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Patients coinfected with influenza virus (IFV) and bacteria face significantly elevated
risks of critical illness and mortality. This vulnerability stems primarily from IFV-induced
immunosuppression and disruption of respiratory barrier integrity. Specifically,
prior IFV infection compromises the airway epithelium and impairs immune cell
function, creating a permissive environment for secondary bacterial infections that
drive severe disease progression. Within the lung, resident immune cells are crucial
for pathogen surveillance, antibacterial defense, and homeostasis maintenance.
However, recruited neutrophils and macrophages paradoxically become key drivers
of detrimental immunopathology during coinfection. The literatures involved in
influenza bacterial infection, influenza bacterial superinfection, post-influenza
bacterial infection and secondary bacterial infection, were included. In this review,
we summarize the literatures about epidemiology, treatment options and two pivotal
mechanisms: The primary mechanisms of IFV-mediated susceptibility to bacterial
infection, focusing on epithelial barrier damage and immune cell dysfunction;
the central roles of specific immune cells (notably neutrophils and macrophages)
and their effector pathways in fueling hyperinflammatory responses that cause
severe immunopathology. A comprehensive understanding of the interactions
between the pathogens and the host will assist in the development of therapeutic
modalities for the prevention and treatment of post-influenza bacterial infection.

KEYWORDS
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1 Introduction

Lower respiratory infections ranked as the seventh-highest global cause of death in 2021,
resulting in more than 2 million deaths in the world (Naghavi et al., 2024). Influenza virus
(IFV) infection is one of the most common factors leading to lower respiratory infections
(Troeger et al., 2019; Li et al., 2021). Patients with IFV infection are highly susceptible to
developing bacterial infection. Flu patients coinfected with bacteria have a high risk of serious
illness and fatality (Bartley et al., 2022; Lee et al., 2022; Nolan et al., 2018; Bal et al., 2020).
Coinfection with bacteria in hospitalized flu patients is recognized as the major determinant
of mortality (Arranz-Herrero et al., 2023).
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The respiratory tract possesses a comprehensive defense system
against bacterial infection. Once inhaled bacteria enter the respiratory
tract, they can be easily captured by mucus and cleared through the
mechanical action of ciliated cells in the upper respiratory tract.
Epithelial cells can secrete large amounts of surfactant proteins and
antimicrobial peptides against bacterial infection at the same time.
When the bacteria break through physical and chemical barriers,
resident leukocytes, such as dendritic cells (DCs), alveolar
macrophages (AMs), y8 T cells and invariant natural killer T (iNKT)
response to invaded bacteria. These resident leukocytes can directly
remove inhaled bacteria or secrete inflammatory mediators to recruit
neutrophils and monocyte-derived macrophages to kill bacteria.
Therefore, bacterial infection can be immediately eliminated by
epithelial barriers and pulmonary immune cells during homeostasis
(Neupane et al., 2020). But the first week of IFV infection can create a
favorable pulmonary environment for secondary bacterial infections,
thereby causing severe illness and high mortality (Neupane et al.,
2020; Chen et al., 2021; Jia et al., 2018; Nickol et al., 2020; Langouét-
Astrié et al., 2022). The poor outcome of viral-bacterial infection
depends on numerous factors, including the damage of epithelial
barriers, the impairment of antibacterial immune response (decreased
phagocytosis, impaired ROS production, inhibition of activation, etc.)
and the overactivated inflammatory response (Chen et al., 2021;
Herrera et al., 2023; Martinez-Coldn et al., 2019; Deinhardt-Emmer
et al.,, 2020; Nickol et al., 2019; Gu et al., 2025). This review discusses
the recent advances in our understanding of mechanisms that drive
the pathogenesis of secondary bacterial infection following IFV
infection and how this might inform future treatment options for
preventing and treating viral-bacterial infection.

2 The epidemiology and bacterial
spectrum of coinfection

Influenza epidemics occur annually and cause about 1 billion
infections worldwide (WHO, 2019). More than 20% of influenza
patients are complicated with bacterial pneumonia (Klein et al., 2016;
Qiao et al., 2023). Seasonal influenza epidemics can lead to 3,200,000
cases of hospitalization globally each year (Paget et al., 2023). The
incidence of coinfection in hospitalizations and ICU patients accounts
for 17 and 28%, respectively (Qiao et al., 2023). The incidence of
coinfection is higher in infants under 2 years of age and the elderly,
especially in people over 70 years old. Patients coinfected with IFV
and bacteria increase the mortality risk by 2.6 to 3.4 times compared
with influenza single-infection (Arranz-Herrero et al., 2023; Qiao
et al.,, 2023). More than 50% of the influenza-related deaths were
attributed to bacterial infections during pandemics (Morens et al.,
2008; Centers for Disease Control and Prevention (CDC), 2009;
Estenssoro et al., 2010; Shieh et al., 2010). Approximately 23.8%
influenza-associated deaths are attributed to bacterial infection in
patients with seasonal IFV infection (Qiao et al., 2023; MacIntyre
2018).
Staphylococccus aureus (S. aureus), Pseudomonas aeruginosa,
pyogenes, Haemophilus Klebsiella
pneumoniae, Mycoplasma pneumoniae, Acinetobacter baumannii,

et al, Streptococcus  pneumoniae (S. pneumoniae),

Streptococcus influenzae,
Moraxella catarrhalis and Group A Streptococcus are common bacteria

during coinfection with IFV and bacteria (Arranz-Herrero et al., 2023;
Klein et al., 20165 Shi et al., 2025). Gram-positive bacteria are the most
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frequent microorganisms identified in patients coinfected with IFV
(Arranz-Herrero et al., 2023; Klein et al., 2016; Qiao et al., 2023;
Maclntyre et al., 2018). S. pneumoniae is the most frequent pathogens
followed by S. aureus. Both of them account for over 30% among all
of bacteria (Arranz-Herrero et al., 2023).

