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Introduction: Soil microbial communities are central to soil health and plant
productivity, yet their responses to crop rotation and seasonal changes remain
incompletely understood. Understanding how crop identity and phenology
shape these communities is essential for optimizing agricultural sustainability.
Methods: This study examined how different crop species and their growth
stages influence the diversity, composition, and functional characteristics of
soil microbiota in a long-term crop rotation system. We integrated high-
throughput DNA sequencing with soil chemical and spectroscopic analyses to
assess microbial community dynamics across three key seasonal time points.
Results: Our results indicate that while crop species and their growth stages can
influence microbial community structure, these effects were generally modest
and variable. In contrast, seasonal factors and soil physicochemical properties—
particularly electrical conductivity—exerted stronger and more consistent effects
on microbial beta diversity. Despite shifts in taxonomic composition, a core
microbiome dominated by Acidobacteriota and Bacillus persisted across crops
and seasons. Functional predictions revealed a seasonal peak in nitrification
potential during warmer months, suggesting environmental rather than crop-
driven control of this process.
Discussion: These findings highlight the resilience of soil microbiomes under
rotational systems and underscore the dominant role of seasonal and abiotic
factors in shaping microbial community dynamics. A better understanding of
these interactions can inform agricultural practices aimed at sustaining microbial
functionality and promoting long-term soil health.

KEYWORDS

soil microbiome, crop rotation, seasonal variation, soil microbial diversity, microbial
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1 Introduction

Soil microbiota play a fundamental role in maintaining soil health, fertility, and
ecosystem functioning (Churchland et al., 2013; Fierer, 2017). These diverse communities
of bacteria and fungi are responsible for key processes such as nutrient cycling, organic
matter decomposition, and the suppression of soil-borne diseases (Berendsen et al., 2012;
Philippot et al., 2013). In agricultural systems, the structure and function of soil microbial
communities are influenced by a complex interplay of factors, including soil properties,
crop species, management practices, and seasonal dynamics (Hartmann et al., 2015;
Schlatter et al., 2020; Zong et al., 2024).
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Crop rotation is a widely adopted agricultural practice aimed
at improving soil fertility, breaking pest and disease cycles, and
enhancing crop productivity (Smith et al., 2007; Venter et al., 2016).
However, the extent to which different crops and their growth
stages affect soil microbial diversity and community composition
remains a subject of ongoing research (García-Orenes et al., 2013;
Lupatini et al., 2017) While it is well established that plant roots
can shape the rhizosphere microbiome through the release of
exudates and other mechanisms (Bais et al., 2006; Sasse et al.,
2018; Seitz et al., 2024), the relative importance of crop identity vs.
environmental factors such as soil type, pH, moisture, and seasonal
changes is less clear (Lauber et al., 2009; Rousk et al., 2010).

Recent advances in high-throughput sequencing and molecular
profiling have enabled more detailed investigations into how
crop rotations and seasonal variation influence soil microbial
communities (Caporaso et al., 2012; Mendes et al., 2015). These
studies have revealed that, although plant species can exert some
influence on the soil microbiota, their effects are often context-
dependent and may be outweighed by abiotic factors and temporal
variability (Thomson et al., 2010; Zhou et al., 2016). Understanding
the drivers of soil microbial stability and change is crucial for
developing sustainable agricultural practices that support long-
term soil health and productivity (Schloter et al., 2018; Banerjee
et al., 2019).

This study aims to elucidate how different crops and their
seasonal growth stages affect the diversity, composition, and
functional potential of soil microbiota within a long-term crop
rotation system. By integrating high-resolution metabarcoding
with soil chemical profiling, we seek to disentangle the relative
contributions of crop species, vegetation stage, and environmental
variables to soil microbial community dynamics. The findings
will provide insights into the resilience and stability of the
soil microbiome in response to agricultural management, with
implications for optimizing crop rotations and promoting
agroecosystem sustainability.

2 Materials and methods

2.1 Site description and sample collection

2.1.1 Site description
This study utilized soil samples collected in 2019 from the

Biosyst long-term experiment (LTE), conducted at the FIELDLAB
of the University of Perugia (42◦57

′
26.2

′′
N, 12◦22

′
21.2

′′
E, 168 m

a.s.l.). The samples were taken from the field managed under the
conventional low-input system throughout the study (CON, EU
reg. 2078/92), where the soil in the field was identified as Fluventic
Haplustept, consisting of 26.3 ± 1.3% sand, 38.5 ± 1.2% silt, 35.2 ±
1.0% clay, with a pH of 8.04 ± 0.11 and 1.46 ± 0.05% soil organic
matter (SOM).

Starting from October 2001, a 6-year crop rotation had been
implemented with a fixed sequence of crops: (1) corn (C), (2)
processing tomato (T), (3) durum wheat (DW), (4) field bean
(FB), (5) muskmelon (M), and (6) common wheat (CW). To
accommodate all the six crops in each year, the field was divided
into six sectors, and six different crop rotation arrangements (R1–
R6) were used, each starting with a different crop. For example,

TABLE 1 Number of bulk samples collected for each crop species at three
sampling dates during the growing season.

