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Antibiotic resistance continues to erode the effectiveness of modern medicine,
creating an urgent demand for rapid and reliable diagnostic solutions.
Conventional diagnostic approaches, including culture-based susceptibility
testing, remain the clinical reference standard but are constrained by lengthy
turnaround times and limited sensitivity for early detection. In recent years,
significant progress has been made with molecular and spectrometry-based
methods, such as PCR and next-generation sequencing, MALDI-TOF MS,
Raman and FTIR spectroscopy, alongside emerging CRISPR-based platforms.
Complementary innovations in biosensors, microfluidics, and artificial
intelligence further expand the diagnostic landscape, enabling faster, more
sensitive, and increasingly portable assays. This review examines both
established and emerging technologies for detecting antibiotic resistance,
outlining their respective strengths, limitations, and potential roles across
diverse settings. By synthesizing current advances and highlighting future
opportunities, this review emphasizes complementarities among detection
strategies and their potential integration into practical diagnostic frameworks,
including in resource-limited settings.
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1 Introduction

Infectious diseases have shaped human history, causing devastating pandemics and
influencing medical advancements. The introduction of antibiotics in the early 1900s
dramatically reduced mortality from bacterial infections and revolutionized medicine
(Hutchings et al., 2019). However, this triumph has been overshadowed by the rapid
evolution of antibiotic resistance, which now threatens decades of progress and is
responsible for more than 1.14 million deaths annually, with projections exceeding 8
million by 2050 if urgent measures are not implemented (Li Z. et al., 2024; Naghavi et al.,
2024; Compaoré et al., 2024; Frieri et al., 2017; Maragakis et al., 2008).

Particularly concerning are the so-called ESKAPE pathogens: Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
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Pseudomonas aeruginosa, and Enterobacter species, which
account for a large share of healthcare-associated infections
(Daruka et al., 2025; Miller and Arias, 2024). The WHO’s
2024 Bacterial Priority Pathogen List classifies carbapenem-
resistant A. baumannii and third-generation cephalosporin-
or carbapenem-resistant Enterobacterales as critical priority
pathogens, while vancomycin-resistant E. faecium, carbapenem-
resistant P. aeruginosa, and methicillin-resistant S. aureus
(MRSA) are listed as high priority, reflecting their major clinical
impact and urgent need for new treatments (World Health
Organization, 2024). Local epidemiological studies corroborate
this threat: for example, in a 2025 surgical-site infection study
in Ethiopia, 84.4% of ESKAPE isolates were multidrug-resistant
(MDR), with A. baumannii showing 100% MDR rates (Seid
et al., 2025). Moreover, a “One Health” systematic review
in Africa (Khasapane et al., 2024) highlights the widespread
occurrence of these pathogens in humans, animals, food, and
environmental reservoirs, underscoring their persistence and
dissemination potential.

The emergence of antibiotic resistance is a multifaceted issue
driven by various factors. One of the most widely recognized
and publicized causes is the overuse of antibiotics, which exerts
a strong selective pressure by killing susceptible bacteria and
allowing resistant strains to thrive. These resistant bacteria not
only proliferate but also disseminate their resistance determinants
through horizontal gene transfer (HGT), thereby accelerating the
spread of resistance genes (Kunhikannan et al., 2021; Tripathi and
Tripathi, 2017). However, resistance is not solely a consequence
of modern antibiotic use. Notably, β-lactam, tetracycline, and
glycopeptide resistance genes have been identified in 30,000-
year-old permafrost sediments, suggesting that resistance is an
ancient phenomenon that predates clinical antibiotic application
(D’Costa et al., 2011). Nevertheless, human activities, particularly
in healthcare and agriculture, have dramatically accelerated its
global dissemination.

Given this background, effective detection and monitoring
are crucial. In this review, we provide a broad, narrative
synthesis of methods for detecting antibiotic resistance, from
classical culture-based approaches to advanced molecular and
computational techniques (Figure 1). Several reviews have
addressed different aspects of resistance detection, including
molecular techniques, agroecosystem surveillance, and rapid
point-of-care assays (Elbehiry et al., 2025; Yamin et al., 2023;
Kaprou et al., 2021; Dietvorst et al., 2020; Anjum et al., 2018;
March-Rosselló, 2017; Luby et al., 2016; McLain et al., 2016;
Aarts et al., 2005; Sundsfjord et al., 2004; Tan, 2003). Building
on these contributions, the present review provides an integrated
perspective on phenotypic, molecular, spectroscopic, biosensing,
microfluidic, and AI-enhanced approaches. We emphasize
diagnostic performance, workflow considerations, and feasibility
in resource-limited settings, supported by a comparative synthesis
of sensitivity, specificity, turnaround time, and costs, along
with a curated list of validated primers for high-priority
resistance genes. Taken together, this framework is intended
to guide both research and clinical applications by clarifying the
comparative strengths, limitations, and future potential of current
detection strategies.

2 Phenotypic methods for antibiotic
susceptibility testing

2.1 Traditional phenotypic methods for
antibiotic susceptibility testing

Phenotypic antimicrobial susceptibility testing (AST) remains
a cornerstone in clinical microbiology, providing direct insights
into bacterial responses to antibiotics. Despite the emergence
of molecular and rapid diagnostic tools, diffusion and dilution
methods continue to be widely employed due to their accessibility,
cost-effectiveness, and ability to provide actionable clinical data.
These techniques, standardized by organizations such as the
Clinical and Laboratory Standards Institute (CLSI) and the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST), allow for robust resistance surveillance and therapeutic
decision-making.

From an equipment perspective, traditional phenotypic AST
requires relatively basic laboratory infrastructure (e.g., laminar
flow hood, autoclave, incubator). Recent market estimates indicate
that laminar flow hoods cost between $6,000–$15,000 (Excedr,
2024). Microbiological incubators are comparatively less expensive,
typically ranging from $1,000 to $2,500 depending on size and
manufacturer (Labster, 2025). Autoclaves and sterilization systems
fall within the range of $5,000–$20,000 for standard models
(LabX.com, 2025c). In addition, biosafety cabinets (Class II), often
required in clinical microbiology settings, are priced between
$10,000 and $20,000 depending on brand and features (Excedr,
2024). Although the initial capital investment is substantial, once
infrastructure is established, diffusion- and dilution-based methods
remain among the most economical AST approaches.

2.1.1 Diffusion methods
Diffusion-based techniques, including the disk diffusion

method (Kirby-Bauer test) and the gradient diffusion method (E-
test), assess bacterial susceptibility by measuring inhibition zones
formed as antibiotics diffuse through agar media.

The Kirby-Bauer disk diffusion test is a standardized method:
following inoculation of a bacterial suspension onto agar,
antibiotic-impregnated disks are placed, incubated, and inhibition
zones are measured according to CLSI/EUCAST to classify isolates
as susceptible, intermediate, or resistant (Dopcea et al., 2020;
Wayne, 2025; Bauer et al., 1966). This method is widely used for
monitoring resistance trends due to its reproducibility, low cost,
and simple standardization (Hudzicki, 2009).

However, its primary limitation is the inability to provide
minimum inhibitory concentration (MIC) values (Gajic et al.,
2022), restricting its utility when precise dosing is needed.
The method also requires 18–24 h incubation, which may
delay therapeutic decision-making, especially in severe infections
requiring rapid de-escalation (Khan et al., 2019). Despite this,
it remains an invaluable tool for routine susceptibility testing
of major pathogens, including ESKAPE (Yin et al., 2021; Zhang
et al., 2021a; Yang et al., 2019; Mendiratta et al., 2008; Cauwelier
et al., 2004). Comparative evaluations have demonstrated very
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FIGURE 1

Phenotypic, molecular, and artificial intelligence-based methods used in the detection of antibiotic resistance. Phenotypic assays include
conventional techniques such as disk diffusion and dilution-based methods, as well as advanced analytical platforms including Raman spectroscopy,
Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry, Liquid Chromatography with tandem mass
spectrometry (LC-MS/MS), and Fourier Transform Infrared Spectroscopy (FTIR). Molecular methods encompass Polymerase Chain Reaction
(PCR)-based approaches, metagenomics, whole-genome sequencing (WGS), DNA microarrays, and CRISPR/Cas technologies. Microfluidic platforms
and biosensors represent versatile approaches that can be applied in both phenotypic and molecular contexts. The outermost circle illustrates
artificial intelligence models (including multilayer perceptrons, bi-directional long short-term memory, multi-branch architectures, convolutional
neural networks, residual neural networks, deep neural networks, autoencoders, and support vector machines). Unlike phenotypic and molecular
methods, these approaches are not stand-alone diagnostic tools but serve as computational frameworks that integrate with and enhance
conventional methods. Their role is to support data interpretation, increase accuracy, and enable automation. Created in BioRender. Aldea, A. (2025,
https://BioRender.com/mgjtdea).

high diagnostic performance of disk diffusion methods, with
sensitivity and specificity values frequently exceeding 95%. For
example, cefoxitin disk diffusion testing for methicillin resistance
in staphylococci achieved 98%–100% sensitivity and 96%–100%

specificity across multicenter trials (Broekema et al., 2009; Swenson
et al., 2005). Similarly, in Staphylococcus epidermidis, cefoxitin disk
diffusion and broth microdilution showed categorical agreement
values of 96%–98%, with low rates of very major and major errors,
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supporting their reliability for detecting mecA-mediated resistance
(Naccache et al., 2019).

From a cost perspective, disk diffusion is highly economical,
with material costs of approximately $2–$5 per test (Alizade
et al., 2016). In blood-culture extended-spectrum β-lactamase
(ESBL) workflows, a rapid direct test was estimated at $1.54 per
test, screening/confirmatory disk diffusion assay at $2.32 per test,
whereas a combined MIC screening plus ESBL E-test protocol
cost $49.65 per test (Cuellar-Rodríguez et al., 2009). Such low
per-sample costs explain its widespread use in both high- and
low-resource settings.

Unlike the Kirby-Bauer test, which provides qualitative or
semi-quantitative data, the E-test is a quantitative method that
determines the MIC of an antibiotic (Pfaller et al., 2010; Brown and
Brown, 1991). A strip with a gradient of antibiotic concentrations is
placed on agar, forming an inhibition ellipse; the MIC is read at the
intersection (Liu et al., 2014). The E-test offers superior precision
compared to disk diffusion, making it particularly useful for
MDR infections or when using antibiotics with narrow therapeutic
windows (Liu et al., 2014). However, it is more expensive than
disk diffusion (E-test strips cost approximately $2–$3 each) and
less scalable for high-throughput testing (Reller et al., 2009).
Despite these limitations, the E-test remains an essential tool for
resistance surveillance and clinical decision-making. Swenson et al.
(2005) confirmed its strong agreement with reference methods,
reporting sensitivities and specificities above 95% when compared
to broth microdilution.

2.1.2 Dilution-based methods
Dilution techniques, including agar and broth dilution

methods, offer precise MIC determinations and are considered
the gold standard for AST. They are particularly useful for
slow-growing or fastidious bacteria and for evaluating new
antimicrobials in research.

Agar dilution is a quantitative reference method, involving
the incorporation of serial antibiotic concentrations into agar
media. Multiple bacterial isolates are spot-inoculated onto each
plate, and the MIC is determined as the lowest concentration
that fully inhibits visible growth after incubation (Wayne, 2025).
This technique allows simultaneous testing of multiple isolates,
making it suitable for epidemiological surveillance and antibiotic
development studies. Comparative studies show strong correlation
with gradient methods such as the E-test, supporting its reliability
(Valdivieso-García et al., 2009; Glupczynski et al., 2002; Baker et al.,
1991). However, its labor-intensive nature and the need for multiple
agar plates per antibiotic limit its routine clinical use.

The broth dilution method is a quantitative and highly
standardized approach It can be performed as macrodilution or,
more commonly, broth microdilution in 96-well plates, offering
greater scalability for high-throughput workflows (Wayne, 2025).
Following inoculation, plates are incubated, and the MIC is
determined as the lowest antibiotic concentration that prevents
visible bacterial growth. Broth microdilution is the reference
method for susceptibility testing of diverse pathogens, including
both fast-growing and slow-growing species, as well as anaerobes
(Cordovana and Ambretti, 2020; Klare et al., 2005) and certain

fungi (Pfaller et al., 2010; Fleck et al., 2007). It also demonstrates
high concordance with agar dilution and E-test (Wu et al., 2015;
Pfaller et al., 2010; Baker et al., 1991). In recent comparative
evaluations, broth microdilution was confirmed as the most reliable
reference method, showing sensitivity and specificity values above
97%, and serving as the gold standard in colistin resistance testing
(Chauhan et al., 2022).

2.2 Modern phenotypic methods for
antibiotic susceptibility testing

Since traditional ASTs can take up to 72 h to provide
results (Weis et al., 2022), emerging phenotypic and spectroscopic
approaches aim to deliver faster susceptibility estimates using
growth surrogates or biochemical fingerprints. These remain
investigational, lacking standardized protocols and breakpoints,
and are usually benchmarked against CLSI/EUCAST methods.

2.2.1 Raman spectroscopy
Raman spectroscopy offers a label-free, non-destructive

strategy for the rapid phenotypic detection of antibiotic
resistance, based on the analysis of bacterial biochemical
fingerprints. By illuminating bacterial samples with a laser and
detecting inelastically scattered photons, characteristic Raman
shifts are recorded that reflect the molecular composition of
the cell (Novikov et al., 2022; Galvan and Yu, 2018). Each
bacterial species can produce unique Raman spectral patterns,
reflecting its composition of proteins, nucleic acids, lipids, and
metabolites (Novikov et al., 2022). Both conventional Raman
approaches (Verma et al., 2021) and surface-enhanced Raman
spectroscopy (SERS) (Ciloglu et al., 2021) have been applied to
distinguish resistant from susceptible strains based on subtle
chemical differences.

Because spontaneous Raman scattering is weak, signal
amplification strategies are required. SERS, for example, uses
metallic nanoparticles, typically silver or gold, that localize to
bacterial surfaces and amplify spectral signals from biomolecules
associated with resistance phenotypes (Ardelean et al., 2022; Kearns
et al., 2017). Resonance Raman spectroscopy can further boost
vibrational modes by aligning excitation wavelengths with bacterial
chromophores (Novikov et al., 2022).

