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Introduction: The precise diagnosis of a prior COVID-19 infection remains 

challenging. This study aimed to evaluate the efficacy of T-SPOT assays for 

diagnosing prior SARS-CoV-2 infections by using frozen peripheral blood 

mononuclear cells (PBMCs) combined with antibody tests. 

Methods: The study included 122 participants with PCR-confirmed COVID-

19 (the positive control cohort) and 67 participants with no evidence of prior 

infection (the negative control cohort). Antibody testing was conducted using 

iFlash-SARS-CoV-2 IgG (YHLO, iF_N) and MAGPIX R  assays (Luminex, Lumi_N), 

which target the nucleocapsid protein. T-SPOT R  Discovery SARS-CoV-2 assays 

(Oxford Immunotec) were used to detect cell-mediated immune responses 

against nucleocapsid (Tspot_N) and membrane (Tspot_M) proteins. 

Results: Antibody tests had similar sensitivities (if_N: 67.2% and Lumi_N: 

64.8%) and specificities (>98.4%). The Tspot_N assay demonstrated comparable 

performance to the antibody tests, with a sensitivity, specificity, and area under 

the receiver operating characteristic curve (AUC) of 62.5% (95% confidence 

interval: 52.0%–72.2%), 98.4% (95% CI: 91.2%–100.0%), and 0.923, respectively. 

The Tspot_M assay had lower sensitivity (15.3%). The combination of the Tspot_N 

test and the Lumi_N antibody test significantly improved the sensitivity and AUC 

to 88.0% and 0.979, respectively (p = 0.012). Net reclassification improvement 

and integrated discrimination improvement analyses further supported the 

improved diagnostic performance of the combination assay. 

Conclusion: Frozen PBMCs were useful for performing T-SPOT assays. The 

combination of T-SPOT assays targeting nucleocapsid protein and antibody 

tests improved the diagnosis of past SARS-CoV-2 infections in vaccinated 

participants. These findings suggest that integrating cellular and humoral 

immunity assays can facilitate COVID-19 prevalence studies. 
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1 Introduction 

Conducting prevalence studies through serosurveillance 
(antibody testing) is essential for comprehensively understanding 
national and regional outbreaks and were particularly important 
during the early phase of the COVID-19 pandemic (Public Health 
Collaborators on Serosurveillance for Pandemic Preparedness 
and Response PHSeroPPR, 2023). In case–control studies, such as 
those comparing COVID-19 patients with a non-infected cohort, 
precise confirmation of cases is crucial. Direct viral detection 
methods, such as real-time RT-PCR and viral antigen tests, 
are highly eective for identifying infections. However, these 
methods may not be useful for detecting asymptomatic cases 
because individuals without symptoms are less likely to undergo 
diagnostic testing (Kronbichler et al., 2020). Antibody tests are 
technically capable of detecting prior SARS-CoV-2 infections, as 
they can reflect the humoral immune response against specific 
antigens, with detectable levels emerging approximately 2 weeks 
post infection onset. Despite their utility, however, antibody tests 
exhibit low sensitivity during the initial stages of COVID-19, 
and it is well documented that antibody titers against SARS-
CoV-2 gradually decline over time (Aiello et al., 2022). Thus, 
antibody tests have limited eÿcacy in providing evidence of past 
SARS-CoV-2 infection. 

The interferon-gamma (IFN-γ) release assay (IGRA) is 
an alternative infection detection method that, although used 
primarily to diagnose tuberculosis, can also reflect cellular 
immunity from prior SARS-CoV-2 infections (Pai et al., 2014). 
The IGRA quantifies IFN-γ released from T cells following 
stimulation with antigenic proteins. In the context of SARS-
CoV-2, IFN-γ release is predominantly measured with three 
methods: (i) an enzyme-linked immunosorbent assay (ELISA), 
(ii) an enzyme-linked immunosorbent spot (ELISPOT) assay, and 
(iii) flow cytometry (FCM) (Johnson et al., 2023, Törnell et al., 
2022). Several studies have highlighted the greater positivity of 
IGRAs compared with antibody tests as a significant advantage 
(Murugesan et al., 2022, Törnell et al., 2022). Therefore, IGRAs, 
when utilized in conjunction with antibody tests, are expected 