Date of sampling Bulk samples n. Total

March
27th

June
20th

September
6th

Durum wheat 4 4 4

Common wheat 4 4 4

Field bean 4 4 4

Corn 4 4 4

Tomato 4 4 4

Muskmelon 4 4 4

Total 24 24 24 72

A total of 72 bulk soil samples were collected across six crop species: durum wheat, common
wheat, field bean, corn, tomato, and muskmelon. For each crop, four bulk samples were taken
(four cores per bulk) on each of the following dates: March 27th, June 20th, and September 6th.
This resulted in 24 samples per sampling date and an even distribution across crop species and
time points.

in the 2018/2019 season, after three full rotation cycles (i.e., 18
years), the crops in each sector were as follows: durum wheat in
R1, soft wheat in R2, muskmelon in R3, processing tomato in R4,
corn in R5, and field bean in R6. Soil sampling was performed
using a 4 cm diameter core drilling tool to collect soil from the
top 0–20 cm layer. In each sector (R1–6, i.e. for each culture),
four sampling points were selected in the core area (excluding
border furrows and plot edges), each sampling represents the
biological replicates. At each sampling point, four cores were
taken randomly, when the crop was not present, or in between
two contiguous crop furrows, when crop furrows were visible.
The four cores from each sampling point were mixed in a sterile
plastic bag and stored at −80 ◦C for further analysis, improving
sample homogeneity and minimizing spatial micro-variability.
These pooled samples were not considered independent pseudo
replicates but rather a single biological replicate. Each sector was
treated independently, with no overlap in sampling points between
sectors, ensuring statistical independence among replicates for a
given crop. Sampling took place on three dates: March 27th, June
20th and September 6th, 2019. A schematic description of the
experiment in the year 2018/2019, including crop growth stages,
are reported in Supplementary Figure 1 and Table 1. A detailed
description of the field management and condition at the time of
sampling has been already described (Pierantoni et al., 2024).

2.2 DNA extraction and amplicon
sequencing

Metagenomic DNA was isolated from each soil sample using
the FastDNA Spin Kit for Soil (MP Biomedicals), adhering
to the supplier’s instructions. The DNA concentration was
measured with a Nanodrop spectrophotometer (Thermo
Fisher Scientific). To target the V3–V4 region of the 16S
rRNA gene, PCR amplification was carried out using primers
Pro341F (5

′
-CCTACGGGNBGCASCAG-3

′
) and Pro805R (5

′
-

GACTACNVGGGTATCTAATCC-3
′
) (Takahashi et al., 2014). The
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resulting amplicons were processed into sequencing libraries by
BMR Genomics (Italy) and sequenced using the Illumina MiSeq
platform with paired-end 300 bp reads. All sequencing data have
been deposited in the Sequence Read Archive (SRA) under the
BioProject accession number PRJNA1053916.

2.3 Soil preparation for CE, pH, and FT-IR
analyses

Soil samples were air-dried and sieved through a 2 mm mesh.
A subsample of 3 g of soil was suspended in sterile distilled water
in a 1:5 weight-to-volume ratio. The mixture was agitated for 2 h,
followed by a 15-min settling period. The supernatant obtained
was used for measuring electrical conductivity (EC), pH, and
Fourier-transform infrared (FT-IR) spectroscopy. EC (1:5) was
determined using an EC-Meter GLP 31 (Crison Instruments), and
pH was measured with a bench-top pH meter (XS Instruments).
Both parameters were measured in duplicate, and the average
values were considered for subsequent statistical evaluations
(Supplementary Table 1). For FT-IR spectroscopy, 30 μl of the
supernatant were collected and divided into three 10 μl technical
replicates, which were plated on a 384-well silica plate, following the
methodology outlined by other authors (Essendoubi et al., 2005).

2.4 Data analysis

2.4.1 Metabarcoding
All sequence preprocessing and taxonomic classification

steps were performed following the standard DADA2 workflow
(Callahan et al., 2016), using the dada2 package (version 1.26.0)
in R. Specifically, raw reads were filtered and trimmed based on
quality profiles to remove low-quality bases and reads, including
singleton handling as per DADA2 recommendations. The pipeline
included error rate learning, dereplication, inference of exact
sequence variants (ASVs), merging of paired-end reads, and
removal of chimeric sequences. Taxonomic assignment was carried
out using the naïve Bayesian classifier implemented within DADA2,
with classification performed against the SILVA 138 SSU reference
database (Callahan et al., 2016).

To characterize the soil microbiome diversity, both alpha
and beta diversity metrics were calculated. Alpha diversity
indices included the Shannon diversity index, Simpson Evenness,
and Chao1 richness estimator, and the number of Observed
ASVs while beta diversity was assessed using the Bray-Curtis
dissimilarity index. These analyses were conducted with the Vegan
and microeco packages (versions 2.7-1 and 1.15.0) in R, which
provide comprehensive tools for microbial community analysis and
visualization. Given that the data did not satisfy the assumptions
of normality or equal variance, non-parametric statistical tests
were applied to evaluate differences in relative abundance and
diversity metrics. Normality was assessed using the Shapiro-Wilk
test (shapiro.test() in R), and homoscedasticity was evaluated
with the Breusch-Pagan test, performed after fitting a linear
model (lm() function) and applying the ncvTest() function. This
test is not a microbial-ecology-specific test but it is used as a

diagnostic tool when applying regression or ANOVA-type models
to microbial data.

Beta diversity patterns were visualized through Principal
Coordinates Analysis (PCoA), and their statistical significance
was tested using PERMANOVA. Additionally, distance-based
redundancy analysis (db-RDA) was used to explore relationships
between beta diversity and environmental variables, utilizing
functions from Vegan and microeco. The significance of
environmental variables in the db-RDA analyses was evaluated
using the cal_ordination_anova() function implemented in the
microeco R package. This method applies permutation-based
testing to assess the contribution of each variable to the overall
model. The core microbiome was defined by identifying ASVs
present in at least 90% of samples at a minimum relative abundance
threshold of 0.5%, using the phyloseq package (version 1.52.0).
The core ASVs were subsequently analyzed statistically with
the Kruskal-Wallis test. Functional potential of the prokaryotic
communities was inferred using FAPROTAX via the microeco
package, which predicts metabolic and ecological functions based
on taxonomic assignments.