Raman-based assays can also monitor antibiotic-induced
biochemical shifts, enabling rapid AST. Following antibiotic
exposure, susceptible cells show metabolic suppression, while
resistant bacteria maintain their biochemical profiles (Han et al.,
2020; Liu C. Y. et al., 2016). Although spectral differences can
be subtle, multivariate statistical tools and machine learning
(ML) algorithms have been employed for accurate classification
(Ogunlade et al., 2024; Novikov et al., 2022; Ciloglu et al., 2021).
SERS-based AST has successfully captured metabolic signatures
correlated with MIC values, often delivering results faster than
conventional methods (Liu C. Y. et al., 2016). In practice, isolates
are prepared as suspensions or mixed with nanoparticles (for
SERS), spectra are acquired within ∼1–2 min, preprocessed
(background subtraction, noise reduction, normalization), and
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analyzed with ML models, yielding predictions in <30 s per sample
when benchmarked against conventional AST (Lu et al., 2023;
Nakar et al., 2022; Ciloglu et al., 2021)

Recent studies support the clinical utility of Raman-based
platforms. In one example, multi-resistant Escherichia coli strains,
harboring extended-spectrum β-lactamase and carbapenemase
genes, were distinguished from sensitive isolates using a dual
Raman strategy. UV resonance Raman spectroscopy (UVRR)
enhanced nucleic acid and aromatic amino acid signals,
revealing a higher nucleic acid-to-protein ratio in resistant
strains. Complementary Raman microspectroscopy captured
single-cell spectral features. ML models trained on these
data achieved accurate classification, with spectral variation
reflecting both qualitative and quantitative differences in genomic
content due to the presence of multiple resistance determinants
(Nakar et al., 2022).

SERS coupled with deep neural networks (DNNs) has
also shown strong performance. In one study (Ciloglu et al.,
2021), MRSA and Methicillin-Sensitive S. aureus (MSSA) were
distinguished using SERS spectra acquired with silver nanoparticle
(AgNPs) substrates, capturing subtle differences in the chemical
composition of the bacterial cell walls. This occurs due to the
strong influence of the cell wall components on the SERS spectral
features, as silver nanoparticles tend to aggregate on the cell surface,
enhancing the Raman signal from this region (Efrima and Zeiri,
2009). A stacked autoencoder-based model trained on raw spectral
data achieved high classification accuracy between MRSA and
MSSA. Specifically, the SAE-based deep learning model reached
97.66% accuracy and an Area Under the Curve (AUC) of 0.99 in
distinguishing MRSA from MSSA (Ciloglu et al., 2021).

A novel Raman-based AST method utilizes deuterium
incorporation from heavy water (D2O) to track bacterial
metabolism. Live bacteria incorporate deuterium into C-D
bonds, producing distinct spectral peaks in the “silent” region
(∼2,040–2,300 cm−1) where there is little interference (Xu et al.,
2017). In the presence of an effective antibiotic, susceptible
bacteria’s metabolism slows dramatically, leading to a much
weaker C-D Raman signal, whereas resistant bacteria continue to
grow and incorporate D, yielding a strong C-D peak (Single Cell
Biotech, 2025). Using stimulated Raman scattering microscopy,
susceptibility profiles were generated within 2.5 h, with over 98%
classification accuracy for Mycobacterium tuberculosis, including
from direct sputum samples (Ogunlade et al., 2024).

Further validation has been reported across different
pathogens. Spencer et al. (2011) showed that Raman spectroscopy
identified MRSA vs. MSSA with 90.2% accuracy (sensitivity
96%, specificity 85%), and distinguished MRSA with reduced
susceptibility to vancomycin from standard MRSA with 96.3%
accuracy (sensitivity 100%, specificity 93%). Similarly, Lu et al.
(2023) demonstrated that a random forest classifier applied to
single-cell Raman spectra distinguished carbapenem-resistant A.
baumannii with 99.92 ± 0.06% accuracy, supported by Receiver
Operating Characteristic (ROC) analysis with an AUC of 1.0,
indicating near-perfect sensitivity and specificity. Reported limits
of detection (LoD) range from 103 CFU/ml to as low as 10–15
CFU/ml, depending on the specific platform and detection strategy
(Chang et al., 2019; Wang K. et al., 2018).

Raman instruments range from portable units at $10,000–
$50,000 to benchtop systems ($20,000–$200,000) and high-
end confocal/multi-laser platforms exceeding $400,000 (Barnett
Technical Services, 2025; Excedr, 2025b; Henderson, 2024).
Additionally, a low-cost ($5,000) portable Raman microscope
was developed for low-resource settings (Ogunlade et al., 2024).
Consumables vary: commercial SERS substrates cost <$2–$25 per
test (some >$100) (Thermo Scientific ProGolab, 2010), while low-
cost research substrates can be fabricated for $1.20 per substrate
(Yu et al., 2019) or even ∼$0.10 per mm2 (Kesava Rao et al., 2024).
Conventional Raman substrates (quartz, CaF2 slides) cost ∼$75–
$230 per unit (Corporation, 2025; Ltd, 2025a,b), but are reusable.

2.2.2 Matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry

Matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) mass spectrometry (MS) has advanced pathogen
identification since 1990s (Claydon et al., 1996; Holland et al.,
1996) and accelerated antimicrobial resistance (AMR) detection.
It works by mixing a sample, such as a bacterial colony, with a
matrix compound and using laser ionization to generate charged
protein fragments. These ions travel through a time-of-flight
tube, producing a unique mass spectrum or “fingerprint” of the
organism (Florio et al., 2020). For AMR testing, workflows typically
expose standardized inocula to antibiotics for 90 min–5 h, then
acquire paired spectra (with/without drug) using matrix-assisted
spotting. Susceptibility can be inferred from growth ratios or
entire spectra analyzed with ML (Lin et al., 2025; Ren et al., 2024;
Axelsson et al., 2020; Idelevich et al., 2018). Several approaches
have been developed, including bacterial growth detection after
antibiotic exposure (Idelevich et al., 2018), identification of
resistance-associated mass spectral profiles (Weis et al., 2022),
analysis of antibiotic modifications due to bacterial enzymatic
activity (Hrabák et al., 2013), and analysis of the proteomic changes
induced by the antibiotic exposure stress (Haider et al., 2025).
Compared to traditional antibiotic susceptibility tests and DNA
amplification, MALDI-TOF delivers faster results, often within
minutes once a colony is obtained (Kostrzewa et al., 2013).

Beyond its accuracy in species identification (Cassagne et al.,
2016; De Bruyne et al., 2011), MALDI-TOF has shown strong
performance in AMR detection, achieving near-perfect accuracy
in some contexts. For example, β-lactamase-mediated hydrolysis
assays reached 98% sensitivity and 100% specificity after 30 min
of incubation and 100% for both at 60 min. Direct-on-target
microdroplet growth assay (DOT-MGA) identified meropenem
resistance with 100% sensitivity and specificity in K. pneumoniae
and slightly lower in P. aeruginosa. Biomarker-based assays show
variable performance: 96% sensitivity and 73% specificity for
an Acinetobacter-derived cephalosporinase (ADC), or ∼100%
specificity of the phenol-soluble modulin (PSM)-mec peptide for
MRSA detection (Florio et al., 2020). Validation across clinical
samples is strong: MBT-ASTRA achieved 99% sensitivity/specificity
and 97% accuracy on 841 blood cultures (Axelsson et al., 2020),
while DOT-MGA confirmed 100% accuracy for K. pneumoniae
(after 4 h) and P. aeruginosa (after 5 h) (Idelevich et al., 2018).
ML applications have also proven promising, with accuracies of
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67%–97% in E. coli isolates (Lin et al., 2025) and Area Under the
Receiver Operating Characteristic Curve (AUROC) values ranging
from 0.80 to 0.95 in >1,000 S. epidermidis isolates (Ren et al., 2024).
Reported LoD typically range from ∼105 CFU/ml down to ∼103

CFU/ml when optimized workflows such as membrane filtration
are used, with most hydrolysis assays requiring standardized
inocula of ∼107–108 CFU/ml for reliable detection (Haider et al.,
2023; Ghebremedhin et al., 2016; Hrabák, 2014; Papagiannitsis
et al., 2015). However, the sensitivity of this method for detecting
resistance markers varies depending on the mechanism. While
enzymatic antibiotic degradation and abundant biomarkers are
easily identifiable (Hrabák et al., 2013), subtle changes such as point
mutations in target enzymes may not produce distinct spectra.
For example, fluoroquinolone resistance involves subtle amino acid
substitutions that alter DNA gyrase or topoisomerase IV without
producing a unique degradation product (Redgrave et al., 2014).
Rifampin resistance also results from point mutations that change
the structure of RNA polymerase but do not necessarily lead to
detectable enzymatic activity changes (Goldstein, 2014).

A key limitation of the technique is that it typically requires
an isolated colony to generate a high-quality spectrum, meaning a
cultivation step is necessary (Idelevich et al., 2018; De Bruyne et al.,
2011). Additionally, the mass spectrum can be significantly affected
by an insufficient or excessive sample amount (Liu et al., 2007).
Cost-wise, instruments are expensive, ranging from $200,000 to
$500,000 with annual maintenance of $25,000–$30,000 (Excedr,
2025a; Tran et al., 2015). However, per-test costs are low: $0.20–
$1.50 when analyzing bacterial colonies (Patel, 2013; Cherkaoui
et al., 2010), and $1.5–$7 for blood cultures depending on workflow
or kits used (Han et al., 2021; Zhou et al., 2017).

2.2.3 Liquid chromatography-tandem mass
spectrometry (LC-MS/MS)

LC-MS/MS integrates liquid chromatography (LC) for
molecular separation with MS for high-resolution detection,
typically employing electrospray ionization. It identifies proteins,
peptides, and metabolites by ionizing analytes, separating them by
mass-to-charge ratio, and fragmenting selected ions for structural
resolution (Grebe and Singh, 2011). This method offers exceptional
sensitivity, allowing for the identification of resistance markers and
antibiotic metabolites at sub-nanomolar concentrations (Mokh
et al., 2017; Wang et al., 2017). Recent studies have reported very
high diagnostic performance: for instance, LC-MS/MS showed a
sensitivity of 97.6%–100% and specificity of 91%–100% in detecting
carbapenemase-producing Enterobacterales (Li G. et al., 2022),
while for resistance mediated by the TetX enzyme (encoded by tetX
gene) the method achieved 98.9% sensitivity and 100% specificity
when compared to PCR (Zhang L. et al., 2024). Reported LoD
range from ∼107 CFU/ml in hydrolysis assays to ∼103 CFU/ml in
optimized targeted workflows (Foudraine et al., 2022; Peaper et al.,
2013).

LC-MS/MS has been applied in AMR research to detect key
resistance determinants in bacterial pathogens. For instance, a
proof-of-concept study demonstrated the ability of high-resolution
LC-MS/MS to identify four major carbapenemase enzymes (KPC,
NDM, VIM, and OXA-48) in E. coli and K. pneumoniae isolates

(Foudraine et al., 2019). More recently, LC-MS/MS was used
in a targeted proteomics approach (Foudraine et al., 2022)
to detect resistance markers in E. coli and K. pneumoniae
from positive blood cultures. This method enabled the rapid
identification of β-lactamases (e.g., SHV, CTX-M, KPC, NDM),
aminoglycoside-modifying enzymes, 16S rRNA methyltransferases,
and quinolone resistance mutations. Protein digestion and peptide
profiling yielded resistance signatures within ∼3 h, considerably
shortening turnaround time. Workflows generally involve either
short incubations (1–2.5 h) with antibiotics to detect enzymatic
degradation products, or protein extraction and tryptic digestion
( 3 h including LC-MS/MS run) for peptide analysis. Extracts are
separated on C18 columns and analyzed by MS/MS, with resistance
signatures identified through targeted transitions or multiplex
peptide profiling. This modular design supports both focused 1-
h assays (e.g., carbapenemase, tetX) and broader multiplex panels
covering dozens of determinants (Zhang L. et al., 2024; Foudraine
et al., 2022; Li G. et al., 2022; Foudraine et al., 2019).

Beyond resistance detection, LC-MS/MS is widely used for
antibiotic monitoring in clinical and environmental contexts. It
detects antibiotics and metabolites in complex samples, aiding
studies on degradation and resistance mechanisms (Yipel et al.,
2017; Blair et al., 2015; Fedorova et al., 2014). Instruments typically
cost $75,000–$500,000, depending on configuration and whether
new or refurbished (MarketsandMarkets, 2024).

2.2.4 Fourier-transform infrared (FTIR)
spectroscopy

Fourier-transform infrared (FTIR) spectroscopy has emerged
as a promising phenotypic tool for the rapid detection of antibiotic
resistance, leveraging biochemical alterations that accompany
resistance development. FTIR spectra reflect the molecular
composition of bacterial cells, capturing absorption peaks from
proteins, lipids, nucleic acids, and carbohydrates (Beć et al.,
2020). Because resistance often alters cell wall structure, enzyme
production, or lipid composition (Blair et al., 2015; Lin et al., 2015;
Garcia-Bustos and Tomasz, 1990), FTIR can detect these changes in
characteristic vibrational bands. Relevant regions include proteins
(1,500–1,800 cm−1) (Kariakin et al., 2002), carbohydrates (900–
1,200 cm−1) (Naumann, 2001), and fatty acids (2,800–3,100 cm−1)
(Shapaval et al., 2019).

Sample preparation is minimal: a dried film or bacterial
pellet is applied to an IR-transparent slide (e.g., ZnSe), and
spectra are collected in the 4,000–600 cm−1 range within
minutes (Maity et al., 2013). Typically, cells are concentrated,
spotted on ZnSe slides, air-dried, scanned (128 scans, 4
cm−1), preprocessed (baseline correction, normalization),
and analyzed with ML algorithms, enabling results in 20–40 min
(Abu-Aqil et al., 2024; Suleiman et al., 2022).