3 Mechanisms of path_o?_enesis_ during
post-influenza bacterial infection

Post-influenza virus infection is correlated with a deterioration of
clinical outcome and higher mortality rates. Bacteria are easily
eradicated and fail to cause serious injury during mild bacterial
infection alone (Neupane et al., 2020). Initial influenza virus infection
plays a crucial role in the pathogenesis of coinfection. The occurrence
of antibacterial immunosuppression caused by initial influenza virus
infection was considered the primary cause of coinfection. The
severity of post-influenza bacterial infection is also associated with
dysregulated immune response.

3.1 IFV infection creates a favorable
environment for bacterial infection

3.1.1 IFV infection disrupts the integrity of the
epithelial barrier

The respiratory epithelium consists of multiple types of epithelial
cells such as ciliated cells, secretory cells, basal cells, goblet cells and
neuroendocrine cells, which cover the trachea and most of the
proximal airways. It provides the first line of defense including
physical barriers, secretory barriers and immune defense, against viral
and bacterial infection. IFV infection causes multiple changes in the
respiratory epithelial barrier, which weakens antibacterial defense and
creates conditions for secondary bacterial infection that can
be subverted by bacteria (LeMessurier et al., 2020). These changes can
be divided into three major aspects, including damaging the integrity
of respiratory barriers, suppressing antimicrobial immune responses
and increasing bacterial colonization.

The respiratory mucosa serves as an initial barrier against invasive
microorganisms and it can remove pathogens by mucin production
and cilia activity (Chegini et al., 2023). The mucosa is constantly
exposed to various bacteria. Invasive bacteria can be trapped and
removed immediately by the secreted mucus. The physical barrier
consists of multiple cell structures, including adherence junctions, gap
junctions, tight junctions, desmosomes, and hemidesmosomes, which
play an important role in defending against these invading pathogens
(Gu etal,, 2025). IFV infection can disrupt the integrity of barrier by
reducing the expression of tight junction proteins and reorganizing
zonula occludens-1 and occludin (Gu et al., 2025; Short et al., 2016;
Golebiewski et al., 2011) (Figure 1). In addition, the epithelial cells can
produce multiple antimicrobial peptides (AMPs) such as lipocalin 2,
BPIFA1, LL-37, sPLA2-IIA, etc., which serve as a biochemical barrier
to defense against bacterial penetration (Geitani et al., 2020). IFV
infection can inhibit AMP production and facilitate secondary
bacterial infection in vivo. Exogenous lipocalin 2 can assist in
eliminating S. aureus in the lung during post-influenza S. aureus
infection (Robinson et al., 2014; Lee et al., 2015). Chitinase-3-like 1
(CHI3L1) and IL-33 are protective factors associated with
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Mechanism about how IFV infection creates a favorable environment for bacterial infection. Firstly, IFV infection disrupts the integrity of respiratory
barriers including reducing the expression of tight junction, IL-33, CHI3L1, etc., and decreasing the production of antimicrobial peptides. In addition,
IFV infection can increase the expression of bacterial receptors such as CD47 and integrins, promoting bacterial infection. Once IFV breaks through the
respiratory barrier, it can release various signals such as IL-10, IL-27, CCL2, TGF-f, IFN-a/p/y and CYP450 metabolites, which impair the antibacterial
ability of resident immune cells and recirculating innate immune cells. The figure was created via https://app.biorender.com/.

strengthening neutrophil-mediated immune response. IFV infection
can inhibit the production of CHI3L1 and IL-33 in epithelial cells,
thereby promoting secondary bacterial infection (Karwelat et al.,
2020; Robinson et al., 2018b) (Figure 1).

Attachment of invasive bacteria to the respiratory tract is the first
step during respiratory bacterial infection. Invasive bacteria utilize
various surface proteins to bind to epithelial tissues. IFV infection can
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promote the expression of bacterial adhesion receptors. Integrins and
CD47 are exploited as important receptors for bacterial infections.
IFV infection can increase the expression of integrins and promotes
group A Streptococcus (GAS) coinfection by inducing the expression
of cyclophilin A or activating TGF-§ signaling pathway (Li et al., 2015;
Baietal., 2022) (Figure 1). IFV infection can induce the expression of
CD47 in nasal and bronchial epithelial cells in an NF-kB-dependent
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manner, with which gram-positive bacteria utilize fibronectin-binding
protein to interact (Moon et al., 2024) (Figure 1). IFV infection can
also increase the expression of fibronectin, platelet activating factor
receptor (PAFr), intracellular adhesion molecule-1 (ICAM-1) and cell
adhesion molecule 1 (CEACAM-1), which can serve as receptors for
attaching to the host by nontypeable Haemophilus influenzae (NTHi),
S. aureus and S. pneumoniae (Prystopiuk et al., 2018; Shukla et al.,
2020; Novotny and Bakaletz, 2016; Wu et al., 2021; Vimalanathan
etal, 2017). GP96 is a receptor for various bacterial pathogens such
as Escherichia coli, Listeria monocytogenes, S. pneumoniae and
Neisseria gonorrhoeae. IFV infection can induce the ectopic
localization of GP96 in epithelial cells, which can be easily bound by
AliA and AliB proteins of S. pneumoniae (Sumitomo et al., 2021).
Another virulence factor, pneumococcal surface protein A (PspA),
can interact with host-cell-derived GAPDH by PspAs a-helical
domain in dying cells to increase bacterial colonization during post-
influenza S. pneumoniae infection (Park et al., 2021). IFV infection
can destruct respiratory tract by recruiting inflammatory cells, which
also provides binding sites for bacterial adhesion and promotes the
proliferation of pathogens. IFV infection can recruit large numbers of
Ly6C" inflammatory monocytes to the lung, which highly express
tumor necrosis factor-related apoptosis-inducing ligand. Ly6C"
inflammatory monocytes can induce apoptosis in epithelial cells,
which causes damage to the lung barrier and increases bacterial
colonization in the lung (Ellis et al., 2015). Post-influenza bacterial
infection can induce the PINK1/Parkin-mediated mitophagy and
facilitate the proliferation of IFV and S. aureus in pulmonary epithelial
cells (Huo et al., 2025).