2.4.2 FT-IR
FTIR measurements were conducted in transmission mode,

with spectra recorded over the range of 4,000–400 cm−1 at
a spectral resolution of 4 cm−1. For each sample, 256 scans
were acquired. Spectral processing, including quality assessment,
baseline correction, vector normalization, and second derivative
calculation, was performed using OPUS software (version 7.5,
Bruker Optics GmbH, Ettlingen, Germany). Technical replicates
were averaged to obtain representative spectra, which were
subsequently used for statistical analyses.

Peak picking was performed on the average raw spectra
prior to derivatization, while statistical testing was carried out on
the derived spectra. A wavelength-by-wavelength t-test (p-value
adjusted for multiple testing using Bonferroni correction) and
Principal Component Analysis (PCA) were both performed on a
reconstructed spectrum, composed of the regions surrounding each
identified peak, using R software, to identify significantly different
spectral wavelengths and explore overall spectral variability.

3 Results and discussion

3.1 Alpha and beta diversity of the rotation
crops at three sampling times

Being six distinct species, the rotation crops exhibited distinct
growth stages at the three sampling times. In March, winter crops
(field beans, soft wheat, and durum wheat) were green and actively
growing, while summer crops (tomato, corn, and muskmelon)
had not been established yet, thus the soil was bare. In June,
winter crops had reached maturity and showed dry vegetation,
while summer crops were in their full vegetative stage. Finally,
in September, winter crops and muskmelon had been harvested,
leaving the soil with just the straw mulch. Corn and tomato were
in the maturation stage, with dry vegetation and some remaining
fruit on tomato plants (Supplementary Figure 1).
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FIGURE 1

Alpha and beta diversity of soil microbial communities across different seasons (March, June, September) and crop cultivations. (a, c, e) Boxplots
show alpha diversity indices, for each crop and season, grouped by cultivation stage (soil condition), with statistical comparisons between groups.
(b1, d1, f1) Principal Coordinate Analysis (PCoA) plots based on Bray-Curtis dissimilarity illustrate beta diversity by soil condition for each sampling,
with 95% confidence ellipses. (b2, d2, f2) PCoA plots further differentiate beta diversity by crop type within each season, with corresponding boxplots
for PCoA axes. Distinct clustering patterns and diversity metrics highlight the influence of both seasonality and crop type on soil microbial
community structure. Statistical significance is indicated where relevant.

In order to assess the variations of soil microbiota as a function
of the crop stage and of the specific crops, both alpha and beta
diversity were compared between bare soil and soil with vegetative
plants and among the six crops, for all the three sampling times, as
detailed below.

In March, none of the alpha diversity metrics revealed
statistically significant differences between the microbiota of bare
soil plots and those with green vegetation, that is, between plots
with summer and winter crops (Figure 1a); similarly, no significant
differences were observed among the individual rotation crops
(Supplementary Figure 2a). A similar outcome was observed for

beta diversity in the PCoA diagram, based on Bray-Curtis index,
where no spatial separation between growth stage variable was
detectable. When considering the single crops as a variable, PCoA
showed that on PCo1 DW and CW clustered closely together while
Field Bean and summer crops overlapped, with Tomato being the
most spread out (Figures 1, b1, b2).

In June, alpha diversity did not show any significant differences
between fields with green vegetation (summer crops) and those
with dry vegetation (winter crops), as among the single crops
(Figure 1c and Supplementary Figure 2b). Beta diversity analysis
revealed some clustering based on the vegetation stage, particularly
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FIGURE 2

Distance-based redundancy analysis (dbrda) biplots illustrating the relationships between soil cover types and physicochemical properties (pH and
electrical conductivity, CE) across different crop species, for each sampling time [March, panel (a); June, panel (b); September, panel (c)]. Different
symbols represent crop types (e.g., Durum wheat, Common wheat, Muskmelon, Tomato, Corn, Field bean), and arrows indicate the direction and
strength of soil variables’ influence. Inserts show mean pH and CE values for each soil condition.

along PCo 2 (Figures 1, d1), where the two groups were
clearly separated.

When considering the crop variable, more distinct clusters
emerged compared to the March sampling. Winter crops, along
with melon, formed separate clusters, while corn and tomato
showed slight overlap with the field bean cluster (Figures 1, d2).

Finally, the September sampling resembled that of March,
showing no significant differences in alpha diversity (Figure 1e,
Supplementary Figure 2c) as well as no difference in terms of
beta diversity were the straw mulch samples (winter crops and
melon) overlapped with the dry vegetation samples (corn and
tomato) on the PCoA diagram (Figures 1, f1). Differently from
the March sampling, when combining the PCoA analysis with the
crop species variable, three main groupings were observed: durum
wheat and soft wheat clustered together, as did corn and melon
(despite being at different growth stages), and tomato and field bean
(also at different growth stages; Figures 1, f2). When considering
all samples from the different sampling points and sampling
times, a clear grouping is observed based on the sampling time.
The September samples are tightly clustered together, distinctly
separated from the June and March samples, which instead overlap
(Supplementary Figure 3).

