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1 Introduction

It is a well-established biological principle that exposure to antimicrobials imposes
selective pressure on microbial populations (Charlebois, 2023; Hasan et al., 2021).
This selective pressure favors the survival and propagation of resistant microbial sub-
populations (Cantón and Morosini, 2011). The emergence of resistance under such
conditions is both expected and extensively documented, supported by empirical evidence,
mechanistic studies, and molecular analyses of genetic adaptation (Holmes et al., 2016;
Muteeb et al., 2023). Accordingly, the phenomenon itself is not in question. Rather, it is
the methodological framework through which resistance is defined and monitored that
warrants critical examination, particularly in light of continued breakpoint changes.

A potentially consequential concern lies not in the biology of the organism itself, but
in the interpretive frameworks through which laboratory data are classified. The widely
accepted narrative of rising antimicrobial resistance (AMR) may reflect not only genuine
microbial evolution, but also the cumulative impact of evolving interpretive standards—
particularly revisions to minimum inhibitory concentration (MIC) breakpoints and zone
diameter thresholds that determine categorical susceptibility (Hombach et al., 2012).
These redefinitions, though grounded in scientific rationale, raise the possibility that some
observed increases in AMR may result from shifting standards rather than true biologic
changes of the tested infectious agents.

2 Breakpoint drift and its implications

In clinical microbiology, there is a foundational trust in the objectivity of diagnostic
tools—the defined inhibition zone diameters, the broth microdilution assays that quantify
minimum inhibitory concentrations (MICs), and the interpretive algorithms that generate
categorical antimicrobial susceptibility testing (AST) results (Kowalska-Krochmal and
Dudek-Wicher, 2021). Tools such as the Advanced Expert System (AES) further integrate
these outputs into therapeutic recommendations (Winstanley and Courvalin, 2011).
However, these tools produce raw data, not clinical meaning. Interpretation is contingent
on breakpoints established by standards-setting organizations such as the Clinical and
Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) (Gaur et al., 2023). These interpretive thresholds evolve
in response to emerging pharmacokinetic/pharmacodynamic (PK/PD), microbiologic,
and clinical outcome data. Although such revisions are scientifically justified, they have
significant implications for how AMR is defined, reported, and interpreted over time
(Humphries et al., 2019).
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The systematic analysis conducted by Hombach et al. (2012)
provided compelling evidence of how shifts in interpretive
breakpoints can significantly alter reported AMR rates—
independent of any underlying biological change. The study
demonstrated that applying updated CLSI and EUCAST
breakpoints to a large collection of Gram-negative isolates led to
substantial increases in reported resistance rates—solely due to
changes in interpretive criteria (Hombach et al., 2012). Resistance
classifications for several key pathogens and antimicrobial
classes shifted significantly, despite no change in the underlying
microbiology. These findings highlight how revised breakpoints
alone can alter perceived resistance patterns, emphasizing the
importance of accounting for such changes in longitudinal
surveillance and trend analyses (Hombach et al., 2012).

Such changes in interpretive criteria constitute more than
technical revisions—they represent fundamental shifts in the
conceptual framework through which AMR is defined. For
example, a bacterial isolate with an inhibition zone diameter
previously categorized as susceptible under earlier guidelines may
now be reported as resistant according to current standards—not
because of recent adaptive change in the organism, but due to
updated criteria that better reflect PK/PD evidence, patient factors,
and contemporary clinical practice (Cardoso et al., 2025; Sader
et al., 2023). Such reclassifications—illustrated by selected examples
in Table 1—while improving the clinical accuracy of current
susceptibility assessments, can nonetheless produce substantial
shifts in reported AMR rates within surveillance datasets,
cumulative antibiograms, and public health reports. Without
explicit adjustment, these changes risk being misinterpreted as
evidence of accelerated microbial evolution or dissemination, when
in fact part of the observed change may arise from methodological
redefinition rather than from changes in the underlying biology
(GBD 2021 Antimicrobial Resistance Collaborators, 2024).

3 Discussion, recommendations, and
conclusion

Currently, there is no standardized method for harmonizing
historical AST data with revised clinical breakpoints, nor is there
a routine acknowledgment that increases in reported resistance
may, at least in part, reflect methodological reclassification rather
than true microbiological change. This creates an epistemological
conflation: a biological phenomenon confounded by a shifting
interpretive framework. The situation is akin to changing
diagnostic thresholds in chronic disease classification—for
example, redefining the blood pressure cutoff for hypertension
inevitably increases disease prevalence, not because more
individuals have developed pathology, but because the diagnostic
criteria have shifted. Similarly, AMR may appear to rise, not
necessarily due to increased pathogen resilience, but because the
benchmarks used to define AMR have been made more stringent.

Failure to account for evolving interpretive criteria in
the analysis of AMR trends carries direct implications for
public health policy and clinical decision-making. Revisions to
clinical breakpoints, even when grounded in robust PK/PD
and clinical evidence, function as recalibrators of AMR rates;
an effect acknowledged in some studies but not consistently

adjusted for in surveillance analyses (GBD 2021 Antimicrobial
Resistance Collaborators, 2024). The updated CLSI breakpoints
for fluoroquinolones and cephalosporins in Enterobacterales, as
well as EUCAST’s redefinition of the “intermediate” category
as “susceptible, increased exposure,” are emblematic of such
changes (Nabal Díaz et al., 2022; Van et al., 2019). Such
changes have substantial epidemiological consequences that
are seldom integrated with appropriate granularity into AMR
surveillance datasets.