3.1.2 IFV infection induces the dysfunction of
lung-resident immune cells

There are various resident immune cells in the lung including
unconventional T cells, resident innate immune cells and memory
adaptive immune cells, which play an important role in defending
against inhaled viruses, bacteria and other pathogens. Some resident
pulmonary immune cells such as AMs, yd T cells, iNKT cells and DCs,
can respond to inhaled bacteria immediately and provide local
protection against bacterial infection before recruitment of
recirculating neutrophils and monocyte-derived macrophages
(Braverman et al., 2022; Barker et al., 2021; Shenoy et al., 2020; Tavares
et al., 2022). These resident immune cells can directly eliminate
inhaled bacteria or affect multiple types of antibacterial immune
responses by producing diverse cytokines such as IL-17, IFN-y, IL-22,
etc. IFV infection can suppress their antibacterial capacity and alter
their response to bacterial infection.

AMs are resident pulmonary macrophages and they are the main
immune cells present in the alveoli during homeostasis (Neupane
etal., 2020). They patrol the alveoli, clean the alveolar spaces and crawl
to kill inhaled bacteria to maintain homeostasis, thereby preventing
severe bacterial infection during homeostasis (Neupane et al., 20205
Tam et al., 2020). But IFV infection compromises the antibacterial
ability of AMs including impairing the ability to crawl, decreasing the
expression of phagocytosis receptor, weakening devouring ability and
inducing cell death of AM, thus enabling noninvasive bacteria to cause
fatal pneumonia in influenza (Verma et al., 2020; Sencio et al., 2020).
NK, NKT and T cells can rapidly secrete IFN-y during IFV infection.
IFN-vy can impair the function of AM including impairing the ability
to crawl and inhibiting the expression of phagocytic receptor during
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post-influenza bacterial infection (Casanova et al., 2024; Schmolke
et al,, 2021) (Figure 1). The class A scavenger receptor macrophage
receptor with collagenous structure (MARCO) is an important
scavenger receptor that recognizes and binds gram-positive and gram-
negative bacteria, and is the main receptor for phagocytosis of
particles and exogenous bacteria by macrophages. Blocking IFN-y
signaling can promote the expression of MARCO by inhibiting Akt
activation and restore the ability of AM migration (Neupane et al.,
2020; Wu et al,, 2017). IL-6 also promotes macrophage phagocytosis
by increasing the expression of MARCO during post-influenza
S. pneumoniae infection (Gou et al., 2019). Microbiota-derived
metabolites such as rhamnose, indole 3-propionic acid and short
chain fatty acids (SCFAs) are recognized as important players
promoting macrophage phagocytosis and protecting against bacterial
infection (Sencio et al., 2020; Li et al., 2024; Huang et al., 2022; Schuijt
et al,, 2016). SCFAs are known to promote phagocytosis of AMs by
interacting with the GPR43 receptor, and protect mice from bacterial
infection during S. pneumoniae or Klebsiella pneumoniae infection
(Schuijt et al., 2016; Le Guern et al., 2023; Machado et al., 2022; Galvao
et al., 2018). Gut dysbiosis and related metabolic dysfunction,
especially reduction in SCFAs, can increase susceptibility to secondary
bacterial infection following IFV infection (Chen Q. et al., 2025)
(Figure 1). Blautia faecis DSM33383 can produce large amounts of
acetic acid and the intragastrical administration of Blautia faecis
DSM33383 can protect mice from post-influenza bacterial infection
(Verstraeten et al., 2022). In addition, IFV infection can induce cell
death of resident AMs and the majority of AMs would be lost in a
week (Ghoneim et al., 2013). GM-CSF is an important factor
promoting the maturation, differentiation and activation of AMs
(Chen Y. et al., 2023). GM-CSF treatment increases the number of
AMs and promotes bacterial clearance in the lung during post-
influenza S. aureus infection (Ghoneim et al., 2013). Deficiency in
GM-CSF’s receptor (Csf2rb™'") abrogates bacterial clearance during
post-influenza S. prneumoniae infection (Verma et al., 2020). IL-1
signaling can also contribute to the maintenance of the number of
AMs and promote bacterial clearance in the lung (Bansal et al., 2018).

Lung-resident yd T cells account for 8-20% of resident
pulmonary lymphocytes and aid in eliminating bacteria (Min and
Shilian, 2017; Cheng et al, 2012). Mice are susceptible to
bacterial infections and develop deadly pneumonia after IFV
infection in a week (Herrera et al., 2023; Yiet al., 2022). y8 T cells
are a major source of IL-17A within these time points, because
Th17 immune response develops slowly (Cao et al., 2014). IL-17A
can enhance antimicrobial capacity by contributing to MIP-2-
driven neutrophil recruitment, anti-microbial peptide secretion
and enhancement of the mucosal barrier function (Mills, 2023).
IFV infection induces the secretion of IL-27 that inhibits the
Streptococcus-induced IL-17A expression via suppressing the
activation of STAT1 signaling pathway in y8 T cells and promotes
the development of secondary pneumococcal pneumonia (Cao
et al., 2014; Robinson et al., 2015; Lee et al., 2017) (Figure 1). But
dysregulated, chronic IL-17 signaling promotes excessive
inflammation in lungs by sustaining neutrophil infiltration and
triggering other pro-inflammatory pathways.