The results suggest that crop growth stage and crop species
have a relatively modest and context-dependent impact on soil
microbial diversity and composition within the studied rotation

system. Across all three sampling periods, alpha diversity showed
no significant differences between bare soil and vegetated plots or
among the six crop species. This indicates that the presence of
vegetation, as well as the specific crop, did not consistently affect
the overall richness or evenness of the soil microbial community.
These findings are in line with recent studies showing that while
plant species can influence soil microbiota, their effects are often
outweighed by factors like soil type, season or other environmental
conditions (Wagg et al., 2014; Prober et al., 2015; Hartman et al.,
2017). The fact that in most cases the samplings were obtained from
soil between rows, and therefore relatively far from plant roots,
further enhances the observation that the microbiota of bare soil
is not significantly different from that of soil with growing crops
(Peiffer et al., 2013; Zhalnina et al., 2018). At the same time, this
observation within the normal rotation is not necessarily extensible
to agronomic practices consisting in leaving the soil without crops
for long periods of time.

3.2 Beta diversity and soil physio-chemical
parameters variation across crop rotation
and sampling time

The relationship between soil beta diversity and physico-
chemical factors, specifically pH and electrical conductivity (EC),
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was examined using distance-based redundancy analysis (dbRDA)
(Figure 2). In March, the first two dbRDA axes (dbRDA1
and dbRDA2) together explained 78.6% of the total variation
(Figure 2a). pH was positively associated with dbRDA1, while EC
showed a positive correlation with dbRDA2. These environmental
variables influenced the clustering of soil communities, particularly
in field sections where winter crops were present at the time of
sampling. In these areas, samples are clustered closely by crop
species. In contrast, samples from unplanted fields intended for
summer crops (i.e., bare soil) displayed weaker clustering and
greater overlap, mainly along the dbRDA1 axis. Overall, soil
conditions, reflected by pH (no significance with permutation test)
and EC (permutation test p-value = 0.099, weak significance),
appear to be key drivers of community structure (permutation test
p-value = 0.012), with samples from vegetated fields (winter crops)
clearly separating from bare soil samples (summer crops) along
dbRDA1. This pattern was further confirmed by a permutational
multivariate analysis of variance (PERMANOVA), which resulted
in a significant p-value = 0.027.

In June, when all fields were covered either with green
vegetation (summer crops) or dry biomass (winter crops), a
distinct separation was observed along the first dbRDA axis
(PERMANOVA, p-value = 0.009, permutation test p-value =
0.012), which accounted for 56% of the total variation (Figure 2b).
Common and durum wheat samples clustered closely together,
while field bean samples were more widely distributed along the
second axis (dbRDA2), which explained an additional 24.8% of
the variation. By September, sample dispersion increased across
the ordination space (Figure 2c). Soil samples from each field,
four of which now contained straw mulch with no active crops,
formed distinct groupings, with only the wheat-associated samples
remaining tightly clustered. Soil conditions continued to drive
sample separation, with a diagonal gradient visible across the
dbRDA but at this sampling time this spatial separation was not
supported by a statistical significance (PERMANOVA, p-value =
0.129, permutation test p-value = 0.065).

The pH and electrical conductivity (EC) variables, represented
as vectors in the dbRDA plots, are summarized in each
panel of Figure 2. Across all sampling periods (March, June,
and September), pH consistently appeared as a short vector,
indicating a relatively weak influence (no statistical significance
with permutation test) on microbial community structure, an
observation supported by the lack of statistically significant
differences in pH among crop types. In contrast, EC was
consistently represented by longer vectors, suggesting a stronger
impact on microbial composition. This is further supported by
a greater number of significant differences in EC, particularly in
September, when tomato and field bean samples showed the most
pronounced contrasts (e.g., Tomato vs. DW, CW, and C; Field bean
vs. DW, CW, and C) and by a significant p-value obtained via
permutation test (0.34).

Finally, when combining all the samples in the same
dbRDA analysis, two distinct separation patterns emerge. In
Supplementary Figure 4a, the physio-chemical parameters were
considered alongside the sampling time and crop variable. Two
main separations are evident: along the dbRDA1 axis the crop
variable plays a dominant role here (permutation test p-value =

0.001), with the CW vector aligning almost parallel to the axis,
pointing to the left, while the field bean vector points in the opposite
direction. Notably, the wheat samples are clustered on the far
left of the plot, indicating a strong differentiation between wheat
and the other crops. This suggests that the crop type influences
the variation in physio-chemical parameters along this axis. Along
the dbRDA2 axis the separation is primarily driven by sampling
time (permutation test p-value = 0.001). The September samples
are distinctly grouped toward the lower portion of the plot, ie,
separating the CW and DW soil communities sampled in March
and June from those sampled in September. This indicates that time
of sampling has a strong influence, with a clear distinction between
samples taken at different times (September vs. March and June).
The effect of sampling time may reflect seasonal changes, such as
differences in environmental conditions, plant growth stages, or
other temporal factors.

For this reason, the dbRDA was obtained considering the same
data but introducing the soil condition parameter along with the
sampling time (Supplementary Figure 4b). This change resulted in
better grouping of wheat samples (CW and DW), which are here
more clearly clustered in the upper part of the plot (still partially
separated by the sampling time variable). Along the dbRDA1 axis,
the most noticeable separation is between September samples (Dry
Vegetation and Straw Mulch, the latter only present at this time)
and those from March and June (Bare Soil and Green Vegetation,
which overlap).

The crop species and sampling time are the main factors driving
this clustering (no significance for the Soil_condition variable with
permutation test). Specifically, samples with dry vegetation are
scattered throughout the plot, with DW and CW (June) separated
from Field Bean (June) and Tomato and Melon (September). Straw
mulch samples overlap with dry vegetation samples from the same
sampling time. The crop variable acts as a strong driver as well, with
wheat samples (March and June) grouped together, while Tomato
and Melon form a tight cluster (March and June), along with Field
Bean and Tomato.