When paired with ML, FTIR can significantly enhance
diagnostic performance. For example, susceptibility of P.
aeruginosa was predicted in <20 min with 82%–90% accuracy,
81%–92% sensitivity, and 66%–79% specificity (Suleiman et al.,
2022). Similarly, E. coli strains were classified as resistant or
susceptible with ∼85% accuracy following 24-h incubation
(Sharaha et al., 2017). In a larger cohort, ESBL-positive E. coli
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were detected with 97%–99% sensitivity, 94% specificity, and
98% overall accuracy (Sharaha et al., 2019). A 2024 study on K.
pneumoniae analyzed >27,000 spectra from 636 isolates, reporting
>95% accuracy in strain identification and 74%–81% sensitivity
in resistance classification (Abu-Aqil et al., 2024). Suleiman et al.
(2021) further showed that FTIR microspectroscopy enabled the
detection of ESBL-producing K. pneumoniae with ∼89% accuracy,
∼88% sensitivity, and ∼89% specificity within 20 min after culture.
In addition, Wijesinghe et al. (2021) demonstrated that a portable
attenuated total reflectance (ATR)-FTIR system could classify
ceftriaxone-resistant E. coli harboring the blaCTX-M gene with
89.2% sensitivity and 66.7% specificity, suggesting the feasibility of
low-cost clinical deployment. Reported LoD range from 103 to 105

CFU/ml, with one recent study demonstrating detection at ∼104

CFU/ml in complex wound samples (Chen et al., 2022).
FTIR has also been applied in outbreak surveillance. In

one multicenter evaluation, the IR spectral clustering of clinical
isolates closely mirrored genotyping-based groupings, enabling
early recognition of epidemic strains. The technology has been used
to identify ESBL-producing K. pneumoniae and to build a national
spectral database in Israel, which subsequently facilitated the
detection of novel carbapenem-resistant clones (Lurie-Weinberger
et al., 2025).

Overall, FTIR offers a reagent-free, non-destructive platform
for detecting resistance (Salman et al., 2017). It supports early
phenotype identification, integrates into clinical workflows, and
is applicable to many pathogens. However, it requires prior
culturing, limiting direct-from-sample use (Abu-Aqil et al., 2024).
Spectral reproducibility is highly dependent on the standardization
of sample preparation and growth conditions, and spectral
interpretation requires advanced computational tools (Abu-Aqil
et al., 2024; Salman et al., 2017). Moreover, spectral shifts may
be non-specific, reflecting general physiological or metabolic
changes rather than directly indicating resistance mechanisms
(Jin et al., 2017). Instrumentation costs and the need for
technical expertise can also be barriers in resource-limited settings
(Suleiman et al., 2022).

Economically, FTIR systems cost $15,000–$100,000 (high-
end up to $150,000) (LabX.com, 2025g). Attenuated Total
Reflectance (ATR)-FTIR has negligible consumables, while
transmission mode using KBr pellets adds ∼$0.7/sample
(International Crystal Laboratories, 2025; Shepel et al., 2015) and
polytetrafluoroethylene infrared (PTFE IR) cards ∼$4 per sample
(International Crystal Laboratories, 2024), with costs depending
on substrate reuse policies.

3 Molecular methods to detect the
antibiotic resistance genes

Various methods have been developed over time to detect
antibiotic resistance genes (ARGs) in environmental or biological
samples. These include techniques like polymerase chain reaction
(PCR), quantitative PCR (qPCR), and digital PCR (dPCR)
using specific primers targeting ARGs; WGS; DNA microarray
technology; metagenomics; and the application of the CRISPR/Cas
system. Molecular approaches provide high sensitivity, specificity,

and rapid turnaround times, making them indispensable in clinical
and environmental surveillance of AMR.

3.1 PCR, qPCR and dPCR

PCR, invented in 1983 by Kary Mullis (Mullis et al.,
1986) amplifies specific DNA fragments through repeated cycles
of denaturation, annealing, and extension (Al-Zaidi et al.,
2022). qPCR (real-time PCR) enables DNA quantification using
fluorescent dyes (Heid et al., 1996), while dPCR partitions samples
into thousands of reactions, allowing absolute quantification
without standard curves (Vogelstein and Kinzler, 1999). Both
significantly improved ARG detection by increasing sensitivity
and precision. DNA extraction remains a critical step before
amplification, requiring optimized kits to minimize inhibitors.

Platform costs vary: conventional PCR machines cost $1,500–
$50,000 ($750–$25,000 for second hand), qPCR systems $8,000–
$100,000 ($2,500–$90,000 for second hand) (LabX.com, 2025e),
and dPCR units cost $50,000–$200,000 ($20,000–$100,000 for
second hand) (LabX.com, 2025f). Per-test costs range from $0.22 to
$10, depending on method and kit (Applied Biological Materials,
2025; Lab Manager, 2025; MilliporeSigma, 2025; Roberts, 2014).

While conventional PCR remains widely used, its qualitative
nature limits gene abundance analysis (Lin and Di, 2020). qPCR
improves upon this by enabling real-time quantification, offering
greater sensitivity and precision (Heid et al., 1996). dPCR advances
this approach by allowing absolute quantification without the need
for a standard curve (Gobbo et al., 2024), which is particularly
advantageous for detecting low-abundance ARGs in challenging
matrices such as wastewater (Ferraro et al., 2024; Maestre-
Carballa et al., 2024; Singh et al., 2024) and soil (Griffin et al.,
2019; Cavé et al., 2016). For example, Maestre-Carballa et al.
(2024) applied dPCR in a city-wide monitoring framework to
quantify sul2 and tetW genes in hospital wastewater and seawater,
reporting absolute abundances of 6,000–18,600 copies/ng DNA,
while metagenomics provided broader resistome coverage but with
lower sensitivity.

Clinical evaluations show variable performance. A one-step
digital droplet PCR platform applied directly to whole blood
achieved 100% sensitivity and 100% specificity for blaCTX-M,
blaKPC , blaOXA−48, mecA, and vanA (Abram et al., 2020). A
multiplex qPCR assay reached 97.44% sensitivity and 96.15%
specificity for mecA detection in clinical S. aureus isolates,
with an AUC of 0.98 for MRSA diagnosis (Lee et al., 2024).
In contrast, multiplex PCR on orthopedic infection samples
showed lower sensitivity (46%) but high specificity (95%),
varying by pathogen-antibiotic combination (e.g., 100% sensitivity
for oxacillin resistance in S. aureus, but 33% sensitivity for
aminoglycoside resistance in enterococci) (Sigmund et al., 2020).
Beyond these, Abram et al. (2020) developed a culture-free blood
dPCR platform able to detect resistant bacteria at 10 CFU/ml
within 1 h, with 100% sensitivity and specificity for key ARGs such
as blaCTX-M, blaKPC, blaOXA-48, mecA, and vanA. Reported LoD
vary across PCR platforms, typically ∼102–104 genome copies for
conventional PCR, ∼10–100 genome copies per reaction for qPCR,
and as low as 1–2 copies per reaction for dPCR (Keenum et al.,
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2022; Cavé et al., 2016; Chandrashekhar et al., 2015; Böckelmann
et al., 2009)

Multiplex PCR has enhanced ARG detection by enabling
simultaneous amplification of multiple genes (Wang et al., 2021;
Strommenger et al., 2003). Integration with metagenomics expands
resistome coverage (Sukhum et al., 2019), while combining
PCR with sequencing supports comprehensive resistome analysis.
Furthermore, high-throughput qPCR (HT-qPCR) allows parallel
detection of hundreds of ARGs with LoD as low as 10–4 ARGs per
16S rRNA gene, and has been applied globally in soils, wastewater,
and gut microbiomes (Waseem et al., 2019).

As a resource for the scientific community, we assembled in
Table 1 a consolidated set of validated primer sequences for the
most frequently reported ARGs (Zhuang et al., 2021). These genes
were selected based on their high prevalence, and the primer
pairs were taken from the original design publications, prioritizing
those most widely adopted in subsequent studies. By integrating
scattered information from diverse studies into a single curated
reference, this table is intended to facilitate assay design and
promote standardized approaches to ARG detection across clinical,
environmental, and research contexts.

Despite their broad applicability, each PCR-based method has
notable limitations. Conventional PCR is qualitative (Lin and Di,
2020); qPCR needs standard curves and is affected by inter-lab
variability (Maestre-Carballa et al., 2024; Quthama et al., 2024;
Abram et al., 2020); multiplex PCR has high specificity but variable
sensitivity across pathogen-antibiotic pairs (Sigmund et al., 2020);
HT-qPCR cannot optimize all primers individually and is expensive
(Waseem et al., 2019); dPCR, while highly sensitive, involves high
consumable costs, platform variability, and risk of false positives
(Maestre-Carballa et al., 2024; Abram et al., 2020; Whale et al.,
2016).

3.2 DNA microarray

DNA microarrays are compact analytical platforms that contain
thousands of immobilized DNA probes on a solid surface. They
enable high-throughput, parallel detection of specific genetic
sequences through hybridization-based methods, facilitating the
simultaneous interrogation of gene expression, genetic variation,
or microbial identity across complex samples (Heller, 2002). In
AMR research, DNA microarrays enable rapid genotypic profiling
of resistance genes across bacterial isolates in a single assay (Call
et al., 2003). Unlike PCR, which targets one or a few genes at a
time, microarrays permit broad-spectrum detection of resistance
determinants within a single assay simultaneously (Card et al.,
2013; Rasooly and Herold, 2008), offering a more comprehensive
assessment of resistomes.

In practice, microarray detection involves hybridizing
fluorescently labeled DNA from the test organism to
complementary oligonucleotide probes, each specific for a
known resistance gene or variant. Post-hybridization washing and
laser scanning reveal signal intensities, which are computationally
analyzed to infer gene presence (Gwida et al., 2020). This enables
detection of hundreds of resistance genes in one run (Fink et al.,
2019; Song et al., 2019). Workflows often combine ligation-based

hybridization, PCR amplification of perfectly matched products,
hybridization on coded array spots, and scanner-based signal
readout. Integrated controls at each stage ensure validity, and
complete results are typically available within 7–8 h (Braun et al.,
2024; Naas et al., 2011, 2010).

Clinical studies confirm diagnostic utility. For example, the
AMR Direct Flow Chip achieved 100% sensitivity and specificity
for detecting (blaCTX-M, blaSHV), carbapenemases (blaKPC , blaNDM,
blaVIM, blaOXA), mecA, and van genes across 210 isolates (Fink
et al., 2019), while Check-MDR CT103XL array showed over
95% concordance with WGS and multiplex PCR in identifying β-
lactamase genes in resistant Enterobacterales isolates (Brazelton de
Cardenas et al., 2021). Targeted arrays for carbapenemase genes
also showed over 96% agreement with phenotypic assays and
Sanger sequencing (Song et al., 2019). Naas et al. (2011) reported
that the Check-MDR CT102 microarray achieved 100% sensitivity
and 100% specificity for the detection of ESBL genes (blaTEM,
blaSHV, blaCTX-M) and carbapenemase genes (blaKPC, blaOXA-48,
blaVIM, blaIMP, blaNDM-1). In an earlier study, Naas et al. (2010)
showed that the ESBL/KPC array reached sensitivities of 93% for
blaTEM and 94% for blaKPC, while blaCTX-M and blaSHV were
detected with 100% sensitivity; specificity was 100% for all targets.
Bogaerts et al. (2011) confirmed 100% sensitivity and specificity
of the Check-MDR CT101 array for plasmid-mediated blaampC,
blaKPC, and blaNDM across 207 clinical isolates. Card et al. (2013)
evaluated an expanded array and reported over 91% correlation
with resistance phenotypes, with an overall specificity above 83%.
More recently, Braun et al. (2024) demonstrated that a DNA
microarray for carbapenemase detection achieved 92.9% sensitivity
and 87.7% specificity compared to whole-genome sequencing,
and 95.6% sensitivity and 95.2% specificity when compared with
phenotypic testing. Reported LoD are typically in the range of 101–
102 DNA copies/μl, with some platforms detecting as few as ∼30
copies/μl (Ma et al., 2020; Song et al., 2019).

However, arrays face key limitations: they rely on predefined
probe sets, potentially missing novel determinants and yielding
false negatives (Brazelton de Cardenas et al., 2021; Lu et al., 2014;
Card et al., 2013); cross-hybridization may cause false positives
(Card et al., 2013; Dally et al., 2013); and genotypic detection may
not reflect phenotypic expression (Rebelo et al., 2022; Yee et al.,
2021). Thus confirmatory phenotypic testing remains essential.
Accessibility is also limited by specialized hardware, computational
demands, and cost, and with the rise of cost-effective WGS, the
scalability of arrays is increasingly questioned (Strauß et al., 2016).

Economically, scanners cost $20,000–$150,000 (refurbished
$10,000–$75,000) (LabX.com, 2025b). Consumables are estimated
at $40–$50/sample for microbiome arrays (Thissen et al., 2019),
with overall assay costs reported at $150–400 per array (up to $500
for genome-wide arrays) plus ∼$325 for processing (Narrandes and
Xu, 2018).

3.3 Metagenomics

Metagenomics is the study of genetic material collected directly
from environmental samples, such as soil, water, or animal
gut, without the need to isolate or grow individual organisms
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TABLE 1 Primer pairs selected for the detection of ARGs reported in the analyzed studies.