to play a complementary role in the diagnosis of COVID-19. 
Given the global dissemination of COVID-19 vaccines, particularly 
mRNA vaccines that establish immunity against SARS-CoV-2 spike 
proteins, seroprevalence assessments should target proteins other 
than the spike protein, such as the nucleocapsid (N) and membrane 
proteins (Hayden et al., 2024). Although the cell-mediated immune 
responses against SARS-CoV-2 spike proteins have been extensively 
evaluated, assessments of responses against the nucleocapsid or 
membrane protein remain limited in the literature (Törnell et al., 
2022, Mak et al., 2024, Liu et al., 2021). 

Consequently, to evaluate the accuracy in diagnosing past 
COVID-19 infections, we assessed the performance of two 
categories of testing assay, antibody tests and IGRAs, as well 
as their combinations, that detect immune responses against the 
nucleocapsid and/or membrane proteins. 

2 Materials and methods 

2.1 Study design and participants 

In this study, 309 individuals, primarily hospitality workers in 
the city of Kyoto, were initially recruited. A high prevalence of prior 
COVID-19 was noted among these individuals, for whom sample 
collection involved both blood collection and administration 
of a questionnaire. The study was conducted from August to 
September 2022, coinciding with the seventh pandemic wave and 
the prevalence of BA.5 Omicron strain. All vaccines administered 
to the participants in this study (Pfizer, Moderna, and Novavax) 
targeted the original SARS-CoV-2 strain. Details of the vaccination 
status are presented in Supplementary Table 1. 

For this study, 189 participants were selected from the 309 
initially recruited individuals (Figure 1) and divided into two 
cohorts. The positive control (PC) cohort consisted of 122 
participants with RT-PCR-confirmed COVID-19 (either current 
or prior). The PCR methodology adhered to the standards set 
by the National Institute of Infectious Diseases, Japan (Shirato 
et al., 2021), and targeted the N gene of SARS-CoV-2. These tests 

FIGURE 1 

Flowchart of the participant profiles. 
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TABLE 1 Baseline characteristics of the participants. 

Cohort Total (n = 309) PC (n = 122) NC (n = 67) PC + NC 
(n = 189) 

P-value (PC vs. 
NC) 

Sex 0.420 

Male (n, %) 40 (12.9%) 12 (9.8%) 10 (14.9%) 22 (11.6%) 

Female (n, %) 269 (87.1%) 110 (90.2%) 57 (85.1%) 167 (88.4%) 

Age (median, IQR) 49.5 (27–65.25) 36 (22–55) 66 (55–74.5) 51 (27.75–67.5) <0.001 

Age category (n, %) 

<=20 46 (14.9%) 21 (17.2%) 1 (1.5%) 22 (11.6%) 

21–30 43 (13.9%) 33 (27.0%) 0 (0.0%) 33 (17.5%) 

31–40 29 (9.4%) 13 (10.7%) 5 (7.5%) 18 (9.5%) 

41–50 39 (12.6%) 14 (11.5%) 5 (7.5%) 19 (10.1%) 

51–60 56 (18.1%) 17 (13.9%) 16 (23.9%) 33 (17.5%) 

61–70 29 (9.4%) 9 (7.4%) 8 (11.9%) 17 (9.0%) 

71–80 53 (17.2%) 12 (9.8%) 27 (40.3%) 39 (20.6%) 

81–90 11 (3.6%) 2 (1.6%) 5 (7.5%) 7 (3.7%) 

91–100 2 (0.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

No answer 1 (0.3%) 1 (0.8%) 0 (0.0%) 1 (0.5%) 

Occupation category (n, %) <0.001 

Hospitality_worker 238 (77.0%) 111 (91.0%) 44 (65.7%) 155 (82.0%) 

Oÿce_worker 37 (12.0%) 7 (5.7%) 12 (17.9%) 19 (10.1%) 

Others 18 (5.8%) 1 (0.8%) 5 (7.5%) 6 (3.2%) 