Beta diversity analyses revealed clearer patterns than alpha
diversity in this crop rotation system. In both March and
September, microbial communities showed little differentiation
based on vegetation stage or crop species, suggesting substantial
overlap regardless of whether vegetation was present. In
contrast, June samples displayed more distinct clustering
by crop type, which coincided with the period when the
difference between dry winter crops and green summer crops was
most pronounced.

The limited impact of crop species and the absence of
significant differences in alpha diversity further suggest that soil
physico-chemical properties and the existing microbial community
play a stronger role in shaping soil microbiota than plant identity
alone (Fierer and Jackson, 2006; Lauber et al., 2009). Seasonal
factors, including fluctuations in soil moisture, temperature, and
organic matter inputs from crop residues, appear to be key
drivers of the temporal clustering observed, particularly the clear
separation seen in September samples (Berg and Smalla, 2009; Siles
and Margesin, 2017).

Distance-based redundancy analysis (dbRDA) reinforced the
importance of soil properties, with electrical conductivity (EC)
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emerging as a stronger driver of microbial beta diversity than pH
across sampling periods (Lauber et al., 2009; Rousk et al., 2010).
The significant separation between vegetated plots (winter crops)
and bare soil plots (summer crops) in March highlights the role of
root activity and plant presence in shaping microbial communities.
Crop-specific clustering within vegetated plots is consistent with
previous research showing that different plant species can influence
rhizosphere microbial composition, while bare soil plots tended
to show more uniform microbial profiles likely shaped by abiotic
factors (Bulgarelli et al., 2013; Hartman et al., 2017).

In June, the dbRDA showed clear shifts in microbial
community structure linked to both crop species and growth stage.
Field bean, in particular, displayed greater microbial heterogeneity,
likely reflecting the effects of nitrogen fixation and associated
changes in soil nutrient dynamics (Mendes et al., 2015; Goss-
Souza et al., 2017). By September, microbial communities were
more dispersed, with distinct groupings especially noticeable in
plots with straw mulch and no active crops. This pattern likely
reflects the influence of residue decomposition and environmental
variability on soil microbial structure (Sun et al., 2015; Kavamura
et al., 2019). The continued clustering of wheat-associated samples
suggests that some crop-specific microbial signatures can persist,
even though linked to seasonal transitions (Schlatter et al.,
2017).

Overall, these results highlight the complex interplay between
soil properties, crop identity, and seasonal dynamics in shaping soil
microbial communities. While plant species and vegetation stage
can influence microbial structure, their effects are often temporary
and appear to be outweighed by soil characteristics and broader
environmental conditions over the course of the crop rotation (Fox
et al., 2022; Frene et al., 2024).

3.3 Taxonomic profiling of dominant
genera across crop species, crop growth
stage and sampling time

Six genera ranked among the top ten across all crop species and
sampling times (Figures 3a, c, e, 4a, c, e). Specifically, three genera
belonged to the Actinobacteriota phylum: Haliangium, Bryobacter,
and Lysobacter. Two genera belonged to the Proteobacteriota
phylum: RB41 and MND1, while one genus, Bacillus, belonged
to the Bacillota phylum. Three genera were present in all
microbial communities except one. Massilia (Proteobacteriota)
was absent from the top 10 genera in the tomato samples,
Ellin (Actinobacteriota) was missing from the top 10 in the
field bean sample, and Nitrospira (Nitrospirae) was not found
among the top 10 in the Common Wheat samples. Other
genera present in the top ten were Ramlibacter (phylum
Actinobacteriota; only present in DW and CW samples), Solibacter
(Acidobacteriota; CW samples), Flavisolibacter (Acidobacteriota;
absent from CW and DW), UTBCD1 (only present in FB
samples) and Niastella (Actinobacteriota; only present in
tomato samples).

Among the winter crops, the three sampling times in DW
formed distinct clusters in the PCA plot, which explained

70.1% of the total variability (Figures 3b, d). These clusters were
primarily separated by four key taxa: Massilia, RB41, Bacillus, and
Haliangium. In CW, where the separation between sampling times
was less pronounced despite a higher explained variability (89.7%),
Haliangium and Bacillus emerged as the main drivers. Finally,
in field bean, the PCA plot (81.5% explained variability) did not
reveal clear clustering among sampling times, but Bacillus and
Haliangium were again the dominant taxa, as observed in CW.
Among the summer crops, none showed distinct groupings in the
PCA plot based on taxonomic relative abundances (Figures 4b,
d, f). Melon samples were broadly scattered across the PCA
space (67.5% of total variability explained), with Haliangium
and Bacillus as the main contributing taxa. In tomato, the
June (green vegetation) and September (dry vegetation) samples
clustered together, while the March samples (bare soil) were more
scattered. Key drivers included RB41, Bacillus, and Haliangium
(77.8% explained variability). For corn, the March and June
samples (bare soil and green vegetation, respectively) were clearly
separated along the first principal component (PC1), while the
September samples partially overlapped with both time points
(79.8% explained variability). Overall, the taxonomic analysis
revealed that several genera from Actinobacteriota (Haliangium,
Bryobacter, Lysobacter), Proteobacteriota (RB41, MND1), and
Bacillota (Bacillus) dominate across crops and sampling times.
These taxa are known for their diverse ecological roles, including
organic matter decomposition, nutrient cycling, and plant growth
promotion (Glick, 2012; Mendes et al., 2015). The presence of
crop-specific taxa, such as Ramlibacter in wheat and Niastella
in tomato, suggests niche specialization, possibly driven by
root exudate composition or soil microenvironmental conditions
(Peiffer et al., 2013; Zhalnina et al., 2018). The PCA clustering
patterns further support that microbial community composition
varies with crop species and sampling time, with winter crops
showing stronger temporal differentiation than summer crops
(Philippot et al., 2013; Chaparro et al., 2014).

