of this finding and may suggest
potential gaps in current epidemiological monitoring of E. coli
serogroup diversity in marine environments. The detection of 027
E. coli in wild mammals coupled with its absence in current marine
bird surveillance suggests that E. magnificens may serve as a carrier for
this serogroup in this coastal environment.
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The phylogenetic divergence of the 99RCEEF isolate from other
E. coli strains of the same ST may reflects a unique evolutionary history
shaped by its host’s specific ecological context. Originating from a
magnificent  frigatebird inhabiting relatively isolated and
anthropogenically impacted Cagarras islands, the founder population
from which 99RCCEF belonged may have been subject to evolutionary
forces such as genetic drift, positive selection and horizontal gene
transfer (HGT) (Zdziarski et al., 2010; Martinez, 2012). These
evolutionary processes may have influenced the development of its
distinctive core phylogenetic markers, likely as an adaptive response to
local antimicrobial selective pressures and interspecific competition
within the microbial community. The ecological mobility and foraging
behavior of E magnificens likely facilitated contact with diverse
microbial populations across different environments. This exposure to
varied microbial communities, combined with local selective pressures,
may collectively explain the genetic distinctiveness observed in isolate
99RCEF when compared to other strains of the same sequence type.

The epidemiological significance of detecting a plasmid with high
structural similarity to those circulating in human and animal
populations is considerable. Plasmids of the IncB/O/K/Z group are
recognized as important vehicles for the global dissemination of
blacrx s and other resistance genes (Rozwandowicz et al., 2018;
Shirakawa et al., 2020; Ma et al., 2024). The occurrence of such
plasmids in a wild seabird from a region heavily impacted by sewage
discharge suggests that environmental interfaces play a crucial role in
the maintenance and spread of AMR determinants (Coutinho
etal., 2013).

Wildlife, including seabirds such as F. magnificens, may act as both
carriers and vectors of clinically relevant resistance genes, facilitating
their movement between environmental, animal, and human
populations. The foraging behavior of E magnificens, which includes
feeding on fish and fishery waste in areas such as Guanabara Bay,
increases their exposure to anthropogenically derived contaminants,
including MDR bacteria. Our findings represent the first identification
of the blacrxy.is gene variant in F magnificens from the Cagarras
Islands. Previous research in the Alcatrazes Archipelago identified
E. coli isolates harboring blacrx n, and blacyy., genes in F. magnificens
but did not detect blacrxy.is (Ewbank et al., 2022b).

The detection of blacrx y variants in birds from both archipelagos,
despite their geographic separation, reinforces the idea that wild
seabirds in Brazil are consistently exposed to antimicrobial-resistant
bacteria of clinical relevance. Considering the strong flight capacity
and foraging range of E magnificens, it is plausible that individuals
may transit between these and other coastal areas, either directly or
through overlapping feeding grounds. Fregata magnificens breeds on
islands across the Caribbean and tropical coasts of Central and South
America (Nuss et al., 2016). While some individuals remain near
colonies due to the prolonged breeding season, others, especially
non-breeders, disperse widely. GPS data have recorded post-breeding
movements up to 1,400 km (Weimerskirch et al., 2006), such mobility
could contribute to the regional circulation of resistant bacteria and
genetic elements across marine ecosystems influenced by
anthropogenic pollution.

The presence of blacrxy 15 in wild birds has been reported worldwide,
including Brazil (Guenther et al., 2012; Ben Yahia et al., 2018; Batalha de
Jesus et al., 2019; Zurfluh et al,, 2019; Beleza et al., 2024). These findings
collectively may indicate the widespread environmental circulation of this
clinically relevant resistance determinant. Our results provides important
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new insights into the genetic diversity and geographic spread of ESBL
genes among marine avifauna along the Brazilian coastline by confirming
the occurrence of blacrx a5 in the E magnificens population, and the
identification of the IncB/O/K/Z plasmid p99RCEF_blaCTX-M-15 adds
to the understanding of the diversity and distribution of resistance
elements in wildlife.

In summary, the first detection of ESBL-EC carrying blacrx u.15 and
a multidrug-resistant IncB/O/K/Z plasmid in E magnificens from the
Cagarras Islands underscores the interconnectedness of environmental,
animal, and human health. While our sample size was constrained by the
logistical challenges of accessing this protected marine environment, the
study’s principal contribution lies in documenting an ecological bridge for
a clinically important resistance gene rather than estimating prevalence.
The genomic evidence demonstrates mechanistic connectivity that
transcends sample size limitations, with the plasmids close structural
relationship to clinical isolates providing clear evidence of cross-
environmental exchange. These findings reinforce the importance of
wildlife surveillance in One Health AMR strategies and highlight the need
for continued monitoring of resistance dynamics in coastal ecosystems
impacted by human activities.
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