Gene
familya

Gene Primer sequence Amplicon
size (bp)

Annealing
T◦C

References

AG-R aadA 5′-TGATTTGCTGGTTACGGTGAC-3′ 284 58◦C Van et al. (2008)

5′-CGCTATGTTCTCTTGCTTTTG-3′

armA 5′-CCGAAATGACAGTTCCTATC-3′ 774 55◦C Yan et al. (2004)

5′-GAAAATGAGTGCCTTGGAGG-3′

rmtB 5′-ATGAACATCAACGATGCCCT-3′ 769 55◦C Yan et al. (2004)

5′-CCTTCTGATTGGCTTATCCA-3′

BL-R blaCTX-M group 1b, c 5′-GACGATGTCACTGGCTGAGC-3′ 499 55◦C Pitout et al. (2004)

5′-AGCCGCCGACGCTAATACA-3′

blaCTX-M group 2b, c 5′-GCGACCTGGTTAACTACAATCC-3′ 351 55◦C Pitout et al. (2004)

5′-CGGTAGTATTGCCCTTAAGCC-3′

blaCTX-M group 3b, c 5′-CGCTTTGCCATGTGCAGCACC-3′ 307 55◦C Pitout et al. (2004)

5′-GCTCAGTACGATCGAGCC-3′

blaCTX-M group 4b, c 5′-GCTGGAGAAAAGCAGCGGAG-3′ 474 62◦C Pitout et al. (2004)

5′-GCTCAGTACGATCGAGCC-3′

blaIMP-1 5′-ATGAGCAAGTTATCTGTATTCT-3′ 741 50◦C Zarrilli et al. (2004)

5′-TTAGTTGCTTGGTTTTGATGG-3′

blaKPC
c 5′-ATGTCACTGTATCGCCGTCT-3′ 892 55◦C Ribeiro et al. (2016); Bradford

et al. (2004)
5′-TTTTCAGAGCCTTACTGCCC-3′

blaNDM
c 5′-AAATGGAAACTGGCGACC-3′ 439 52◦C Mlynarcik et al. (2016)

5′-TAAAATACCTTGAGCGGGC-3′

blaOXA-1 5′-ATATCTCTACTGTTGCATCTCC-3′ 619 54◦C Colom et al. (2003)

5′-AAACCCTTCAAACCATCC-3′

blaOXA-23 5′-AAGCATGATGAGCGCAAAG-3′ 1066 50◦C Donald et al. (2000);
Senkyrikova et al. (2013)

5′-AAAAGGCCCATTTATCTCAAA-3′

blaOXA-48 5′-GCTTGATCGCCCTCGATT-3′ 281 57◦C Dallenne et al. (2010)

5′-GATTTGCTCCGTGGCCGAAA-3′

blaOXA-58 5′-GTTGTATGTAGAGCGCAGAGG-3′ 91 60◦C Mentasti et al. (2020)

5′-ACCCACATACCAACCCACTTG-3′

blaSHV
c 5′-TCGCCTGTGTATTATCTCCC-3′ 768 50◦C Maynard et al. (2003)

5′-CGCAGATAAATCACCACAATG-3′

blaTEM-1 5′-CATTTTCGTGTCGCCCTTATTC-3′ 800 60◦C Dallenne et al. (2010)

5′-CGTTCATCCATAGTTGCCTGAC-3′

blaVIM-1
c 5′-TTATGGAGCAGCAACGATGT-3′ 920 55◦C Yan et al. (2001)

5′-CAAAAGTCCCGCTCCAACGA-3′

blaVIM-2
c 5′-AAAGTTATGCCGCACTCACC-3′ 865 55◦C Yan et al. (2001)

5′-TGCAACTTCATGTTATGCCG-3′

CN-R mcr-1 5′-CGGTCAGTCCGTTTGTTC-3′ 334 54◦C Liu Y.-Y. et al. (2016); Cao
et al. (2020)

5′-CTTGGTCGGTCTGTAGGG-3′

GP-R vanA 5′-GGGAAAACGACAATTGC-3′ 732 54◦C Dutka-Malen et al. (1995)

5′-GTACAATGCGGCCGTTA-3′

vanB 5′-ATGGGAAGCCGATAGTC-3′ 635 54◦C Dutka-Malen et al. (1995)

5′-GATTTCGTTCCTCGACC-3′

(Continued)
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TABLE 1 (Continued)

Gene
familya

Gene Primer sequence Amplicon
size (bp)

Annealing
T◦C

References

MC-R ereA 5′-AACACCCTGAACCCAAGGGACG-3′ 420 52◦C Sutcliffe et al. (1996)

5′-CTTCACATCCGGATTCGCTCGA-3′

ermA 5′-TCTAAAAAGCATGTAAAAGAA-3′ 645 52◦C Sutcliffe et al. (1996)

5′-CTTCGATAGTTTATTAATATTAGT-3′

ermB 5′-GAAAAAGTACTCAACCAAATA-3′ 639 45◦C Nguyen et al. (2009)

5′-AATTTAAGTACCGTTACT-3′

ermC 5′-TCAAAACATAATATAGATAAA-3′ 642 45◦C Nguyen et al. (2009)

5′-GCTAATATTGTTTAAATCGTCAAT-3′

ermF 5′-CGGGTCAGCACTTTACTATTG-3′ 466 64◦C Chung et al. (1999)

5′-GGACCTACCTCATAGACAAG-3′

ermG 5′-TCACATAGAAAAAATAATGAATTGCATAAG-3′ 652 55◦C Patterson et al. (2007)

5′-CGATACAAATTGTTCGAAACTAATATTGT-3′

ermQ 5′-CACCAACTGATATGTGGCTAG-3′ 154 60◦C Koike et al. (2010)

5′-CTAGGCATGGGATGGAAGTC-3′

mphE 5′-ATATGGACAAAGATAGCCCG-3′ 271 68◦C Rose et al. (2012)

5′-ATGCCCAGCATATAAATCGC-3′

msrE 5′-GCCGTAGAATATGAGCTGAT-3′ 395 68◦C Rose et al. (2012)

5′-TATAGCGACTTTAGCGCCAA-3′

PH-R cmlA 5′-TGTCATTTACGGCATACTCG-3′ 435 55◦C Guerra et al. (2001)

5′-ATCAGGCATCCCATTCCCAT-3′

floR 5′-GTCATTCCTCACCTTCATCCTAC-3′ 243 60◦C Khan et al. (2011)

5′-GACACCAGCACTGCCATTG-3′

SF-R sul1 5′-CGGCGTGGGCTACCTGAACG-3′ 433 69◦C Hoa et al. (2008)

5′-GCCGATCGCGTGAAGTTCCG-3′

sul2 5′-GCGCTCAAGGCAGATGGCATT-3′ 293 69◦C Hoa et al. (2008)

5′-GCGTTTGATACCGGCACCCGT-3′

sul3 5′-TCAAAGCAAAATGATATGAGC-3′ 787 50◦C Heuer and Smalla (2007)

5′-TTTCAAGGCATCTGATAAAGAC-3′

TE-R tetA 5′-GCTACATCCTGCTTGCCTTC-3′ 211 53◦C Nawaz et al. (2006)

5′-GCATAGATCGCCGTGAAGAG-3′

tetB 5′-CGCGGCATCGGTCATT-3′ 54 50◦C Walsh et al. (2011)

5′-GAACCACTTCACGCGTTGAGA-3′

tetC 5′-CTTGAGAGCCTTCAACCCAG-3′ 418 55◦C Ng et al. (2001)

5′-ATGGTCGTCATCTACCTGCC-3′

tetG 5′-GTCGATTACACGATTATGGC-3′ 432 57◦C Yu et al. (2005)

5′-CACTTGGCCGATCAGTTGA-3′

tetL 5′-ACTCGTAATGGTTGTAGTTGC-3′ 625 58◦C Prichula et al. (2016); Frazzon
et al. (2010)

5′-TGTAACTCCGATGTTTAACACG-3′

tetM 5′-GTGGACAAAGGTACAACGAG-3′ 406 55◦C Warsa et al. (1996)

5′-CGGTAAAGTTCGTCACACAC-3′

tetO 5′-AACTTAGGCATTCTGGCTCAC-3′ 515 55◦C Ng et al. (2001)

5′-TCCCACTGTTCCATATCGTCA-3′

(Continued)
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TABLE 1 (Continued)

Gene
familya

Gene Primer sequence Amplicon
size (bp)

Annealing
T◦C

References

tetQ 5′-AGAATCTGCTGTTTGCCAGTG-3′ 169 63◦C Aminov et al. (2001)

5′-CGGAGTGTCAATGATATTGCA-3′

tetW 5′-GAGAGCCTGCTATATGCCAGC-3′ 168 64◦C Aminov et al. (2001)

5′-GGGCGTATCCACAATGTTAAC-3′

tetX 5′-CAATAATTGGTGGTGGACCC-3′ 468 55◦C Ng et al. (2001)

5′-TTCTTACCTTGGACATCCCG-3′

MR cfr 5′-TGAAGTATAAAGCAGGTTGGGAGTCA-3′ 746 48◦C Kehrenberg and Schwarz
(2006)

5′-ACCATATAATTGACCACAAGCAGC-3′

mecA 5′-ATGCGCTATAGATTGAAAGGAT-3′ 163 60◦C Bergeron et al. (2015)

5′-TACGCGATATCTAACTTTCCTA-3′

aAG-R, aminoglycoside resistance; BL-R, β-lactam resistance; CN-R, colistin resistance; GP-R, glycopeptide resistance; MC-R, macrolide resistance; PH-R, phenicol resistance; SF-R,
sulfonamide resistance; TE-R, tetracycline resistance; MR, multiple resistance.
bGroup 1 includes blaCTX-M-1, -3, -10, -11, -12, -15, -22, -23, -28, -29, and -30; Group 2 includes blaCTX-M-2, -4, -7, and -20; Group 3 includes blaCTX-M-8; Group 4 includes
blaCTX-M-9, -13, -14, -16, -17, -18, -19, -21, and -27.
cTo differentiate between the various gene subtypes, sequencing of the gene is required.

(Hugenholtz and Tyson, 2008). Unlike PCR, which requires prior
sequence knowledge, metagenomics allows untargeted detection
of both known and novel ARGs, expanding our understanding of
AMR dissemination. By leveraging high-throughput sequencing,
it captures the total genomic content, including uncultivable
microorganisms, providing a comprehensive view of microbial
diversity and resistance (Handelsman, 2004).

Three complementary strategies are commonly used: amplicon
sequencing (e.g. 16S/ITS/18S) for taxonomic profiling but limited
ARG insights (Matchado et al., 2024); shotgun sequencing, which
reconstructs community structure and detects known and novel
ARGs, often linking them to mobile genetic elements (MGEs)
or specific hosts (Usyk et al., 2023; Quince et al., 2017); and
functional metagenomics, which bypasses sequence databases
entirely by cloning environmental DNA fragments into expression
vectors and selecting under antibiotic pressure. This experimental
framework has proven especially powerful in uncovering novel
resistance determinants that remain invisible to purely sequence-
based approaches (Willms et al., 2019; Dos Santos et al., 2017).

High-quality DNA extraction is the first step and must
maximize yield, particularly in low-abundance carriers of ARGs
(Bag et al., 2016). Library prep, purification, and quality control
typically take 3–9 h, sequencing 6–48 h depending on platform,
and data analysis another 4–5 h (Campos-Madueno et al., 2024).
Illumina short reads provide high accuracy (Brown et al., 2021),
while long-read platforms [PacBio (Simões et al., 2016), Oxford
Nanopore (Ashton et al., 2015)] reconstruct full-length genes
and MGEs. The sequencing process generates millions of short
DNA fragments, each representing a part of a microbial genome,
which must then be assembled for analysis (Shendure et al.,
2017). Once sequencing data are generated, analysis typically
begins with quality control and trimming [e.g. FastQC (Leggett
et al., 2013), Trimmomatic (Bolger et al., 2014), Cutadapt (Martin,
2011)], followed by assembly and binning using tools such as
MEGAHIT (Li et al., 2015), metaSPAdes (Nurk et al., 2017)
or MetaBAT2 (Kang et al., 2019). These workflows can also

reconstruct metagenome-assembled genomes (MAGs), providing
higher-resolution insights into individual community members
and their associated ARGs (Parks et al., 2017). Taxonomic profiles
are then inferred with classifiers like Kraken2 (Wood et al.,
2019), Kaiju (Menzel et al., 2016) or MetaPhlAn 3 (Beghini
et al., 2021), while ARGs are annotated with specialized pipelines
including resistance gene identifier (RGI) (CARD) (Alcock et al.,
2023), AMRFinderPlus (Feldgarden et al., 2019), DeepARG
(Arango-Argoty et al., 2018) or ARGs-OAP (Yin et al., 2023).
Increasingly, integrated platforms such as MG-RAST (Meyer et al.,
2008), QIIME2 (Bolyen et al., 2019) or nf-core/mag (Krakau
et al., 2022) provide streamlined, end-to-end workflows. Together,
these approaches yield a comprehensive picture of resistome
composition, diversity and mobility.

Sequencing platforms are costly: $50,000–$1,000,000 for new
systems, $10,000–$200,000 for refurbished (LabX.com, 2025a).
However, portable options such as Oxford Nanopore’s MinION
(∼$3,000) broaden accessibility (Oxford Nanaopre Technologies,
2025), making real-time, field-deployable metagenomic sequencing
accessible to smaller laboratories or resource-limited settings.
Consumables remain significant, with reported costs of $130 (for
multiplexed runs) to $685 (for single-sample processing) per run
(Govender et al., 2021).

Metagenomics has been used to profile ARG diversity in
WWTPs (Li Z. et al., 2024; Guo et al., 2017), farms (He et al.,
2019; Van Gompel et al., 2019), and aquatic ecosystems (Bai et al.,
2019), all major reservoirs for resistance dissemination. In clinical
microbiology, it has tracked gut resistome shifts under antibiotic
exposure (Xu et al., 2020) and transmission of ARGs between
livestock and humans (Napit et al., 2025). Importantly, it links
ARGs to MGEs such as plasmids, transposons, and integrons
(Inda-Díaz et al., 2023), and reveals novel genes in hard-to-culture
microbes (Suenaga, 2012).

Recent clinical studies have assessed the diagnostic accuracy
of metagenomics for AMR prediction. Gan et al. (2024)
reported that metagenomic next-generation sequencing (mNGS)
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achieved a sensitivity of 67.74% and a specificity of 85.71% for
carbapenem resistance overall, with particularly high sensitivity
for A. baumannii (94.74%). Street et al. (2022) demonstrated that
nanopore metagenomic sequencing predicted 87% of resistant and
100% of susceptible phenotypes in orthopedic device infections,
corresponding to a high negative predictive value. Similarly, Serpa
et al. (2022) showed that for lower respiratory tract infections,
metagenomics achieved a sensitivity of 70% and specificity of
95% for Gram-positive bacteria, and 100% sensitivity but lower
specificity (64%) for Gram-negative bacteria. Campos-Madueno
et al. (2024) further evaluated Nanopore sequencing for detection
of blaCTX-M and blaDHA genes in stool, finding that native
metagenomics had 61.1% sensitivity and 100% specificity, while
a pre-enrichment approach improved sensitivity to 81.5% but
reduced specificity to 75%.

Although metagenomics provides unmatched insights into
the distribution and transmission of ARGs, its application is
limited by high costs, computational requirements, and complex
interpretation (Greninger, 2018). It may also detect DNA from
non-viable organisms or contaminants (Street et al., 2022),
has limited sensitivity, and turnaround times of 24–48 h
(Greninger, 2018).