Invariant natural killer T (iNKT) cells are tissue-resident
lymphocytes and account for approximately 5% of lymphocytes in
mouse lung, which can response to S. pneumoniae infection and
secrete IFN-y and IL-17A within 13 h (Crosby and Kronenberg, 2018).
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IFN-y is involved in activating NK cells that can assist in protecting
against secondary bacterial infection following IFV infection
(Casanova et al., 2024; Small et al., 2010). IFV infection dampens the
activation of iNKT cells by inducing the production of IL-10,
accompanied by a decrease in the production of IFN-y and IL-17A
(Barthelemy et al., 2017) (Figure 1). The activation of iNKT cells can
prevent pneumococcal outgrowth during post-influenza bacterial
infection by increasing the production of IFN-y and IL-17A
(Barthelemy et al., 2016). Thus, IFN-y acts as a double-edged sword:
it is a vital activating signal for mobilizing NK cells against post-
influenza bacterial infection, yet it can simultaneously exacerbate the
immunosuppressive state by further inhibiting the antibacterial
functions of AMs, thereby worsening the outcome of influenza-
bacterial coinfection. Additionally, iNKT cells can secrete IL-22 that
is beneficial in limiting lung inflammation and alleviating ALI during
post-influenza bacterial infection (Paget et al, 2012; Ivanov
etal., 2013).

There are three types of resident DCs in the lung during
homeostasis, including conventional DC1 (cDC1), conventional DC2
(¢cDC2) and pDC. DCs exhibit antigen-presentation capacity and
secrete immunogenic cytokines such as IL-17 and IFN-y, which
strengthen both innate and adaptive immunity to promote bacterial
clearance (Ardain et al., 2020). Prior IFV infection can impair its
antigen-presentation capacity, affect self-renewal and influence the
activation of antimicrobial immune responses. DCs can produce
TGEF-f and induce the accumulation of Treg cells during a primary
IFV infection, which induces the differentiation of DCs into paralyzed
DCs. These paralyzed DCs exhibit high amounts of Blimp1 that can
induce tolerogenic functions in DCs, and low levels of IRF4 that can
promote antigen presentation to CD4* T cells. For these paralyzed
DCs, MHC II-mediated T cell priming is defective for at least three
weeks and antigen-presentation capacity is defective in vitro (Roquilly
etal, 2017) (Figure 1). DCs must be constantly replenished by newly
recruited cells from the bone marrow. Fms-like tyrosine kinase 3
ligand (Flt3-L) is a critical cDC differentiation factor. IFV infection
can decrease the production of FIt3-L in the bone marrow and blood,
which results in lower generation of cDC progenitors in the bone
marrow, accompanied by a decrease of cDCs (cDC1 and cDC2) in the
lung. Overexpression of Flt3-L promotes the ¢cDC progenitors’
production in the bone marrow, replenishes cDCs in the lung and
protects against post-influenza pneumococcal infection (Beshara
et al.,, 2018). CC chemokine receptor 2 (CCR2) is an important
receptor recruiting DCs and macrophages by interacting with CCL2.
IFV infection can secrete high levels of CCL2. CCR27~ mice exhibit
decreased accumulation of ¢cDC2 and increased accumulation of
¢DC1, accompanied by increased release of IL-17 in the lung during
post-influenza S. aureus infection. Antagonizing IL-17 partially
abrogated the protection seen in CCR27~ mice (Gurczynski et al.,
2019) (Figure 1).

3.1.3 IFV infection impairs the antimicrobial
capacity of recirculating innate immune cells
Recirculating neutrophils and monocyte-derived macrophages
are primary innate immune cells against bacterial infection. They
can respond to inhaled bacteria and be recruited to the lung
immediately. Inhaled bacteria can be attacked and eliminated by
recirculating neutrophils and monocyte-derived macrophages
with their weapons such as ROS, proteases, etc. IFV infection can
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alter their response to inhaled bacteria and their ability to kill
bacteria (Martinez-Colon et al., 2019; Ho et al., 2018; Berg
etal., 2017).

Neutrophils, one of the most numerous circulating leukocytes, are
required for eliminating bacteria in BALB/c mice coinfected with IFV
and S. pneumoniae (Palani et al., 2023). They devour bacteria and kill
them by producing high levels of ROS. A clinical study indicates that
neutrophils isolated from airway fluid of patients coinfected with
influenza and bacteria exhibit high levels of activation markers (HNE
and MPO), but their ability to kill H. influenzae and S. aureus is
dampened in vitro (Grunwell et al., 2019). Neutrophils isolated from
mice also exhibit low levels of ROS and neutrophil elastase during
post-influenza bacterial infection (Jie et al., 2023; Ishikawa et al., 2016;
Sun and Metzger, 2014). Furthermore, IFV infection impairs their
ability to devour and kill invasive bacteria during post-influenza
P, aeruginosa infection in vivo (Jie et al., 2023). Type I IFN signaling
can weaken the capacity of neutrophils to kill S. aureus during post-
influenza S. aureus infection on day 7 after IFV infection (Shepardson
etal,, 2016) (Figure 1).

Recirculating macrophages are divided into proinflammatory M1
macrophages characterized by high levels of ROS and NO production,
and immunosuppressive M2 macrophages (Chen S. et al., 2023). M1
macrophages play a vital role in resisting bacterial invasion. CYP450
metabolites are ligands for peroxisome proliferator-activated receptor
a (PPARa). IFV infection induces the production of CYP450
metabolites (5,6-diHETYE, 8,9-diHETYE, 11,12-diHETYE and 14,15-
diHETYE) and triggers the activation of the PPAR« signaling pathway;,
which promotes polarization of M2 macrophages and dampens
bacterial clearance during post-influenza S. aureus infection (Tam
et al,, 2020; Lucarelli et al., 2022) (Figure 1). STAT2 signaling is also
linked to inhibiting macrophage (M1 and M2) accumulation and
impairing bacterial clearance during post-influenza bacterial
infection. Neutralizing IFN-y (M1) and/or Arginase 1 (M2) can
reduce bacterial clearance in Stat2™'~ mice during post-influenza
bacterial infection (Gopal et al., 2018). SHP2-deficient macrophages
exhibit enhanced polarization towards an M2 phenotype and a
decreased antibacterial capacity during post-influenza S. aureus
infection (Ouyang et al., 2019).