Public discourse, meanwhile, has been saturated with
urgent headlines—“Resistance is Rising,” “Superbugs on the
March”—that often conflate microbial evolution with shifts
in regulatory definitions (Arias and Murray, 2009; Capurro,
2020; Painuli et al., 2023). This is not a criticism of CLSI or
EUCAST, whose breakpoint revisions are evidence-based and
reflect scientific progress. However, for that progress to be
meaningful, its evolution must be acknowledged. Unadjusted
AMR data may lead to unnecessary broad-spectrum antibiotic
use, misdirected investments, and flawed policy decisions. One
contributing mechanism is that such data can make certain first-
line agents appear less reliable for empirical therapy, prompting
earlier escalation to agents such as carbapenems in place of
β-lactam/β-lactamase inhibitor combinations (Lau et al., 2022).
This perception, often shaped by institutional antibiograms and
surveillance reports, while well-intentioned, can increase selection
pressure on last-line drugs and accelerate the emergence of
multidrug-resistant organisms (Zilberberg et al., 2017). Without
accounting for shifting definitions, long-term AMR trends
may capture changes in classification criteria rather than true
microbial evolution, risking misinterpretation of resistance
dynamics and potentially misleading clinical, epidemiological, and
policy decisions.

What, then, are the necessary steps forward? First, AMR
surveillance—whether global, national, or institutional—should
routinely annotate their reports with breakpoint metadata.
Just as genome browsers present annotation tracks alongside
nucleotide sequences, and as widely circulated COVID-19
incidence and mortality plots annotated changes in diagnostic
definitions or reporting criteria, so too should antibiograms and
AMR trend analyses display the interpretive context used at
the time of data acquisition, including the version and source
of the breakpoints applied. Second, academic and regulatory
bodies should establish a standardized nomenclature for
breakpoint epochs. Resistance data labeled as “S[CLSI2012]”
or “R[EUCAST2021],” for example, would clearly communicate
the interpretive framework, facilitating both cross-sectional
comparison and accurate longitudinal analysis. Third, when
historical bacterial isolates are available, they should be retested
using contemporary breakpoints to enable true retrospective
trend evaluation. Although labor-intensive, this is feasible in
reference laboratories and academic centers with bio-banked
microbial strains. In cases where isolates are no longer available,
modeling approaches should be employed to retrospectively
adjust historical data based on known MIC distributions and
classification changes. Fourth, modeling consortia—such as
those behind the Global Burden of Disease (GBD) project—
should incorporate breakpoint harmonization protocols into
their methodologies. Adjustment factors or, at minimum,
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TABLE 1 Comparison of clinical and laboratory standards institute (CLSI) disk diffusion interpretive criteria (zone diameter, mm) for selected
organism–antimicrobial combinations in 2015 and 2025.

Bacteria Antimicrobial CLSI-
2015 (S)

≥
CLSI-

2025 (S)
≥

CLSI-
2015

(I)

CLSI-
2025

(I)

CLSI-
2015 (R)

≤
CLSI-

2025 (R)
≤

Acinetobacter spp. Ampicillin-sulbactam 15 22 12–14 17–21 11 16

Acinetobacter spp. Minocycline 16 22 13–15 18–21 12 17

Enterobacterales Gentamicin 15 18 13–14 15–17 12 14

Enterobacterales Amikacin 17 20 15–16 17–19 14 16

Enterobacterales Ciprofloxacin 21 26 16–20 22–25 15 21

Enterobacterales Levofloxacin 17 21 14–16 17–20 13 16

Pseudomonas aeruginosa Piperacillin-tazobactam 21 22 15–20 18–21 14 17

Pseudomonas aeruginosa Ciprofloxacin 21 25 16–20 19–24 15 18

Staphylococcus aureus
including MRSA

Ceftaroline 24 25 21–23 20–24 (SDD) 20 19

All Staphylococci Linezolid 21 26 – 23–25 20 22

Values indicate the minimum inhibitory zone diameter [nearest whole millimeter (mm)] defining Susceptible (S), the Intermediate or Susceptible, Increased Exposure (I/SDD) range, and
the maximum diameter defining Resistant (R), as published in CLSI Performance Standards for Antimicrobial Susceptibility Testing (2015 vs. 2025 editions) cited in Clinical and Laboratory
Standards Institute (2015, 2025).
MRSA, Methicillin-resistant Staphylococcus aureus.

sensitivity analyses are essential to account for interpretive changes
across time.

In the discourse surrounding AMR, a fundamental question
must be asked: does our current narrative reflect true microbial
evolution, or the cumulative effect of evolving diagnostic
conventions? Increases in AMR prevalence may reflect not only
bacterial adaptation but also redefinition through processes such
as breakpoint drift; neglecting the latter risks incomplete or biased
interpretation of surveillance data. The truth, as always, lies at
the intersection of both. Microorganisms evolve, undoubtedly—but
so too does the diagnostic lens through which we measure that
evolution. Recognizing the profound implications of breakpoint
recalibration and the confounding effects of breakpoint drift should
not diminish the urgency of addressing AMR; rather, it should
strengthen the foundation upon which our understanding rests. To
address AMR effectively as a major medical challenge of the 21st
century, we must ensure that our measurement tools keep pace with
both microbial evolution and advances in diagnostic methodology,
so that changes in reported resistance reflect true shifts in biology
rather than artifacts of classification.
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