3.4 Whole genome sequencing (WGS)

WGS for antibiotic resistance detection involves determining
the complete DNA sequence of a bacterial genome (Köser
et al., 2014), then using bioinformatics analysis to identify
genetic determinants of antibiotic resistance (Mason et al.,
2018). In practice, DNA from isolates (or directly from samples
in metagenomic workflows) is sequenced on high-throughput
platforms (Brown et al., 2021; Simões et al., 2016; Ashton et al.,
2015), and reads are mapped to reference genomes or assembled
de novo. Resistance genes are identified through databases such as
ResFinder (Bortolaia et al., 2020) or CARD (Alcock et al., 2023).

Typical workflows include DNA extraction, library prep,
sequencing, quality control, and mapping or de novo assembly,
followed by resistance gene screening and prediction of
susceptibility (Ding et al., 2025; Shelburne et al., 2017; Walker et al.,
2015; Tyson et al., 2015; Stoesser et al., 2013). Turnaround time
depends on the platform: Illumina requires at least one day, while
Oxford Nanopore can complete workflows in 7–9 h, with resistance
gene detection reported in under 1 h (Ali et al., 2024; Taxt et al.,
2020). Costs are also platform-dependent. For example, Mellmann
et al. (2016) estimated sequencing expenses at approximately
e202.49 per bacterial isolate in a hospital-based setting, whereas
Bruzek et al. (2020) showed that streamlined protocols on the
Illumina iSeq 100 can reduce costs to around $50–100 per sample.
The investment costs for sequencing instruments themselves have
been addressed earlier in this review.

WGS offers major advantages: it is untargeted and detects
all resistance determinants in a genome, including novel genes,
eliminating the need for multiple assays (Köser et al., 2014).
Concordance with phenotypic profiles is generally high: WGS
predicted 89.2% of M. tuberculosis phenotypes with 92.3%

sensitivity and 98.4% specificity (Walker et al., 2015); achieved
87% sensitivity and 98% specificity for β-lactams in Gram-negative
pathogens (Shelburne et al., 2017); and reached ∼99% sensitivity
and ∼98% specificity for MDR E. coli and K. pneumoniae (Tyson
et al., 2015; Stoesser et al., 2013). Collectively, these studies indicate
sensitivities and specificities above 90%, often exceeding 95%.

In addition to detecting whether an organism is resistant,
WGS can elucidate the underlying mechanisms, such as point
mutations or MGEs responsible for resistance. For instance,
sequencing Helicobacter pylori can reveal mutations in 23S rRNA
or gyrA genes that account for clarithromycin or fluoroquinolone
resistance (Fauzia et al., 2023). Moreover, WGS facilitates high-
resolution phylogenetic analyses, enabling researchers to trace
transmission pathways and evolutionary relationships between
isolates. In the context of resistance detection, such analyses
provide traceability of resistance determinants, revealing whether
they arise through clonal spread, HGT, or de novo mutation,
and showing how they disseminate in time and space. These
insights support outbreak investigations and infection control
measures by distinguishing between imported and locally acquired
strains, as demonstrated in studies of MRSA, penicillin-resistant
Streptococcus pneumoniae, vancomycin-resistant Enterococcus spp.,
and fluroquinolone-resistant Clostridium difficile (Waddington
et al., 2022).

Recent applications highlight utility across contexts. In
Shenzhen, WGS of 282 M. tuberculosis isolates showed that 80%
of clusters shared identical resistance mutations, indicating clonal
transmission; WGS-based susceptibility testing also outperformed
conventional methods in some patients (Ding et al., 2025). In
Benin, WGS of 19 ESBL-producing E. coli from surgical infections
revealed multiple β-lactamase genes (blaCTX-M-15, blaOXA-1,
blaOXA-181, blaTEM-1, and blaCMY-42), accounting for resistance
to third-generation cephalosporins. Additionally, aminoglycoside
resistance was linked to the presence of modifying enzyme genes
such as aph(3”)-Ib and aph(6)-Id (Yehouenou et al., 2021). In
agroecosystems, WGS traced 361 ARGs across poultry, farm
workers, and environments, many shared via plasmids and
transposons (Peng et al., 2022).

Despite its advantages, WGS faces several limitations. Low-
abundance variants or genes in repetitive regions may be
missed, and presence of genes does not always imply expression
(Verschuuren et al., 2022; Zwe et al., 2020; Cohen et al., 2019).
Its accuracy is limited by dependence on existing reference
databases, so standard WGS cannot by itself detect novel or
poorly characterized resistance mechanisms. Several experimental
and computational strategies have been developed to address
this gap. These include functional metagenomics, which enables
the discovery of previously unknown resistance determinants
(Zwe et al., 2020; Cohen et al., 2019; Dos Santos et al., 2017),
heterologous expression screening of metagenomic libraries (Gaida
et al., 2015), and transposon mutagenesis approaches such as
Tn-seq or TraDIS that reveal previously unrecognized resistance
loci (Fernández-García et al., 2024; Yasir et al., 2020). Genome-
resolved metagenomics (MAGs, Hi-C, and single-cell sequencing)
can further assign novel ARGs to their microbial hosts (McCorison
et al., 2025; Kawano-Sugaya et al., 2024; Goodarzi et al., 2022).
On the computational side, ML classifiers and protein structure
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modeling can predict resistance determinants even when sequence
similarity to known genes is low (Rannon et al., 2025; Olatunji
et al., 2024; Wee and Wei, 2024; Yang et al., 2023). Such strategies,
however, do not overcome all limitations. Computational demands,
infrastructure, and bioinformatics expertise remain barriers for
clinical labs (Le et al., 2024; Waddington et al., 2022; Wyres
et al., 2014). Costs and turnaround are still higher than phenotypic
methods, and most workflows require prior culture (Hassall
et al., 2024; Waddington et al., 2022; Ellington et al., 2017).
Moreover, standardization is lacking. There are no universally
accepted protocols or regulatory-approved pipelines for clinical
interpretation, and discrepancies can arise between laboratories
in resistance gene detection and interpretation, mainly due to
differences in bioinformatic pipelines, leading to inconsistent
results (Hassall et al., 2024; Verschuuren et al., 2022; Waddington
et al., 2022; Ellington et al., 2017). In metagenomic applications,
WGS struggles to assign resistance genes to specific pathogens
within complex microbial communities, complicating clinical
decision-making (Chen et al., 2025; Abramova et al., 2024).

3.5 CRISPR/Cas-based detection

The CRISPR/Cas system, originally identified as an adaptive
immune mechanism in bacteria (Bolotin et al., 2005; Mojica et al.,
2005), has been adapted into a highly sensitive and specific tool
for detecting ARGs. Unlike traditional PCR-based assays, which
rely on DNA amplification, CRISPR diagnostics leverage targeted
enzymatic cleavage to detect ARGs directly at the genetic level
(Zhang et al., 2021b). For example, Müller et al. (2016) developed
a CRISPR/Cas9-based method to detect plasmid-borne ARGs by
targeting and cutting plasmid DNA carrying the gene of interest.
In this approach, a guide RNA (gRNA) specific to the resistance
gene directs the Cas9 enzyme to cleave the plasmid, linearizing it at
the gene’s location. The DNA is then stained with fluorescent dyes
and stretched in nanofluidic channels, where optical DNA mapping
generates a unique barcode. The position of the cuts is analyzed,
and if consistent breaks occur at the same location, the presence of
the targeted resistance gene is confirmed.

Finding Low Abundance Sequences by Hybridization
(FLASH) (Quan et al., 2019) is a CRISPR-Cas9-based diagnostic
tool that enriches ARG fragments for sequencing, allowing
multiplex detection of thousands of genes directly from clinical
samples. FLASH has successfully identified mecA in MRSA and
vanA in Enterococcus faecium, while FLASH-TB (Tram et al.,
2023) was adapted to drug-resistant M. tuberculosis, detecting
resistance directly from sputum. Beyond Cas9-based detection,
CRISPR-Cas12a has been used because of its collateral cleavage
activity, which generates fluorescence upon target binding. In
A. baumannii, Cas12a enabled rapid identification of multiple
β-lactamase genes in one reaction, minimizing interference from
primer dimers and offering high specificity (Wang et al., 2021).
Moreover, Gong et al. (2022) reported an recombinase polymerase
amplification (RPA)-Cas12a assay for mcr-1 with 1.6 CFU/reaction
sensitivity, completing the test in < 1 h. Similarly, Li K. et al. (2024)
reached 100% sensitivity/specificity for blaKPC in 80 isolates, and

Cao et al. (2023) reported 100% accuracy for mecA detection in
111 S. aureus isolates.

A recent innovation involves the Cas14VIDet system, which
integrates ultrafast PCR with CRISPR/Cas14 for rapid, point-of-
care detection of ARGs. Unlike Cas9 and Cas12 systems, Cas14
does not require a protospacer adjacent motif (PAM), allowing
flexible target recognition and enabling the detection of single-
nucleotide polymorphisms with high specificity. This method was
successfully applied to identify levofloxacin resistance mutations
in H. pylori, achieving 100% sensitivity and specificity in clinical
samples, with results visible within 10 min by the naked eye (Lai
et al., 2025).

Across platforms, workflows generally include nucleic
acid extraction, gRNA design, and pre-amplification [PCR,
RPA, or loop-mediated isothermal amplification (LAMP)].
Activated CRISPR complexes cleave labeled reporters, producing
fluorescence or lateral-flow signals (Lai et al., 2025; Li K. et al.,
2024; Gong et al., 2022). In contrast, Cas9-based platforms such
as FLASH serve primarily as enrichment tools for next-generation
sequencing panels of ARGs (Tram et al., 2023; Quan et al., 2019).
Reported turnaround times ranges from <10 min for Cas14 assays
(Lai et al., 2025), ∼1 h for RPA-Cas12a (Gong et al., 2022), up to 2 h
for multiplex PCR-Cas12a approaches (Wang et al., 2021), whereas
Cas9-based NGS workflows remain longer due to sequencing
requirements (Tram et al., 2023; Quan et al., 2019).

From a practical perspective, required equipment is
modest: a dry bath [∼$600–$1,200 (USA Scientific, 2025b)],
microcentrifuge [∼$200–$800 (Laboratory Supply Network,
2025)], and micropipettes [∼$1,000–$2,000 (USA Scientific,
2025a; Pipette Supplies, 2025)] (Zhou et al., 2024). A low-cost
fluorescence viewer [USD $35 (miniPCR bio, 2024)] can be
optionally used for endpoint readout, while a biosafety cabinet
is required when handling clinical isolates. For more advanced
applications, laboratories can integrate additional devices such as
an isothermal fluorometer [∼$5,600–$6,400 (Bimedis, 2024)] or
a microplate fluorescence reader [∼$10,000–$30,000 (LabX.com,
2025d)], the latter of which can be replaced by a qPCR system if
already available, thereby reducing costs.

CRISPR-based diagnostics represent a highly promising
approach for detecting antibiotic resistance, offering multiple
advantages over conventional molecular and phenotypic methods.
Technically, CRISPR systems such as Cas9, Cas12, Cas13, and
Cas14 demonstrate exceptional specificity by using programmable
guide RNAs to recognize and cleave resistance-associated
sequences with single-nucleotide resolution, enabling detection
of even subtle polymorphisms (Agha et al., 2025; Lai et al.,
2025). Cas13a-based assays also achieved high accuracy: a
LAMP-Cas13a assay detected OXA-48 and GES carbapenemases
with 100% sensitivity/specificity at ∼e10 per reaction (Ortiz-
Cartagena et al., 2023), while an RPA-Cas13a assay for blaKPC
reached 96.5% sensitivity and 100% specificity in clinical
isolates (Liang et al., 2023). Reported LoD range from ∼103–
10 gene copies, depending on the specific Cas system used
(Qian et al., 2023; Kaminski et al., 2021).

Compared with culture-based, PCR, or WGS methods, CRISPR
offers faster turnaround times (Agha et al., 2025; Lai et al., 2025;
Tram et al., 2023), making it ideal for point-of-care applications.
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CRISPR diagnostics are also adaptable and scalable. They can be
designed to detect a wide range of resistance genes simultaneously
(Quan et al., 2019) and are increasingly being integrated into
portable, point-of-care platforms (Agha et al., 2025; Lai et al., 2025).

However, the limitations of CRISPR-based detection systems
still restrict routine use: most assays require nucleic acid extraction
and pre-amplification (Ortiz-Cartagena et al., 2023; Liang et al.,
2023; Gong et al., 2022); they depend on prior sequence knowledge,
limiting novel gene discovery (Quan et al., 2019); off-target or
background signals can occur in complex samples (Müller et al.,
2016); PAM requirements constrain Cas9/Cas12, though Cas14
overcomes this (Lai et al., 2025); and most studies validate only
single genes or small cohorts, limiting scalability (Lai et al., 2025).

4 Advanced biosensing and
nanotechnological platforms for
antibiotic resistance detection

4.1 Microfluidic lab-on-chip platforms

Microfluidic platforms are miniaturized analytical systems that
handle μl-nL volumes in microscale channels and integrate sample
preparation, reaction, separation, and detection on a single chip
(Wu and Mu, 2024; Haeberle and Zengerle, 2007). Rather than
constituting detection methods themselves, microfluidic devices
function as enabling platforms that host and accelerate established
genotypic (e.g., growth monitoring, viability assays) approaches
in a miniaturized and integrated format. By reducing assay
volumes and providing precise control of experimental conditions,
microfluidics can shorten turnaround times, improve sensitivity,
and minimize reagent use (Nguyen et al., 2023). Microfluidic AST
encompasses both genotypic assays, including on-chip PCR or
isothermal amplification for rapid resistance gene detection, and
phenotypic assays that monitor bacterial growth or viability in the
presence of antibiotics within microchambers or droplets (Kaprou
et al., 2021). High surface-to-volume ratios accelerate diffusion and
reaction kinetics, enabling single-cell resolution and the detection
of heterogeneous resistance phenotypes (Wu and Mu, 2024).

A representative example is the Light Forge platform,
developed for tuberculosis drug-resistance testing. Miniaturization
into nanoliter reactors reduced reagent consumption nearly 1,000-
fold, and high-resolution melting analysis (HRMA) costs only
about $0.30 per reaction. The device relied on low-cost components
(21-MP camera, fluorescent lamp, simple thermal block, basic
computer interface), making it an affordable alternative to
commercial real-time PCR systems (Mbano et al., 2020). Similarly,
a smartphone-based imaging flow cytometry assay for urinary
tract infections eliminated fluorescence labeling and washing
steps, using probe-coated microparticles and an inexpensive
Complementary Metal-Oxide-Semiconductor (CMOS) phone
camera with a 3D-printed dongle. The test cost just $0.26 per
sample and delivered rapid, sensitive detection (Wu et al., 2018).