3.2 Dual infection causes severe
immunopathological damage

3.2.1 The overactivation of the inflammatory
response

The immune system is in a hyperactive state during post-influenza
bacterial infection, which can be activated by recognizing the
components of IFV following bacteria. The overactivation of the
inflammatory response is a key pathophysiological factor causing
acute lung injury (ALI) and a high mortality rate (Klemm et al., 2017;
Damjanovic et al., 2013; Jia et al., 2023). Post-influenza bacterial
infection occurs in the early stage of IFV infection and causes the
mortality of mice within days (Jia et al., 2018; Herrera et al., 2023;
Li-Juan et al, 2022). The innate immune system plays a more
important role in driving the development of post-influenza bacterial
infection during the early stage of infection. This study mainly
discusses the overactivation of inflammatory response during
coinfection with IFV and bacteria.
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Different complement factors can bind to the surface of IFV or
bacteria to trigger the complement system. During the early stage of
infection, the components of IFV and bacteria can induce the release
of C3a and Cb5a by activating the lectin pathway and the alternative
pathway (Santos et al., 2021; Syed et al., 2020). C3a and C5a are potent
chemoattractants recruiting neutrophils, macrophages, etc., to
infectious sites. In addition, C3a and C5a can activate neutrophils,
mast cells and basophils to release histamine, leukotriene, ROS, etc.,
increasing vascular permeability and destroying the epithelial-
endothelial barrier (Figure 2A). Post-influenza bacterial infection can
induce an overactivated inflammatory response by activating the
complement system. The overactivation of complement is associated
with ALI and high mortality in mice coinfected with IFV and S. aureus
(Jia et al., 2023).

The components of IFV and bacteria can be sensed by pattern
recognition receptors (PRRs), including Toll-like receptors (TLRs),
nucleotide binding oligomerization domain (NOD)-like receptors
(NLRs), retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) or
DNA-sensing molecules. Post-influenza bacterial infection induces a
dual inflammatory response in epithelial or immune cells (neutrophils,
macrophages, etc.) by sensing the components of IFV and bacteria,
respectively (Yuki and Koutsogiannaki, 2021; Verma et al., 2022).
Viral single-stranded RNA (ssRNA) can be sensed by RIG-I, MDA5,
TLR7 and TLR8 (Figure 2B). In addition, IFV can produce double-
stranded RNA (dsRNA) during viral replication, which can be sensed
by RIG-I, MDAS5 and TLR3 (Figure 2B). The components of gram-
positive bacteria such as peptidoglycan, lipoteichoic acid, lipoproteins
and bacterial DNA, can be sensed by TLR2, NOD1/NOD?2 and TLR9
(Figure 2B). The components of gram-negative bacteria such as
peptidoglycan, lipopolysaccharide, flagellin and bacterial DNA, can
be sensed by TLR2, NOD1/NOD2, TLR4, TLR5 and TLR9
(Figure 2B). Therefore, post-influenza bacterial infection induces a
more aggressive inflammatory response by activating more
inflammatory signaling pathways compared with influenza or
bacterial infection alone (Jie et al., 2023; Chen B. et al., 2025). A recent
longitudinal transcriptional study indicated that the top upregulated
differentially expressed genes during post-influenza S. pneumonia
infection are involved in inflammatory response (Cohn et al., 2024).
Neutrophils and macrophages are the predominant drivers of
overactivated inflammatory response during severe bacterial lung
infection (Xiao et al., 2025). Recently, a single-cell RNA sequence
study indicated that neutrophils, interstitial macrophages and classical
monocytes are key drivers of cytokine storm during post-influenza
S. aureus infection (Lei et al., 2025). But the comprehensive immune
response within bronchoalveolar lavage fluid (BALF) samples from flu
patients with bacterial pneumonia and healthy controls needs to
be verified using single-cell RNA sequencing technology in the future.

Neutrophils play a crucial role in clearing bacteria during the early
stages of bacterial invasion following influenza infection. The
capability of neutrophils to eliminate bacteria can be impaired by
initial influenza virus infection. However, these neutrophils still
possess pro-inflammatory properties. In addition, both initial
influenza virus infection and secondary bacterial infection recruit
large numbers of neutrophils to the lungs (Lei et al., 2025). Therefore,
neutrophils inevitably cause tissue damage during post-influenza
bacterial infection. Neutrophils can directly destroy normal lung
tissues and release damage-associated molecular patterns (DAMPs)
to exacerbate inflammatory response (Lei et al., 2025; Burn et al,,
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2021). Oxidative burst can induce the formation of neutrophil
extracellular traps (NETs) accompanied by releasing high levels of
ROS, histones and proteases, which contribute to lung damage. NET
formation in mice coinfected with IFV and bacteria contributes to
endothelial injury and lung damage (Vi et al., 2022; Narayana Moorthy
etal,, 2013). Activated neutrophils and NET formation can also release
high levels of proinflammatory mediators including S100A8, S100A9,
histones and dsDNA, which can induce overactivated inflammatory
responses by activating TLR4, TLR2 or ¢GAS-STING signaling
pathways (Xiao et al., 2025; Pruenster et al., 2016; Ramasubramanian
et al., 2022; Huang et al., 2013; Wilson et al., 2022; Katsoulis et al.,
2024). Patients coinfected with IFV and bacteria increase the risk of
coagulation disorders (Brown et al., 2024). Neutrophil activation is
associated with widespread pulmonary thrombosis and alveolar
oedema during post-influenza S. pneumonia infection (Walters et al.,
2015). The release of S100A8/A9 and histones in neutrophils binds to
GPIba or TLR2/4 receptors of platelets, which subsequently drive the
formation of immune thrombosis (Colicchia et al., 2022; Semeraro
et al, 2011) (Figure 2A). Most of recirculating inflammatory
monocytes are recruited into the lung and differentiate into
macrophages during infection. Activated macrophages can generate
reactive nitrogen species (RNS), TNF-q, etc., to augment lung damage
and exacerbate disease progression. Activated macrophages can also
produce matrix metalloproteinases such as MMP-9 and MMP-12, to
damage the alveoli during post-influenza bacterial infection (Rojas-
Quintero et al., 2018; Villeret et al., 2020; Lee et al., 2018).