3.4 Temporal shifts in predicted nitrification
activity across crops

Functional Annotation of Prokaryotic Taxa (FAPROTAX) was
used to predict functional profiles of the prokaryotic communities
of the soil samples, based on taxonomic assignments from
sequencing data. In addition to providing overall community-
level functional predictions, FAPROTAX enables the inference
of specific traits and functions associated with individual taxa.
Taxonomic profiles were mapped against the FAPROTAX
database to infer putative biogeochemical functions of the
detected prokaryotes. Thus, inferred functions represent
putative capabilities rather than observed metabolic functions
in situ.

Among the predicted functional profiles, those associated with
nitrification were selected for more detailed analysis (Figure 5). All
crops were analyzed across the three sampling times (March, June,
and September). Figure 5 illustrates the percentage of nitrification
profiles for each crop over the specified months. Notably, all crops
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FIGURE 3

Comparison of soil bacterial community structure under three distinct soil condition, green vegetation (green), dry vegetation (yellow), and straw
mulch (gray), across three crop types: Durum Wheat [Dw], Common Wheat [Cw], and Field Bean [Fb]. Panels (a, c, e) display bar plots of relative
abundances for dominant bacterial genera, with statistical significance among treatments indicated by different letters above bars (a, b, ab). Panels
(d, e, f) present PCA ordinations depicting the variation in bacterial community composition based on genus-level data, with samples color-coded by
soil condition. Axes denote principal components PC1 and PC2, alongside the percentage of variance explained. Directional vectors highlight
bacterial genera contributing to separation among treatments.

exhibited relative abundances of nitrification profiles that peaked
in June.

All winter crops showed a significant increase in nitrification
profiles in June compared to March and September. Corn,
Muskmelon, and Tomato also demonstrated a peak in June,

indicating a seasonal trend in nitrification activity across different
crops. This pattern suggests that environmental factors, such
as temperature, which peaks in the warm months (June and
September) may influence the nitrification processes in soil more
than the crop type.
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FIGURE 4

Comparison of soil bacterial community structure under three distinct soil condition, bare soil (brown), dry vegetation (yellow), and straw mulch
(gray), across three crop types: Muskmelon [M], Tomato [T], and Corn [C]. Panels (a, c, e) display bar plots of relative abundances for dominant
bacterial genera, with statistical significance among treatments indicated by different letters above bars (a, b, ab). Panels (d, e, f) present PCA
ordinations depicting the variation in bacterial community composition based on genus-level data, with samples color-coded by soil condition. Axes
denote principal components PC1 and PC2, alongside the percentage of variance explained. Directional vectors highlight bacterial genera
contributing to separation among treatments.

Functional predictions using FAPROTAX highlighted
nitrification-related functions as prominent across samples,
reflecting the importance of nitrogen cycling in these agricultural
soils (Louca et al., 2016, 2018). This is consistent with the

known roles of dominant taxa such as Nitrospira and Bacillus
in nitrification (Glick, 2012; Daims et al., 2015). The variation
in nitrification potential among crops and sampling times may
have implications for soil fertility management, warranting
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FIGURE 5

Temporal trends in nitrification profile abundances across rotation
crops (common wheat, durum wheat, field bean, corn, muskmelon,
and tomato) measured at three sampling times: March, June, and
September. Bar plots indicate the percentage of nitrification profiles
per crop (left y-axis), with temperature data (right y-axis) overlaid to
illustrate environmental context.

further investigation (Philippot et al., 2009; Butterbach-Bahl et al.,
2013).

3.5 Core microbiota variation among crops

ASVs present in more than 90% of samples within each
crop type and sampling month, and with a minimum relative
abundance of 0.5%, were defined as the core microbiome. To
assess the influence of crop type within each sampling month,
variations in these core communities were analyzed after grouping
the ASVs at the genus level, allowing for the detection of major
compositional shifts.

In March, a total of 11 genera (21 ASVs) were identified as
part of the core microbiota across all rotation crops (Figure 6a).
Specifically, the core microbiota of CW and FB each included six
genera, while DW had 5. Among the summer crops, which had bare
soil at the time of sampling, Melon exhibited the highest number
of core genera with 8, followed by Tomato with 7, and Corn with
only 4. Only two genera, both belonging to the Acidobacteriota
phylum and exhibiting the highest relative abundance among the
core genera, were present in all rotation crops. At the time of
sampling, the core microbiota of DW and FB were very similar,
differing by only one genus. The same was true for Melon (M) and
Tomato (T), which also differed by just one genus in their cores.
Overall, the core microbiota was primarily composed of genera
from the Acidobacteriota phylum, followed by Bacillus. Notably,
only CW included two genera from the Proteobacteria phylum
(Massilia and Lysobacter), while Nitrospira was found exclusively
in Melon.

In June, the summer crops with green vegetation exhibited
nearly identical core microbiota, except for tomato, which
had one fewer genus than the others (Figure 6b). Specifically,
the cores of Melon (M) and Corn (C) each contained 10
genera, with seven belonging to the Acidobacteriota phylum,
while tomato’s core included six genera from this phylum. The
remaining three core genera, Bacillus, Nitrospira, and MND1,
were consistent across all three crops. Greater variation was

observed among the winter crops, which had dry vegetation at
the time of sampling. Specifically, only three genera, RB41, an
unknown genus from the Blastocatellaceae family, and Bacillus,
were shared by all three rotation crops. Among them, DW
and FB shared a larger number of genera (7), indicating
a closer similarity. Overall, in June the six crops shared
three genera, similar to March, with those belonging to the
Acidobacteriota phylum being the most abundant, followed
by Bacillus.