Several recent studies illustrate the versatility of this approach.
Song et al. (2022) described a 16-channel chip with freeze-
dried antibiotics pre-loaded in 15 μm chambers, enabling rapid
susceptibility testing in 30 min-2 h with minimal preparation.

Kandavalli et al. (2022) designed arrays of 3,000 microtraps (1.25
× 1.25 × 50 μm) that retained individual cells. Growth rates with
or without antibiotics were measured in ∼60 min, followed by
species identification via fluorescence in situ hybridization (FISH)
targeting 16S/23S rRNA, producing species-specific susceptibility
profiles in ∼2 h. Automated segmentation and growth-rate analysis
were facilitated by a deep learning model (Omnipose).

Other designs emphasize throughput and MIC determination.
Nguyen et al. (2023) developed a ladder-shaped microchannel chip
for two-fold serial antibiotic dilutions, reducing AST turnaround
from ∼16–20 h to 4–5 h, with over 90% concordance to
conventional methods, with a reported LoD of ∼105 CFU/ml when
testing directly from urine. Azizi et al. (2021) introduced an egg-like
multivolume microchamber (EL-MVM2) design, in which 10 min
of diffusion from a stock solution generated a broad concentration
gradient; fluorescence readouts predicted susceptibility with >97%
accuracy. Their earlier N-3M nanoliter platform (Azizi et al., 2018)
used resazurin reduction to report growth within 1–3 h. More
recently, Wat et al. (2025) described the Self-Dilution for Faster
AST (SDFAST) SlipChip, where sliding two microchips produced
an antibiotic dilution series within seconds; after 4–6 h incubation,
a WST-8 colorimetric assay determined MIC values, achieving
∼92% agreement with reference methods for A. baumannii, E. coli,
K. pneumoniae, and Staphylococcus spp.

Microfluidics also support genotypic detection. Real-time
PCR chips can multiplex resistance genes, as shown by a
micro/nanofluidic chip detecting carbapenemase and ESBL genes
from cerebrospinal fluid within 1 h with ∼94% concordance to
culture (Zhang et al., 2018). The cartridge-based ePlex system
identified bloodstream pathogens and blaCTX-M, vanA, mecA
genes with 100% accuracy (Bryant et al., 2020). Also, Wu
et al. (2022) demonstrated that a microfluidic chip-based LAMP
platform for carbapenemase genes achieved 97.7% sensitivity and
78.8% specificity retrospectively, and in prospective testing on
blood cultures reached 100% sensitivity and 93.2% specificity,
with an overall accuracy of 94%. Another LAMP device
simultaneously identified Staphylococcus spp. (femA gene) and
methicillin resistance (mecA gene) directly from cerebrospinal
fluid, distinguishing MRSA from MSSA in ∼70 min (Meng et al.,
2020). A portable centrifugal 24-chamber LAMP disc, pre-loaded
with primers, detected Mycoplasma pneumoniae, S. aureus, and
MRSA at a LoD of ∼10 DNA copies, giving <1 h results and
showing high concordance with PCR.

Emerging CRISPR-based microfluidic assays promise even
greater analytical sensitivity. For instance, a PCR-Cas12a
fluorescence assay detected blaOXA-1 gene at ∼1.25 copies in <70
min (Tyumentseva et al., 2025). The bCARMEN system combined
droplet microfluidics with Cas13 for multiplexed detection of 27
resistance determinants, including mecA/mecC, van genes, blaKPC,
blaNDM-1, blaVIM, blaIMP, oxa48-like, blaCTX-M-15, and mcr1,
with 100% accuracy. A simplified CARMEN v2 used pre-loaded,
lyophilized microarrays and smartphone-based fluorescence
readout in <3 h, highlighting the potential for near-patient testing
(Thakku et al., 2022).

Compared to conventional AST, microfluidic systems
consistently shorten turnaround to hours rather than days. The
QuickMIC platform reached 95.6% essential and 96.0% categorical
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agreement with broth microdilution, with only 1.0% very major
errors and a mean time of 3 h 13 min (Berinson et al., 2024).
Similarly, the QMAC-dRAST platform achieved 96.3% categorical
agreement, with very major error rates of only 0.7% for Gram-
negatives and 2.2% for Gram-positives, delivering susceptibility
results within 6–7 h for most blood cultures (Christensen et al.,
2021). Miniaturization of assay volumes reduces sample and
reagent requirements while maintaining analytical performance
(Wu and Mu, 2024; Nguyen et al., 2023; Azizi et al., 2021,
2018), and the ability to confine single bacterial cells within
microchambers or droplets enables the detection of rare resistant
subpopulations that might be overlooked by bulk culture methods
(Kandavalli et al., 2022). Parallelization and on-chip concentration
gradients enable simultaneous multi-drug testing and rapid MIC
determination (Wat et al., 2025; Nguyen et al., 2023; Azizi et al.,
2021), while compact cartridge-based formats further support
point-of-care implementation (Bryant et al., 2020; Meng et al.,
2020; Huang et al., 2017).

Despite these advantages, several challenges hinder widespread
clinical adoption. Processing of raw clinical samples on-chip is
difficult, and incomplete integration of filtration or enrichment
steps risks clogging and biofouling (Wu and Mu, 2024). Many
systems still depend on external pumps, precision controllers or
advanced imaging, which adds operational complexity and cost
(Wu and Mu, 2024). Reproducibility and large-scale manufacturing
require further optimization, and reliance on primers, probes, or
antibodies can restrict pathogen coverage and raise consumable
costs. Future designs must focus on robust, multiplexed, and
flexible assays to maximize clinical utility (Thakku et al., 2022;
Kaprou et al., 2021; Zhang et al., 2018).

4.2 Optical and electrochemical
biosensing approaches

Biosensors couple a biological recognition element with a
physical transducer to produce a measurable signal, enabling rapid
and specific detection of bacterial pathogens and their antibiotic-
resistance determinants. Among available formats, optical and
electrochemical biosensors are the most extensively investigated
for clinical and environmental applications, offering miniaturized,
low-sample-input assays that can bypass culture and deliver
actionable results on short timescales (Laliwala et al., 2024;
Magnano San Lio et al., 2023). From a cost standpoint, an m-
LAMP-LFB (lateral flow biosensor) test was estimated at $6.5 in
total (∼$1 for DNA extraction, ∼$3.5 for LAMP, and ∼$2 for
the lateral flow biosensor strip) (Chen et al., 2020). Biosensors
themselves act as detection methods by converting biorecognition
events into measurable optical or electrochemical signals, yet
many recent formats have expanded into hybrid platforms that
incorporate molecular amplification or enzymatic assays.

Optical biosensors operate by detecting changes in light (such
as absorbance, fluorescence, or refractive index) resulting from
the interaction between a target analyte and an immobilized
bioreceptor (Laliwala et al., 2024). These devices can be
implemented in label-based formats, which employ colorimetric

or fluorescent markers, or label-free configurations that exploit
intrinsic optical variations (Magnano San Lio et al., 2023).
They combine high sensitivity with real-time monitoring and
often avoid nucleic-acid amplification or complex preparation.
For example, a SERS-based biosensor captured and detected
multiple pathogens, including E. coli, S. aureus, and MRSA, from
complex matrices in ∼30 min with ∼65% capture efficiency,
and correctly identified MRSA in spiked milk and blood
(Wang C. et al., 2018). Similarly, a thin-film optical biosensor
directly probed tuf, femB, and mecA genes in positive blood
cultures without amplification: hybridization-induced nanometric
thickness changes produced a visible color shift readable without
specialized instrumentation, achieving 100% sensitivity and
specificity for MRSA/MSSA and coagulase-negative staphylococci
within ∼90 min (Lindsey et al., 2008). In addition, a plasmonic
nanosensor using Cu2+ and cysteine-modified AuNPs reached
95.8% sensitivity and specificity with ∼3-h time to result (Zhang
J. et al., 2024). In terms of cost, Zhang et al. (2020) reported
that their automated conductometric sensor platform required an
instrument investment of approximately $9,000, while the per-
sample consumable cost was <$1.

Electrochemical biosensors, in contrast, transduce a
biorecognition event into an electrical signal, typically by
measuring current (amperometric sensors), voltage or potential
(potentiometric sensors), or impedance (impedimetric sensors)
changes at an electrode surface (Laliwala et al., 2024). Their
inherent sensitivity, rapid response, and ease of miniaturization
make them attractive for point-of-care AMR testing (Kao and
Alocilja, 2025). Recent examples span phenotypic and genotypic
detection: an integrated dual-channel chip simultaneously
measured the virulence marker EspB by electrochemical
impedance spectroscopy (LoD: 4.3 ng/ml) and β-lactamase activity
by differential-pulse voltammetry (LoD: 3.6 ng/ml), distinguishing
resistant from susceptible E. coli strains with minimal preparation
and short assay time (Gunasekaran et al., 2024). For genotypic
targets, a portable LAMP-CRISPR/Cas12a biosensor detected the
macrolide-resistance gene ermB in wastewater after magnetic-bead
extraction and LAMP preamplification; Cas12a trans-cleavage
of labeled ssDNA (single-stranded DNA) enabled dual readouts
(fluorescence and lateral-flow), with an LoD of 2.75 × 103

copies/μl and on-site usability (Mao et al., 2024). Electrochemical
immunochromatographic assays deliver very fast phenotypic
results: NG-Test Carba 5 reported ∼15 min time to result with
98.7%–100% sensitivity and 100% specificity for carbapenemases
across multiple evaluations (Yoon et al., 2021; Jenkins et al.,
2020); RESIST-4 O.K.N.V. likewise returned ∼15-min results with
94.4%–100% sensitivity and 100% specificity for carbapenemase
detection (MacDonald and Chibabhai, 2019; Kolenda et al., 2018).
For ultra-low-cost settings, Oeschger et al. (2022) reported that the
Bacterial Paper Antibiotic Susceptibility Testing Chip (Bac-PAC)
paper-based assay could be manufactured at <$2 per chip, with
incubation performed in a rechargeable coffee mug instead of a
laboratory incubator, thus eliminating major equipment costs.

Additional innovations include the incorporation of
nanozyme-based amplification and dual-recognition strategies for
improved sensitivity and specificity. Xing et al. (2025) reported an
electrochemical biosensor that employed anti-PBP2a antibodies
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for MRSA-specific capture in combination with vancomycin for S.
aureus anchoring, thus enabling precise discrimination between
resistant and susceptible strains without complex pretreatment.
The use of MXene nanozymes with peroxidase-like activity
allowed the catalytic conversion of o-phenylenediamine into
electroactive 2,2-diaminoazobenzene, generating amplified signals
proportional to MRSA concentration and achieving an LoD of 5.0
CFU/ml. The sensor exhibited excellent reproducibility (1.27%),
stability (1.62%), and selectivity. In another example, a label-free
impedimetric genosensor for blaCTX-M gene in E. coli and the
blaKPC gene in K. pneumoniae used disposable screen-printed
electrodes functionalized with a AuNP/polypyrrole/vanadium-
oxide nanocomposite and 4-aminothiophenol-linked ssDNA
probes, achieving a linear range of 10-6–0.1 ng/μl and LoDs of
0.5 × 10-7 ng/μl for blaCTX-M and 1 × 10-7 ng/μl for blaKPC.
Specificity was high (negligible cross-reactivity), stability persisted
for up to three months, and results in clinical isolates showed
>95% agreement with PCR (Mahfouz et al., 2025). Other
studies confirmed similar high performance, with optical and
electrochemical biosensors achieving diagnostic accuracies above
95% and delivering results in as little as 2–5 min for initial readout
(Fang et al., 2023; Bianco et al., 2020).

Taken together, optical and electrochemical biosensors
routinely deliver clinically relevant results in ∼30–90 min (Wang
C. et al., 2018; Lindsey et al., 2008), with LoD from a few colony-
forming units per milliliter to low-copy-number nucleic acids
(Mahfouz et al., 2025; Xing et al., 2025; Gunasekaran et al., 2024;
Mao et al., 2024). Optical platforms offer label-free, real-time
analysis and strong multiplexing potential, but may be affected by
matrix interference and substrate reproducibility (Taha et al., 2024).
Electrochemical systems are highly amenable to miniaturization
and multiplex integration, with rapid analysis and excellent
sensitivity for AMR testing (Kao and Alocilja, 2025; Mahfouz
et al., 2025). Looking ahead, priority areas include on-chip sample
preparation, seamless coupling to isothermal amplification and
CRISPR-based detection, and packaging into compact, user-
friendly devices to enable reliable, rapid, and decentralized testing
for both clinical diagnostics and environmental surveillance.

4.3 Plasmonic nanomaterials

While plasmonic nanomaterials do not constitute a stand-
alone method for antibiotic resistance detection, their inclusion
in this chapter is justified by their ability to enhance and
complement existing approaches. By providing strong optical
signal amplification, enabling amplification-free detection,
reducing the need for laborious sample preparation, and
supporting miniaturization into portable formats, they significantly
expand the applicability of conventional assays. Furthermore, their
role as versatile transduction elements allows the seamless coupling
of molecular recognition with user-friendly readouts, thereby
reinforcing both genotypic and phenotypic diagnostic strategies.

Plasmonic nanoparticles, most commonly gold or silver
nanostructures, enable label-free optical transduction via localized
surface plasmon resonance (LSPR). By coupling sequence- or
activity-specific recognition with nanoparticle aggregation or

refractive-index changes, these systems can report resistance
determinants rapidly and at low cost.