Mast cells are an important part of the mucosal immune system
in the lung and can secrete high levels of cytokines and chemokines,
responding to IFV and bacterial infection (Hu et al., 2012; Malaviya
etal., 1996). Post-influenza S. aureus infection can inhibit autophagy
and facilitate the secretion of inflammatory mediators in mast cells by
activating the PI3K/Akt signaling pathway (Tang et al, 2023)
(Figure 2A). Suppressing the PI3K/Akt signaling pathway can inhibit
the production of inflammatory mediators and alleviate ALI caused
by secondary S. prneumoniae or S. aureus infection following IFV
infection (Tang et al., 2023; Yang et al., 2019).

3.2.2 Pyroptosis and necroptosis

Pyroptosis is an immunogenic form of cell death and can assist in
eliminating pathogens. But it can also drive inflammatory damage by
releasing inflammatory mediators (Corry et al., 2022; Zheng et al.,
2023) (Figure 2A). Pyroptosis is characterized by inflammasome and
caspase activation. Inflammasome activation including NLRP3/ASC,
Pyrin/ASC, AIM2/ASC, NLRC4 and NLRPI, can contribute to
caspase-1 activation that cleaves gasdermin D (GSDMD), exposes the
N domain of GSDMD and results in pore formation (Zhao et al., 2011;
Bai et al., 2025). In addition to classic inflammasome-dependent
pyroptosis, caspases-4/5/8/11 can also directly cleave GSDMD
through non-canonical pathways and initiate pyroptosis (Shi et al.,
2015; Zanoni et al., 2016; Broz et al., 2019). TLR2-MYD88-NLRP3
axis mediates IL-1p production during post-influenza S. pneumoniae
infection (Rodriguez et al., 2019). NLRP3 activation can increase
bacterial burden and inflammatory response, which is associated with
poor outcome in mice coinfected with IFV and bacteria (Shi et al.,
2020). While ASC activation results in increased inflammation and
mortality, but contributes to bacteria clearance during post-influenza
S. aureus infection (Robinson et al., 2018a). The E3 ubiquitin ligase
NEDD4 can promote GSDMD-mediated pyroptosis and result in
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poor outcome during post-influenza S. pneumoniae infection (You
et al., 2023). IL-4 exerts protective effects against post-influenza
S. pneumoniae infection by suppressing GSDMD-induced pyroptosis
(Peng et al., 2021).

Necroptosis is a form of inflammatory cell death that aggregates
tissue damage by releasing DAMPs and amplifying inflammation
(Pasparakis and Vandenabeele, 2015) (Figure 2A). Necroptosis is
initiated by death receptors (e.g., TNFR1) or pathogen sensors (e.g.,
ZBP1), which subsequently triggers RIPK1-RIPK3-MLKL cascade.
MLKL forms pore-like structures, therefore disrupting membrane
integrity and resulting in osmotic cell lysis, accompanied by the
release of DAMPs (Yuan and Ofengeim, 2023). Pore-forming toxins
(PFTs), such as pneumolysin produced by S. pneumoniae, are known
factors to induce necroptosis of lung epithelial cells (LECs) and are
required for inducing necroptosis during post-influenza S. pneumoniae
infection. IFV infection causes residual oxidative stress that enhances
susceptibility to bacterial-toxin-mediated necroptosis (Gonzalez-
Juarbe et al., 2020). IFV infection can also potentiate S. pneumoniae
infiltration in the heart, and induce oxidative stress to enhance
bacterial toxin-induced necrotic cell death and cause proteomic
remodeling of the heart (Platt et al., 2022). In addition, IFV infection
can activate PPARa signaling, mediate RIPK3-dependent necroptosis
and result in increased mortality during post-influenza S. aureus
infection (Tam et al, 2020). Large quantities of Z-RNAs, type
Iinterferon and dsDNA are produced during post-influenza bacterial
infection. All of these factors can induce ZBP1-mediated necroptosis.
Whether ZBP1-mediated necroptosis can result in increased mortality
during post-influenza bacterial infection remains unknown.

4 Treatment options

As our understanding of the molecular mechanisms underlying
virus-bacteria coinfection deepens, these discoveries present
opportunities for developing novel therapeutic approaches and
preventive strategies. Significant progress has been made in multiple
control strategies targeting either pathogens or hosts.

4.1 Vaccination

Influenza vaccination is the most effective strategy for preventing
IFV infections (Minozzi et al., 2022). Vaccines against IFV can
effectively reduce influenza-associated secondary bacterial infections
as well. Live influenza vaccine can protect mice from post-influenza
S. pneumoniae infection (Desheva et al., 2022). However, live influenza
vaccine could increase the risk of bacterial colonization. Multiple
clinical studies indicate that live influenza vaccines can increase
nasopharyngeal pneumococcal carriage and density (Peno et al., 2021;
Peno et al,, 2025; Glennie et al., 2016). Live attenuated influenza
vaccines can also enhance colonization of S. pneumoniae and S. aureus
in mice (Mina et al, 2014). Vaccines against IFV can impair
antibacterial immune response, which is similar to prior IFV infection
(Jochems et al., 2018).