In September, the same three core genera remained the most
abundant, but with a shift in dominance toward Bacillus, which
became the most prevalent genus (Figure 6c).

Corn (C) and Tomato (T), the only remaining crops with
vegetation, exhibited similar core microbiota, differing by just one
genus out of nine. The four crops with straw mulch shared some
core genera sporadically, but no clear pattern or trend was evident.

The core microbiota remained largely stable across all sampling
times, showing only minor variations between rotation crops
and predominantly the same genera present. Notable exceptions
include Massilia and Lysobacter, found only in March in CW;
the genus UTBCD1 (from the Chitinophagaceae family), present
exclusively in June in Field bean; and the genus MND1
(Nitrosomonadaceae family), detected in June across all crops
except CW, and in September only in Melon.

This study identified a stable core microbiome shared across
different crop species and sampling periods within the rotation
system. This core community was dominated by genera belonging
to the Acidobacteriota phylum and the genus Bacillus (Bacillota),
which were consistently present in over 90% of samples and showed
notable relative abundance. The persistence of these groups points
to a resilient microbial consortium likely playing key roles in
essential soil functions, such as nutrient cycling and organic matter
breakdown (Fierer, 2017; Jiao et al., 2019). The strong presence
of Acidobacteriota aligns with their well-documented ability to
thrive under a wide range of soil conditions, while the spore-
forming capacity of Bacillus species may help them persist through
periods of environmental stress or during the decomposition of
crop residues (Nicholson et al., 2000).

Interestingly, whilst Bacillus is considered a r-strategist (Stone
et al., 2023), Acidobacteriota have been demonstrated to be K-
strategists (Li et al., 2025), suggesting that the latter paly a constant
role while the former exert their metabolic activity in specific
moments during the years. The interplay between bacteria with
different life history strategies, or K/r selection, would ensure
a long term coexistence of different bacteria adapted to low-
nutrient (K-strategist) or nutrient-rich (r-strategists) conditions
(Yin et al., 2022). The variations of vegetation and the micro-
niches represented by the soil close or far away from the roots
are likely to represent this nutrient variability and explain the
presence of Acidobacteria and Bacillus in the core microbiota of
the studied soils.

Although the core microbiome was broadly consistent, minor
differences in core genera were observed between crops and
sampling times, reflecting subtle but potentially meaningful
shifts in microbial composition linked to plant species or
growth stage. For instance, the presence of Massilia and
Lysobacter exclusively in wheat plots in March, and UTBCD1 in
field bean plots in June, likely reflects crop-specific influences
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FIGURE 6

Core microbiota composition of the six crops, common wheat (CW), durum wheat (DW), field bean (FB), corn (C), tomato (T), and muskmelon (M),
across the three seasonal sampling times: March (a), June (b), and September (c). Each panel displays bubble plots depicting the relative abundance
of dominant bacterial taxa per crop, with bubble size reflecting proportional abundance. Crop stages are represented by color: brown = bare soil,
yellow = dry vegetation, green = green vegetation, and gray = straw mulch.

such as differences in root exudates or soil microhabitat
conditions (Zhalnina et al., 2018). Similarly, the detection
of Nitrospira as part of melon’s core microbiome points to

possible crop-specific impacts on nitrogen cycling, highlighting the
functional implications of plant-microbe interactions (Daims et al.,
2015).
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The increase in Bacillus abundance observed in September
coincided with the buildup of straw mulch and senescing
vegetation, supporting the idea that spore-forming, stress-tolerant
taxa play a key role in residue decomposition and nutrient turnover
during the post-harvest period.

3.6 FTIR-based soil profiling

Fourier Transform Infrared Spectroscopy (FTIR) was
performed on soil samples from all crops at each sampling time.
Seventeen characteristic peaks (p1–p17) were identified, and the
analysis was restricted to the wavelength intervals corresponding
to these peaks.

To explore the influence of vegetation stage and crop
species on soil spectral profiles, PCA was applied to the FTIR
data and visualized as biplots (Figure 7). The biplots displays
the three principal loadings corresponding to the wavelengths
that contributed most strongly to the separation along the
first two principal components. In March (Figures 7a, b),
PCA did not reveal a clear separation of samples according
to vegetation stage. A wavelength-specific t-test comparison
between vegetation stages identified only a limited number
of wavelengths, belonging to seven different peaks, showing
statistically significant differences (p2–3, p8–10, p15 and p17).
Likewise, PCA performed with crop type as the grouping factor
showed no clear separation among samples in March. At this
sampling time, the wavelengths that contributed most strongly
to the separation along the first two principal components,
specifically 668, 483, and 660 cm−1. These wavelengths belong to
peaks p14, p16, and p15, respectively, all of which are associated
with mineral signals. This pattern was further confirmed by a
permutational multivariate analysis of variance (adonis2), which
indicated that neither crop type (p = 0.112) nor vegetation
stage (p = 0.089) had a statistically significant effect on the soil
spectral profiles.