One straightforward implementation is colorimetric DNA
testing for resistance genes. Caliskan-Aydogan et al. (2023)
developed a gold-nanoparticle (AuNP) biosensor for the K.
pneumoniae carbapenemase gene blaKPC that operates without
PCR. AuNPs coated with a complementary probe remain dispersed
(red) when the target is present, but aggregate (blue–purple) if
it is absent; the visible shift is quantifiable as a LSPR absorbance
change. In clinical isolates, the sensor distinguished blaKPC-positive
from negative strains in under 30 min, with a detection limit
near ∼2.5 ng/μl genomic DNA (∼103 CFU/ml) and reported
sensitivity/specificity of 79%/97%. In a related gene-targeted
format, Saxena et al. (2022) built a dual-mode AuNP aptasensor
for mecA in S. aureus. Thiol-modified DNA aptamers stabilize the
AuNPs in the presence of the target. In its absence, salt-induced
aggregation produces a red-to-blue shift and an LSPR change. The
assay reached a 0.5 ng/μl LoD within ∼20 min and was validated
against PCR, underscoring utility in low-resource settings.

Plasmonic assays can also report enzyme activity. A culture-
independent platform detected carbapenemase activity as pH-
induced AuNP aggregation, identifying resistant K. pneumoniae,
Enterobacter cloacae, and Citrobacter freundii at ≥105 cells/ml
in <3 h using simple pre-concentration and smartphone
readouts (Santopolo et al., 2021). Functionalized AuNPs similarly
differentiated ESBL from carbapenemase producers within ∼2 h
with >95% sensitivity/specificity (Nag et al., 2020).

Beyond binary color changes, plasmonic spectroscopy can
capture richer interaction signatures. Yu et al. (2023) engineered
an surface plasmon resonance (SPR) “chemical-nose” array by
functionalizing AuNPs with short peptides. Bacterial interactions
produced distinct spectral fingerprints that, with ML classification,
identified 12 ESKAPE strains and their resistance phenotypes in
<20 min with ∼90% accuracy. Another branch of plasmonic
sensing involves SERS, in which metallic nanoparticles amplify
the Raman signals of biomolecules, as previously described in
this work.

Integrated nanoplasmonics combine sensing with active
functions. The RAPIDx platform used photothermal plasmonics
for lysis, rolling-circle amplification, and multiplexed detection,
reporting genotypes and phenotypic markers in ∼45 min (Lee
et al., 2025). Related nanomaterials also achieve plasmonic-inspired
transduction: platinum nanoparticles (PtNPs) on screen-printed
electrodes (<$0.1/test) measured catalase activity and produced
complete susceptibility profiles in 45–60 min with AUC = 1 (Li
et al., 2025).

Plasmonic assays provide rapid results, portable visual
readouts, and straightforward chemistry across both gene-
targeted and enzyme/interaction-based detection. Some formats
avoid nucleic-acid amplification or culture, allowing direct
analysis of minimally processed specimens (Caliskan-Aydogan
et al., 2023). Per-test material costs can be very low (Li
et al., 2025), and smartphone-based readouts support low-
resource deployment (Santopolo et al., 2021). Limitations include
matrix effects, non-specific aggregation, lack of standardized
cut-offs, and dependence on specialized nano-fabrication or
optical instrumentation (SPR/Raman), often requiring ML analysis
(Yu et al., 2023; Ciloglu et al., 2021). As systems evolve
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toward multiplexed arrays and integrated devices, plasmonic
nanomaterials are positioned to complement molecular and
phenotypic diagnostics with fast, scalable resistance readouts near
the point of care.

5 Artificial intelligence methods

AI has gained significant attention in recent years, particularly
in microbiology and genomics, where it has been increasingly
applied to AMR, genome analysis, and drug discovery (Shelke et al.,
2023; Suster et al., 2024; Branda and Scarpa, 2024). Traditional
methods for AMR detection can be very time-consuming, often
requiring up to 72 h to assess bacterial growth in the presence
of an antibiotic to determine resistance or susceptibility (López-
Cortés et al., 2024). AI models can accelerate this process by
efficiently analyzing vast datasets, a crucial advantage in genomics,
which involves big data. For example, ML analysis of thousands
of genomes revealed highly predictable HGT networks, with
especially dense transfer routes for ARGs among human-associated
microorganisms, highlighting the potential of AI to uncover
complex resistance transmission patterns (Zhou et al., 2021).
Beyond improving speed, AI has, in some cases, demonstrated
greater accuracy than human experts (Branda and Scarpa, 2024).

Given that in AI, data is a critical component, sometimes
even more important than the algorithm itself (Bhatt et al., 2024),
we categorized AI in AMR applications based on data types:
molecular and phenotypic. Figure 2 illustrates this data-driven
approach, where raw DNA sequences, antimicrobial peptide (AMP)
sequences, MIC values, bacterial genomic features, microscopy
images, and spectrometry readings are processed through various
AI models to predict resistance or MIC values.

5.1 Molecular data

Molecular approaches use DNA sequencing data, such as
whole-genome and metagenomic sequences, to predict microbial
resistance profiles. AI models can identify complex relationships
between genetic features (e.g., mutations, resistance genes, k-mers)
and resistance phenotypes, enabling in silico susceptibility testing.
Numerous studies have investigated the use of AI models for
predicting resistance from genomic data (Olatunji et al., 2024).
Among these, one of the earliest and most influential studies on AI-
driven ARG detection is DeepARG (Arango-Argoty et al., 2018), a
deep learning model that significantly improves ARG identification
from genomic and metagenomic data, detecting both known and
novel ARGs with high accuracy. Another study, HMD-ARG (Li
et al., 2021), introduces a multi-task deep learning framework
that predicts ARGs, resistance classes, mechanisms, and gene
mobility directly from raw protein sequences, unlike DeepARG that
depends on reference databases. Building on these, researchers have
developed even more advanced architectures. In another study, Pei
et al. (2024) introduced ARGNet, which combines an autoencoder
with a Convolutional Neural Network (CNN) classifier to identify
ARGs without reliance on reference alignment.

Studies have also investigated the prediction of MIC values
using ML approaches. Pataki et al. (2020) employed linear

regression to predict ciprofloxacin MIC in E. coli based on
genomic mutations and resistance genes, achieving 65% and 93%
accuracy within two- and four-fold dilution ranges, respectively.
In related work, Chung et al. (2024) developed an ensemble model
incorporating models such as BiLSTM and CNN to predict the MIC
of AMPs against S. aureus, E. coli, and P. aeruginosa, outperforming
existing benchmarks. Complementary to these predictive models,
Dean et al. (2021) introduced PepVAE (variational autoencoder),
a generative approach utilizing a variational autoencoder coupled
with antimicrobial activity prediction models to design novel AMPs
based on sequence and MIC data, allowing controllable AMP
generation with experimental validation.

5.2 Phenotypic data

Beyond genomic data, AI is also transforming phenotypic
detection of resistance, analyzing how bacteria look, grow, or
behave in the presence and absence of drugs. Here, DNNs
can process complex data like microscopy images, spectroscopy
readouts, or time-series signals that indicate a bacterium’s
drug response.

Computer vision algorithms can identify antibiotic-
resistant bacteria from microscopic images by detecting subtle
morphological changes. Hayashi-Nishino et al. (2022) trained
a CNN on transmission electron microscope (TEM) images to
classify E. coli resistance, achieving 94% accuracy. The model
detected structural changes like altered cell envelopes and
sphericity, linked to genetic resistance. Similarly, Zagajewski
et al. (2023) developed a deep learning framework leveraging
fluorescence microscopy to segment and classify single-cell
phenotypes, predicting antimicrobial susceptibility with 80%
accuracy and estimating MIC values within just 30 min. In a
different approach, Brown et al. (2020) created an automated
optical system integrated with deep learning to accelerate AST,
achieving over 90% accuracy in detecting bacterial growth
within 7 h.

AI is also being applied to laboratory spectroscopy data to infer
resistance (Zhang et al., 2022; Feucherolles et al., 2021). In a study,
Lu et al. (2022) combined confocal Raman microspectroscopy with
a deep residual neural network (ResNet) to classify K. pneumoniae
isolates, identifying whether they carried certain resistance genes
or had resistant phenotypes. Similarly, mass spectrometry, a widely
used tool in clinical microbiology labs, is now being used for
resistance prediction. A recent study introduced MSDeepAMR
(López-Cortés et al., 2024), which enhances MALDI-TOF mass
spectrometry by using deep learning to predict antibiotic resistance
from raw spectra, achieving high accuracy (over 0.83 AUC) and up
to 20% performance gains with transfer learning. This approach
enables real-time AMR detection in clinical settings.

5.3 Data representation and challenges in
AI for AMR prediction

AI models for AMR prediction rely on how genomic sequences
are numerically represented before being processed in the learning
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FIGURE 2

AI-driven analysis of molecular and phenotypic data for AMR prediction. The figure is organized into three panels: (left) Data (Input), showing
molecular and phenotypic data types used for analysis; (center) AI Models, illustrating various machine learning architectures applied to each data
type; and (right) Result (Output), presenting predicted antimicrobial resistance profiles. The data shown here represent illustrative examples of typical
input features and model outputs used in AMR studies. Molecular data include raw DNA sequences, which are preprocessed and analyzed using AI
models, including multilayer perceptrons, to identify resistance-associated mutations, such as gyrA Q431E conferring fluoroquinolone resistance
(Jamal et al., 2020). Separately, antimicrobial peptide sequences, MIC values, and bacterial genomic features can be integrated into deep learning
architectures like Bi-LSTM, CNN, and multi-branch models, to predict MIC values against clinically relevant pathogens (Chung et al., 2024).
Phenotypic data include microscopy images, processed using CNN or RNN to predict bacterial resistance or susceptibility phenotypes (Ikebe et al.,
2024). In addition, spectral data obtained through Raman spectroscopy are analyzed using autoencoders, DNN, or SVM to distinguish resistant from
susceptible isolates based on subtle biochemical signatures (Ciloglu et al., 2021). Created in BioRender. Aldea, A. (2025, https://BioRender.com/
u5rqf9p).

pipeline. Different strategies have been implemented, such as
constructing dissimilarity or bit-score matrices relative to known
resistance genes, encoding raw protein or nucleotide sequences
with one-hot representations, or generating latent embeddings
through autoencoders. These approaches enable the identification
of antibiotic resistance genes and support the detection of
both known and previously uncharacterized determinants (Pei
et al., 2024; Li et al., 2021; Arango-Argoty et al., 2018). Spectral
data such as Raman and MALDI-TOF profiles are commonly
preprocessed through baseline correction, smoothing, binning,
and peak extraction, with some studies also applying wavelet-based
feature detection. These reduced representations are then used
as input for ML models, where CNNs or ensemble classifiers
can learn discriminative patterns for antimicrobial resistance
prediction (López-Cortés et al., 2024; Feucherolles et al., 2021;
Zhang et al., 2022; Lu et al., 2022). Image-based datasets, such as

transmission electron microscopy images of bacterial cells, require
preprocessing steps including normalization, segmentation, and
data augmentation before being analyzed with convolutional neural
networks. These models can then capture subtle morphological
signatures associated with resistance phenotypes (Hayashi-
Nishino et al., 2022). Collectively, these preprocessing strategies
ensure that heterogeneous data sources (genomes, spectra,
and images) can be systematically featurized and exploited by
ML algorithms.

While AI has significant potential to advance AMR research,
several limitations must be addressed. First, there is a need for
large, high-quality, and diverse datasets, as models developed
from insufficient or biased data are prone to inaccuracies
and limited generalizability (Mohammed et al., 2025). The
growing emphasis on data-centric AI highlights that model
performance is often constrained more by data quality than

Frontiers in Microbiology 18 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1673343
https://BioRender.com/u5rqf9p
https://BioRender.com/u5rqf9p
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Aldea et al. 10.3389/fmicb.2025.1673343

by algorithmic advances. Second, the issue of interpretability
remains a significant concern, with many AI systems functioning
as “black boxes” that limit transparency and reduce confidence
in their clinical applicability Li X. et al. (2022). Emerging
approaches such as attention mechanisms, feature attribution
methods, and self-interpretable models attempt to mitigate this
challenge, but widespread clinical trust is still lacking. Finally,
the ability of AI models to generalize across diverse bacterial
populations and sequencing or spectroscopic platforms remains
a pressing concern, since variations in genomic backgrounds
and technological methods can undermine reproducibility and
translational relevance (López-Cortés et al., 2024; Olatunji et al.,
2024; Lu et al., 2022). Transfer learning strategies, where
models trained on one dataset are adapted to external cohorts,
have shown promise in partially addressing this limitation
(López-Cortés et al., 2024).

Despite these challenges, continued progress in data
preprocessing, interpretability research, and standardized
benchmarking is gradually strengthening the role of AI in
AMR detection.

6 Comparative overview of antibiotic
resistance detection methods and
their applicability in low-resource
settings

To provide a consolidated view of the key characteristics
of antibiotic resistance detection methods, Table 2 presents a
comparative synthesis of culture requirements, turnaround time,
sensitivity, specificity, costs, and main limitations. All values were
compiled from peer-reviewed studies cited in the corresponding
method sections of this review, and represent ranges reported
across different pathogens, sample types, and evaluation protocols.
In addition, Figure 3 offers a complementary perspective by
mapping these approaches according to their reliance on bacterial
culture and their indicative turnaround times. This schematic
emphasizes the major conceptual divide between culture-based
assays, which inherently delay diagnosis, and culture-independent
technologies, which can provide actionable information within
hours. Together, the Table 2 and Figure 3 underscore the trade-offs
between speed, accuracy, infrastructure needs, and cost-efficiency
across detection strategies.

Traditional phenotypic approaches, such as diffusion and
dilution-based assays, continue to serve as standard tools in clinical
microbiology owing to their operational simplicity and low cost.
They generally achieve near-perfect sensitivity and specificity,
require only basic incubators and consumables, and remain among
the most affordable methods, making them particularly suitable
for implementation in low-resource settings. Practical examples
include disk diffusion, E-test strips, and broth microdilution on
reusable plates, together with low-cost adaptations such as portable
mini-incubators for field or decentralized laboratories (Klyusko
et al., 2025; Talebipour et al., 2024). However, their relatively
long turnaround times limit their clinical utility, especially in
time-sensitive or complex infections (Gajic et al., 2022). Although
phenotypic assays can reveal certain resistance mechanisms [e.g.,

ESBL (Hombach et al., 2017) or carbapenemase production (Cimen
et al., 2025)], they cannot provide a complete picture of the
underlying genetic basis.