Vaccination with the antigen of S. pneumoniae or P. aeruginosa
such as PspA or PcrV protein can also exert protective effects against
post-influenza bacterial infection in animal models (Majumder et al.,
2024; Wu et al., 2023). Vaccination with PspA protein can significantly
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increase the number of AMs and promote bacterial clearance in the
lung (Majumder et al., 2024). Prior S. pneumoniae infection can
protect against different serotypes of S. pneumoniae infection
following IFV infection by inducing a cross-reactive Th17 response
(Lietal., 2023). Vaccination with a conserved NTHi antigen, protein
0529, can protect mice from post-influenza NTHi infection by
increasing Th17 response (Zhang et al., 2023). In addition, virus-
bacterial vaccines can also provide protection against post-influenza
bacterial infection in a mouse model (Desheva et al., 2022; Li et al,,
2023). Whole-inactivated influenza A and pneumococcal vaccines can
increase IFV-specific CD8" T cell response in the lung (David et al.,
2019). These bacterial vaccines can effectively activate an antibacterial
immune response. However, most of these vaccines target single
bacterial infections and are not broad-spectrum.

4.2 Antivirals and antibiotics

Antivirals represent an essential strategy for the prevention and
treatment of influenza. Antivirals can decrease influenza-associated
morbidity, complications and mortality (Arnold et al., 2025; Uyeki
etal, 2019). Preceding IFV infection in the lung is a major risk factor
for secondary bacterial infection. It destroys the respiratory barriers,
increases bacterial adhesion and suppresses antibacterial immune
response facilitating bacterial infection to occur. Timely antiviral
treatment can effectively prevent secondary bacterial infections and
also benefits severe influenza complicated with bacterial infection
(Uyeki et al., 2019; Wang et al., 2023). Antivirals, such as peramivir
and oseltamivir, can reduce the incidence of secondary bacterial
infection, mitigate virus-induced injury and protect mice from post-
influenza bacterial infection (Lei et al., 2025; Zhao et al., 2021; Onishi
et al., 2015). At present, more and more new antivirals such as
suraxavir marboxil and onradivir, are available for the treatment of
IFV infection (Wang et al., 2025; Yang et al., 2024). Additionally,
neutralizing HA antibodies can also alleviate ALI and increase the
survival rate of mice during post-influenza bacterial infection (van
Someren Gréve et al., 2018; Robinson et al., 2019). Antivirals can
decrease viral load and alleviate virus-induced injury, thus reducing
the incidence of secondary bacterial infection. Therefore, timely
antiviral treatment is needed to control viral replication.

Secondary bacterial infection can amplify overactivated
inflammatory response and further ruin the normal lung tissues. The
timely antibiotic treatment against susceptible bacteria benefits flu
patients with bacterial infection (Wang et al., 2023). Antibiotic
treatment alone can reduce bacterial load and alleviate lung damage
caused by post-influenza bacterial infection (Verma et al., 2019; Song
et al,, 2022). But a study indicates that penicillin G treatment alone
cannot increase the survival rate of mice during post-influenza s.
aureus infection (Song et al, 2022). Antibiotic treatment can
effectively inhibit bacterial load, but it is insufficient to control the
replication of IFV and the overactivated inflammatory response.

4.3 Anti-adhesion

Anti-adhesion therapy can prevent microbial adhesion to cells or
tissues, and has become a promising strategy in infectious diseases
(Asadi et al., 2019). IFV infection can upregulate the expression of
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multiple adhesion receptors, promoting bacterial adherence.
Inhibiting the expression of adhesion receptors can effectively disrupt
bacterial adherence (Vimalanathan et al., 2017; Ishikawa et al., 2022).
WEB-2086, an antagonist of PAFr, can decrease the adhesion of
S. pneumoniae and NTHIi to cigarette smoke extract-treated bronchial
epithelial cells (Shukla et al, 2016). CV-3988 is also a specific
antagonist targeting PAFr. It can inhibit mild steel welding fumes-
mediated pneumococcal adhesion in vitro and in vivo. Some
traditional Chinese medicines such as Liu Shen Wan and
Lianhuagingwen can reduce S. aureus adherence to IFV-infected
respiratory epithelial cells by downregulating the expression of
CEACAM]I, ICAM-1 and integrin-a5, therefore protecting mice from
post-influenza S. aureus infection (Zhao et al., 2021; Song et al., 2022;
Du etal., 2021). Targeting adhesion receptors may be a new potential
therapy in preventing and treating influenza bacterial coinfection.
However, bacteria utilize multiple receptors to infect hosts, rendering
single anti-adhesion therapies ineffective. In addition, anti-adhesion
agents must be administered during the early stages of infection or
preventatively. In clinical practice, this therapeutic window is
frequently missed due to delayed presentation.

4.4 Neutralizing antibodies against
proinflammatory cytokines

Uncontrolled pathogens can induce the overactivation of
inflammatory response and contribute to severe organ injury. In
addition to controlling the replication of pathogens, it's important to
inhibit the overactivated inflammatory response during post-influenza
bacterial infection (Damjanovic et al., 2013; Tavares et al., 2017). Anti-
IL-6 and anti-IL-1 antibodies have been widely used for the treatment
of COVID-19 (Batista and Foti, 2021). Some neutralizing antibodies
such as tocilizumab and anakinra, can inhibit systemic inflammation
and decrease the risk of invasive mechanical ventilation or death in
patients with COVID-19 (Guaraldi et al., 2020; Kyriakoulis et al.,
2021). Single IFN-y neutralization can reduce local bacterial load in
the lung. Concomitant neutralization of IFN-y and IL-6 can inhibit
bacterial load, reduce the secretion of cytokines and alleviate the
degree of pneumonia as well as bacteremia during post-influenza
S. pneumoniae infection (Sharma-Chawla et al., 2019). The use of such
antibodies carries a risk of immunosuppression, potentially weakening
the body’s ability to clear bacteria and increasing the risk of
uncontrolled infection. Furthermore, the heterogeneity of patient
immune responses complicates distinguishing individuals who may
benefit from cytokine blockade versus those who may be harmed by
it, thereby complicating clinical trial design and patient stratification.