In June (Figures 7c, d), PCA again showed no clear sample
separation based on vegetation stage. Adonis2 confirmed the
absence of significant effects, with p-values of 0.1 for crop type
and 0.791 for vegetation stage. The three principal loadings
for the June PCA corresponded to wavelengths 3,657, 481, and
1,206 cm−1, belonging to peaks p1, p16, and p3, respectively.
Peak p1 is attributed to mineral signals, specifically free –OH
groups from clays and silanol groups, with no likely microbial
origin. Peak p16 is associated with silicates and quartz (mineral
signal), while peak p3 corresponds to microbial/organic signals,
including C–O and C–N stretching, carbohydrates, phosphates,
and possible microbial polysaccharides. A wavelength-specific t-
test for June revealed a limited number of significant wavelengths,
belonging to peaks p2, p3, p6, p7, p9, p10, p14, and p16. Among
these, peaks p2, p9, p10, p14, and p16 are of mineral origin;
peak p3 is associated with carbohydrates of microbial or organic
origin; and peaks p6 and p7 are linked to both organic and
mineral signals.

In September (Figures 7e, f), PCA again did not reveal any
clear separation of samples based on either vegetation stage

or crop type. This was further confirmed by adonis2, which
showed no statistically significant effects for either factor. The
three principal loadings for the September PCA corresponded
to wavelengths 1,009, 1,011, and 1,013 cm−1, all belonging to
peak p7. This peak is associated with both organic and mineral
signals, reflecting a strong silicate contribution but with possible
microbial polysaccharides. Interestingly, September was the month
with the highest number of significant wavelengths detected by t-
test comparisons. Only peaks p3, p10, p11, and p17 did not show
any significant wavelengths.

Overall, the soil metabolome, as assessed through FTIR, proved
to be a good indicator of differences between samples collected at
different time points, particularly between March and September
(PERMANOVA, p-value = 0.042). In contrast, this approach
was not effective in detecting differences related to crop type
or vegetation stage, as both PCA and PERMANOVA analyses
consistently showed no clear separation or statistically significant
effects for these factors. Furthermore, the differences observed
among crops and vegetation stages through metabarcoding analysis
were not reflected in the metabolome profiles obtained by FTIR,
suggesting that microbial community shifts do not necessarily
translate into detectable changes in the bulk soil chemical
fingerprint captured by this technique.

In addition to microbial community analysis, Fourier
Transform Infrared Spectroscopy (FTIR) provided insight into
soil chemical profiles, showing that sampling time had a stronger
influence than crop type or vegetation stage. The clear differences
observed between March and September samples likely reflect
seasonal changes in organic matter inputs and microbial activity,
which can affect both the quantity and composition of soil organic
compounds, as well as mineral-organic interactions (Baldock and
Skjemstad, 2000; Kögel-Knabner, 2002). In contrast, FTIR did not
reveal consistent separation based on crop type or vegetation stage,
suggesting that bulk soil chemical properties remain relatively
stable over short timescales and are largely shaped by the mineral
matrix and persistent organic matter pools. This supports previous
findings that shifts in microbial community composition, while
detectable with high-resolution sequencing, do not necessarily lead
to immediate or large-scale changes in the soil’s chemical signature
detectable by FTIR (De Mastro et al., 2019, 2020).

The difference between microbial and chemical soil patterns
highlights the value of combining molecular and chemical
approaches. While metabarcoding captures subtle taxonomic
and functional changes in microbial communities, FTIR reflects
broader, integrated chemical characteristics of the soil, which
tend to shift more gradually and under the influence of multiple
biotic and abiotic factors. Looking ahead, applying more sensitive
metabolomic techniques, such as nuclear magnetic resonance
(NMR) spectroscopy or mass spectrometry, could provide deeper
insights into the biochemical consequences of microbial dynamics
in soil systems (Viant, 2008).

Together, these findings point to the presence of a stable core
microbial community that persists across crops and seasons, likely
contributing to functional stability in the soil. At the same time, the
crop-specific and seasonal variations in certain microbial groups
suggest opportunities for targeted microbiome management to
support soil fertility and crop performance. The strong influence
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FIGURE 7

FTIR-based characterization of soil spectral variation across crop stages and species over three sampling periods: March [panel (a) and (b)], June
(panel (c) and (d)], and September [panel (e) and (f)]. PCA biplots illustrate sample clustering based on FTIR spectral profiles, color-coded by crop
stage (bare soil, dry vegetation, green vegetation, straw mulch) in panels a, c, and d, and by crop species, Common Wheat (CW), Durum Wheat (DW),
Field Bean (FB), Corn (C), Tomato (T), and Muskmelon (M), in panels (b, d, e). PCA loadings highlight key wavelengths driving separation among
conditions (crop growth stage or crop species). Adjacent bubble plots [panels (a, c, e)] visualize the number of significantly different spectral
wavelengths, for each peak (p1–p17) across crop stages, derived from t-tests, with bubble size representing the relative spectral abundance.
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of seasonal factors on soil chemical properties further underscores
the importance of considering temporal variation when assessing
soil health in agricultural systems.

4 Conclusions

This study shows that in the examined crop rotation system, soil
microbial diversity and community composition are driven more
by soil properties and seasonal changes than by crop species or
growth stage. While plants can cause short-term shifts in microbial
communities, these effects are generally modest and temporary. A
stable core microbiome persists across crops and seasons, likely
supporting key soil functions such as nutrient cycling and organic
matter decomposition.

Seasonal factors, including residue decomposition and
environmental variability, strongly influence both microbial
communities and soil chemistry, highlighting the importance of
considering temporal dynamics in soil management.

Future research should focus on finer-scale sampling (e.g.,
rhizosphere vs. bulk soil), incorporate functional profiling
through metagenomics or metatranscriptomics, and assess
soil physicochemical variables to elucidate the mechanisms
driving microbial dynamics. Additionally, understanding
the impact of crop residues and mulching on microbial
succession will be critical for developing sustainable residue
management strategies that promote long-term soil health and
agroecosystem sustainability.
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