In contrast, molecular methods, including PCR, offer rapid
and accurate detection with high sensitivity and specificity,
though their reliance on prior knowledge of target genes restricts
their capacity to detect novel or unexpected resistance variants
(Vogelstein and Kinzler, 1999; Heid et al., 1996). PCR-based assays
typically deliver results in under a day and remain relatively
inexpensive per test, although equipment and reagent costs vary
widely. From a technical standpoint, modern PCR platforms
are characterized by very low LoD values, with digital PCR
capable of reliably identifying down to a single DNA copy.
To address constraints in low-resource environments, isothermal
amplification strategies have been integrated into portable or
paper-based diagnostic platforms, often operating with lyophilized
reagents (eliminating cold-chain requirements) and producing
colorimetric or fluorescence signals interpretable by eye or via
smartphone imaging (Mao et al., 2024; Thakku et al., 2022;
Santopolo et al., 2021; Meng et al., 2020; Huang et al., 2017).
Building on this principle, CRISPR/Cas-based systems coupled
with isothermal amplification have also been developed into low-
cost, field-deployable formats, enabling multiplexed resistance gene
detection with readouts accessible through lateral-flow strips or
smartphones (Mao et al., 2024; Thakku et al., 2022; Santopolo et al.,
2021). Coupled with pre-amplification, CRISPR/Cas diagnostics
can achieve limits of detection of only a few DNA copies,
supporting their use in early detection under low bacterial
load conditions.

DNA microarrays enable the parallel screening of multiple
genes, yet they are similarly constrained by this dependence on
predefined sequences (Brazelton de Cardenas et al., 2021; Lu et al.,
2014). Although they report high sensitivities and specificities, their
cost per assay and need for specialized scanners limit widespread
adoption. Their reported LoDs vary from a few dozen down to
as few as 10 DNA copies per microliter, which illustrates their
analytical power but also emphasizes dependence on sample purity
and hybridization efficiency. Genomic tools such as WGS and
metagenomics offer comprehensive insights into the resistome.
These techniques enable the identification of both known and
emerging resistance determinants, but are currently limited in
clinical practice by high costs, longer processing times, and the need
for bioinformatic infrastructure (Le et al., 2024; Greninger, 2018;
Wyres et al., 2014). Unlike other methods, WGS and metagenomics
do not define LoD in absolute terms, as their detection capacity
depends primarily on sequencing depth, read coverage, and data
analysis pipelines rather than on minimal input concentrations.
To overcome these barriers, collaborative regional sequencing hubs
based on a hub-and-spoke model have been developed. In this
approach, centralized facilities with high-throughput sequencers,
bioinformatic resources, and trained personnel support multiple
peripheral hospitals and clinics serving as sample collection and
referral centers. This model distributes costs, harmonizes protocols,
and expands access to genomic surveillance. Examples already
exist: the Africa CDC’s Africa Pathogen Genomics Initiative
(Africa PGI), launched in 2020, has already established 13
regional Centers of Excellence across the continent (Africa Centres
for Disease Control and Prevention, 2020b). Moreover, under
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TABLE 2 Comparative summary of antibiotic resistance detection methods.

Method Culture
requirement

End-to-
end time to
resulta, b

Sensitivityc Specificityc LoD Cost for
equipment

Cost per
testd

Main limitations

Diffusion and
dilution-
based
methods

Required Up to 48 h ∼95%–100% ∼95%–100% N/A ∼$12,000–$42,500 ∼$1.50–$50 Require culture facilities and incubators; need trained personnel for
standardized interpretation; incubation time slows clinical
decision-making; require multiple plates/microtiter systems and
biosafety infrastructure.

Raman
spectroscopy

Optional ∼1.5–3 h/ ∼24 h ∼96%–100% ∼85%–100% ∼103–10 CFU/ml ∼$5,000–$400,000 ∼$0–$25 High upfront equipment cost; SERS substrates costly and variable;
analysis requires chemometrics/machine learning expertise;
reproducibility challenges hinder standardization; reagent supply
and infrastructure restrict Low- and Middle-Income Countries
(LMICs) adoption.

MALDI-TOF
mass
spectroscopy

Required Up to 24 h ∼99%–100% ∼99%–100% ∼105–103 CFU/ml ∼$200,000–
$500,000

∼$0.20–$7 High capital cost and annual maintenance; requires pure cultures
and biosafety infrastructure; skilled operators needed; limited
availability in LMICs despite low per-sample consumable cost

LC-MS/MS Optional ∼ 3 h/∼ 24 h ∼96%–100% ∼100% ∼107–103 CFU/ml ∼$75,000–$500,000 – Very high equipment cost; complex sample preparation requiring
trained proteomics staff; reagents and columns expensive; low
feasibility for LMICs.

FTIR Required Up to 24 h ∼74%–99% ∼66%–94% ∼105–103 CFU/ml ∼$15,000–$150,000 ∼$0–$4 Requires culture before testing; spectra interpretation depends on
machine learning/databases; access to instruments and expertise
limited in LMICs; substrates add recurring costs.

PCR-based
assays

Optional 5–7 h/ ∼24 h ∼46%–100% ∼95%–100% ∼104–102 DNA copies
for PCR, ∼100–10
DNA copies for qPCR,
∼2–1 DNA copies for
dPCR

∼$750–$200,000 ∼$0.22–$10 Require nucleic acid extraction kits; qPCR/dPCR instruments costly
and not always accessible; demand molecular expertise for
optimization; reagents can be expensive and supply-chain
dependent.

DNA
microarray

Not required 7–8 h ∼93%–100% ∼83%–100% From 102–101 to ∼30
DNA copies/μl

∼$10,000–$150,000 ∼$40–$400 Require specialized scanners, fluorescent labeling kits, and
bioinformatics pipelines; constrained to predefined gene panels;
high per-sample consumable costs; limited adoption in LMICs.

Metagenomics Not required Up to 48 h ∼61%–100% ∼64%–100% N/A ∼$3,000–
$1,000,000 only for
the sequencer

∼$130–$685 Infrastructure-intensive; high per-sample cost; requires advanced
bioinformatics; complex workflows limit feasibility in LMICs;
consumables often unaffordable.

WGS Required From 7–9 h to
2–5 days

∼87%–99.6% ∼97%–98.4% N/A ∼$3,000–
$1,000,000 only for
the sequencer

∼$50–$238 Require expensive sequencers, high-throughput computing, and
specialized bioinformatics expertise; library prep kits and
sequencing reagents costly and often unavailable in LMICs.

CRISPR/Cas-
based
detection

Optional 2–4 h/∼24 h ∼96.5%–100% ∼100% ∼103–10 DNA copies ∼$1,900–$60,000 ∼$12 Depend on nucleic acid extraction and pre-amplification; CRISPR
enzymes and gRNAs remain costly and less available in LMICs;
assays require molecular handling skills; limited standardization
across platforms.

Microfluidic
platforms

Optional ∼30 min–7 h ∼97.7–100% ∼78.8–93.2% ∼105 CFU/ml; ∼10–1
DNA copies

Low (application-
dependent)

<$0.3 Many systems require pumps/controllers or custom fabrication;
reproducibility and scaling remain barriers; risk of channel clogging
and biofouling when processing complex samples.
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Africa PGI 2.0, additional regional coordination centers are being
implemented (Africa Centres for Disease Control and Prevention,
2020a), alongside collaborations such as the Africa CDC-Illumina
partnership, which aims to equip laboratories in up to 25 countries
with operational NGS capacity by the end of 2025 (Illumina and
Africa Centres for Disease Control and Prevention, 2025).

Although WGS is used in some reference laboratories,
especially for pathogens like Mycobacterium tuberculosis (Meehan
et al., 2019), its broader implementation remains restricted.
Spectroscopy-based methods such as Raman spectroscopy,
MALDI-TOF MS, LC-MS/MS, and FTIR provide rapid, culture-
based or culture-independent analysis. Raman and FTIR are faster
but face reproducibility and specificity challenges, MALDI-TOF
offers high accuracy at low per-test costs but requires costly
equipment and pure cultures, while LC-MS/MS delivers excellent
accuracy but involves complex workflows and expensive reagents.
Their clinical use remains limited by requirements such as
pure cultures (MALDI-TOF) or signal reproducibility (Raman,
FTIR), highlighting the need for further validation before routine
implementation (Suleiman et al., 2022; Ciloglu et al., 2021;
Idelevich et al., 2018; De Bruyne et al., 2011).

Newer technologies, including CRISPR/Cas-based detection
systems and AI-assisted diagnostic platforms, represent emerging
tools in the field. CRISPR-based diagnostics allow rapid and specific
identification of resistance genes (Agha et al., 2025; Lai et al., 2025),
but are still in early development and not yet standardized for
clinical use. They demonstrate excellent reported sensitivity and
specificity, but remain hindered by reagent costs and the need
for pre-amplification steps. Moreover, portable microfluidic chips
with lateral-flow or smartphone-based readouts illustrate their
potential for resource-limited deployment, with reported LoDs
as low as a few CFU/ml or nanogram protein levels. Despite
this ultra-sensitivity, reproducibility and standardization remain
critical challenges before clinical translation (Mao et al., 2024;
Thakku et al., 2022; Meng et al., 2020; Huang et al., 2017).

AI-based approaches can support data interpretation and
resistance prediction, particularly when applied to large-scale
genomic or spectroscopic data (Chung et al., 2024; Pei et al.,
2024; Arango-Argoty et al., 2018). Nevertheless, their performance
depends heavily on the availability of high-quality training datasets
(Lewin-Epstein et al., 2021), and most applications are currently
limited to research settings.

In addition, the diagnostic performance of each method
depends not only on the technology itself but also on the type
of sample analyzed, which can substantially influence turnaround
time, sensitivity, and specificity. Reported LoD values should also
be considered with caution, as they are strongly influenced by
sample pretreatment steps such as nucleic acid extraction, removal
of inhibitors, or prior culture enrichment.

Taken together, the evidence summarized in Table 2 and
Figure 3 highlight the central trade-offs across methods. Classical
phenotypic methods remain practical and inexpensive but are
constrained by slow turnaround times. Targeted molecular
approaches, such as PCR, deliver rapid and accurate results yet
cannot capture unknown resistance determinants. Untargeted
genomic tools (WGS, metagenomics) provide the most
comprehensive resistome profiles and are valuable for surveillance
and discovery, though their broader use is still limited by
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FIGURE 3

Comparative overview of antibiotic resistance detection methods by culture dependency and time to result. This figure provides a schematic
comparison of major categories of antibiotic resistance detection methods and their indicative timeframes. Where applicable, an upstream DNA
extraction module (1–2 h) is shown, preceding nucleic-acid-based workflows (PCR, DNA microarray, WGS, metagenomics, and CRISPR/Cas). (Left)
Culture-dependent methods rely on an obligatory cultivation step of 18–48 h prior to testing. These include traditional phenotypic assays, FTIR
spectroscopy, MALDI-TOF MS, and whole genome sequencing, which subsequently yield results within 1–24 h. (Center) Semi-culture-independent
methods, exemplified by biosensors, CRISPR/Cas, Raman spectroscopy, LC-MS/MS, PCR, and microfluidic platforms, can be implemented with or
without prior enrichment depending on the protocol, providing results within 15 min–7 h. (Right) Culture-independent methods bypass growth
entirely, directly analyzing molecular signatures from the sample. These include DNA microarrays and metagenomics, with typical times to result
ranging from 7 to 48 h. Arrows indicate the general workflow, highlighting how diagnostic speed improves as culture requirements are reduced, from
multi-day phenotypic assays to near real-time molecular or biosensor-based approaches. Created in BioRender. Aldea, A. (2025, https://BioRender.
com/z40p4eu).
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costs and infrastructure. Spectroscopy-based methods offer
rapid analysis but require further standardization to ensure
reproducibility. AI-assisted platforms add predictive power and
enable integration of heterogeneous datasets, but depend on large,
high-quality training data. These contrasts determine context-
specific suitability: phenotypic and PCR-based assays remain
central to routine diagnostics, WGS and metagenomics are best
suited for surveillance and research, spectroscopy and MALDI-
TOF fit centralized laboratories, while CRISPR, microfluidics,
and biosensors hold particular promise for decentralized and
low-resource settings.

7 Outlook

The growing diversity of methods available for detecting
antibiotic resistance offers opportunities to improve diagnostic
speed, accuracy, and accessibility across diverse settings. Each
category of methods: phenotypic assays, molecular tools,
spectrometry-based platforms, biosensors, microfluidic systems,
and AI approaches brings unique strengths, but no single
approach is sufficient on its own. The most promising directions
point toward integrated diagnostic platforms that combine
complementary methods into accessible, scalable, and context-
specific devices. Synergistic combinations include spectroscopy
with AI for rapid pathogen identification and resistance prediction,
microfluidics coupled with isothermal amplification and CRISPR-
based detection for portable high-sensitivity assays, biosensors
merged with plasmonic or electrochemical transduction elements,
and metagenomic sequencing complemented by targeted PCR
for comprehensive surveillance with rapid confirmation. These
integrations not only enhance analytical performance but also align
with diverse needs: fast turnaround in hospitals, broad surveillance
during outbreaks, and affordability in low-resource environments.
Several proof-of-concept platforms already demonstrate this
potential, including microfluidic chips with smartphone readouts
(Thakku et al., 2022; Wu et al., 2018), paper-based assays that
integrate phenotypic growth monitoring with colorimetric
biosensors (Oeschger et al., 2022), or plasmonic nanomaterials for
amplification-free gene detection (Caliskan-Aydogan et al., 2023).
Such convergence signals the trajectory toward the next generation
of implementable diagnostic platforms.

Despite substantial progress, methodological inconsistencies,
particularly in primer selection and PCR protocols, continue
to complicate data comparability and hinder broader ecological
interpretations. As a step toward harmonization, we provide a
curated list of primer pairs, validated against gene sequences in the
CARD database (Alcock et al., 2023), which may serve as a resource
for future assay design and benchmarking.

AI applications, though still nascent, have the potential to
complement both phenotypic and molecular frameworks by
accelerating data analysis and enhancing detection accuracy. Their
integration will depend not only on computational performance
but also on the interpretability, generalizability and clinical
validation of resulting models.

Looking ahead, the most impactful strategies will be those
tailored not only to specific scientific or clinical questions, but
also to resource constraints, enabling resistance monitoring in
remote ecosystems, decentralized hospitals, and field laboratories.
Only through such integration and standardization can fragmented
detection efforts evolve into a comprehensive, One Health-oriented
surveillance of antibiotic resistance.
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