4.5 Other host-directed therapies

Therapies that modulate the overactivated inflammatory
response, can prevent the emergence of severe immunopathology
in infectious disease. Anti-C5aR treatment can significantly
increase the survival rates of mice and mitigate lung injury by
reducing the release of inflammatory mediators such as IFN-y,
TNF-a, IL-6 and IL-8 (Jia et al., 2023). Inhibition the activation of
NLRP3 by MCC950 can decrease the secretion of G-CSE, MIP-1a,
KC and IL-1 during post-influenza S. aureus infection. However,
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MCC950 cannot increase the survival rate of mice (Robinson et al.,
2018a). DNase I can mitigate lung injury by reducing the
expression of MCP-1, IL-1f and ICAM-1 in coinfected animals (Yi
et al., 2022).

4.6 Traditional Chinese medicines

Traditional Chinese medicines have been recommended for the
treatment of IFV infection since 2009. A Chinese formula contains
various active ingredients and plays a versatile role in the treatment of
IFV infection. Some of them possess antiviral, antibacterial and anti-
inflammatory effects (Zhao et al., 2023; Chen and Wang, 2023; Yang
etal, 2024; Zhang J. et al., 2025; Zhang B. et al., 2025). Some Chinese
formulas such as Liu Shen Wan, Lianhuaqingwen capsule and Jing-
Yin-Gu-Biao formula, have been found to protect mice from post-
influenza bacterial infection (Lei et al., 2025; Zhao et al., 2021; Song
et al., 2022; Du et al,, 2021). Liu Shen Wan and Lianhuaqingwen
capsule can inhibit replication of IFV, virus-induced overactivated
inflammatory response and the expression of adhesion receptor (Zhao
etal, 2021; Du etal,, 2021; Ma et al., 2020; Yang et al., 2020). Jing-Yin-
Gu-Biao formula can suppress the overactivation of neutrophils and
NETosis during post-influenza S. aureus infection (Lei et al., 2025). A
homogeneous polysaccharide from Houttuynia cordata can protect
mice from post-influenza S. aureus infection, which can reduce
excessive intestinal complement activation (C3a and C5a) and block
the NLRP3 pathway, helping regulate the Treg/Th17 cell balance in the
gut-lung axis (Li et al., 2025). Traditional Chinese medicines are also
promising optional agents for the treatment of post-influenza
bacterial infection.

4.7 Combination therapy

It is uncertain whether the use of antiviral drugs alone can reduce
mortality in patients with severe influenza due to the lack of data from
clinical trials (Gao et al., 2024). Multiple combination strategies such
as antivirals + antivirals, antivirals + monoclonal antibodies, antivirals
+ anti-inflammatory agents, antivirals + antibiotics, have been
considered for the treatment of severe influenza (Koszalka et al., 2022;
Zhou et al., 2025; Lim et al., 20205 Lee et al., 2021). Severe influenza
especially coinfected with IFV and bacteria is caused by multiple
pathogenic factors and should be considered combination therapy.
inhibit
inflammatory response, shorten the length of hospital stay and

The combination of antibiotics and oseltamivir can

decrease the incidence of ICU admission and secondary bacterial
infections (Ishaqui et al., 2021; Ishaqui et al., 2020; Lee et al., 2017).
Clarithromycin-Naproxen-Oseltamivir combination can also decrease
the mortality and length of hospitalization in hospitalized patients
with IFV infection (Lee et al, 2021; Hung et al, 2017). The
combination of antibiotics and clindamycin can increase the survival
rate of mice during post-influenza S. pneumoniae infection (Li et al.,
2018). Combined oseltamivir and traditional Chinese medicine are
superior to oseltamivir treatment alone in inhibiting overactivated
inflammatory response and alleviating ALI during post-influenza
bacterial infection (Lei et al., 2025). Combination therapy may be the
most important strategy for the treatment of coinfection with IFV
and bacteria.
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5 Future directions

This review summarizes epidemiology, pathogenesis and
therapeutic strategies during post-influenza bacterial infection. To
advance this field, future research must address several critical topics.
First, several mechanisms that may play an important role in the
co-pathogenesis of influenza-bacterial infections were summarized in
this study. Our findings are constrained by the scarcity of large-scale
human transcriptomic datasets. A crucial next step is the generation of
transcriptomic data from diverse cohorts to enhance the generalizability
of findings from the preclinical study. Second, clinical studies have
demonstrated that combination therapy holds significant potential for
treating severe influenza. Rational combination therapies concurrently
addressing pathogen clearance and host immunomodulation show
superior potential for managing coinfection complexity. The promising
benefits of combination therapies in influenza-bacterial infection have
not been rigorously tested in clinical settings. Large-scale, multicenter
clinical trials are required to ultimately evaluate the safety and
synergistic potential of combination therapies.

6 Conclusion

IFV infection severely threatens global health, with secondary
bacterial coinfection dramatically amplifying morbidity and mortality
through synergistic pathogenesis. Crucially, IFV establishes a
permissive environment for bacterial invasion by disrupting respiratory
epithelial integrity and suppressing innate antimicrobial immunity,
underscoring the imperative for prompting viral control to prevent
secondary complications. Once coinfection ensues, dysregulated host-
pathogen interactions trigger hyperinflammation wherein recruited
neutrophils and macrophages paradoxically become key drivers of
immunopathology, which fuel tissue damage despite their defensive
roles. This mechanistic insight necessitates therapeutic strategies
beyond conventional antimicrobials: modulating pathological immune
responses, particularly targeting the neutrophil-macrophage axis and
associated hyperinflammatory cascades, represents a promising host-
directed approach to mitigate organ damage.
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