No occupation 1 (0.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

No answer 15 (4.9%) 3 (2.5%) 6 (9.0%) 9 (4.8%) 

Vaccination 294 (95.1%) 114 (93.4%) 65 (97.0%) 179 (94.7%) 0.499 

Pfizer 169 (57.5%) 68 (59.6%) 41 (63.1%) 109 (60.9%) 

Pfizer and moderna 57 (19.4%) 18 (15.8%) 11 (16.9%) 29 (16.2%) 

Moderna 36 (12.2%) 16 (14.0%) 4 (6.2%) 20 (11.2%) 

Pfizer and novavax 1 (0.3%) 1 (0.9%) 0 (0.0%) 1 (0.6%) 

No answer 31 (10.5%) 11 (9.6%) 9 (13.8%) 20 (11.2%) 

Valid_count ∗ (n, %) 301 (97.4%) 120 (98.4%) 63 (94.0%) 183 (96.8%) 0.188 

PC, positive control; NC, negative control; IQR, interquartile range. Bold values denote p-values less than 0.05. ∗This number indicates that T-SPOT R  Discovery results can be obtained. 

were conducted in clinical laboratories. The negative control (NC) 
cohort, meanwhile, comprised 67 individuals with no evidence 
of COVID-19 according to the questionnaire and three negative 
antibody test results. To further substantiate the absence of SARS-
CoV-2 infection in the NC cohort, the iFlash-SARS-CoV-2 IgG 
assay (YHLO, Shenzhen, China) was performed on two available 
serum samples collected in November 2020 and between February 
and March 2021, confirming negativity for the disease (see details 
below). The characteristics of the two cohorts are summarized 
in Table 1. 

2.2 Blood samples 

Serum and peripheral blood mononuclear cells (PBMCs) were 
obtained from each participant. Serum samples were collected in 
blood collection tubes containing serum separation gel (Terumo, 
Tokyo, Japan). The serum was separated by centrifugation at 

1500 × g for 10 min and subsequently stored at −80 ◦C until 
use. For PBMC separation, blood samples were collected in 
tubes containing sodium heparin as the anticoagulant (Terumo). 
In accordance with the manufacturer’s instructions, a Leucosep 
tube with separation medium (Greiner Bio-One, Kremsmünster, 
Austria) was used for PBMC separation. The PBMCs were then 
preserved in CELLBANKER1 (TaKaRa Bio, Shiga, Japan), which 
ensures a viability rate exceeding 70% over 1 year at −80 ◦C. Each 
stored sample was thawed immediately prior to use. 

2.3 Antibody tests 

Antibody testing was conducted using two instruments to 
ensure robustness of the results. First, antibody tests using the 
iFlash3000 instrument (iF_N assay), specifically the iFlash-SARS-
CoV-2 IgG assay (YHLO), were performed within 1 week of 
blood collection. This semiquantitative method uses multiple 
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chemiluminescent immunoassays with the nucleocapsid protein 
as the primary antigen. The assay cuto value was established at 
10 AU/mL, at which a previous study reported a sensitivity of 94.5% 
(95% confidence interval: 91.7%–96.6%) and a specificity of 100% 
(95% CI: 96.4%, 100%) (Yamamoto et al., 2022). Additionally, the 
MAGPIX R  system (Luminex, Texas, USA) (Lumi_N assay) was 
used to obtain quantitative antibody results, in accordance with 
the methodology documented by Rosado et al. (2021) 1 year after 
blood collection. The analysis employed the median fluorescence 
intensity (MFI) with a cuto value of 1908 MFI, as determined 
in this study, ensuring a target specificity greater than 99%. The 
nucleocapsid proteins used included SARS-CoV-2 NPv1, obtained 
from Institut Pasteur and SARS-CoV-2 NPv2, obtained from Native 
Antigen (REC31812-100). 

2.4 Interferon-gamma (IFN-γ) release 
assay 

An IGRA, specifically the T-SPOT R  Discovery SARS-CoV-
2 (Oxford Immunotec, Oxfordshire, United Kingdom), was 
conducted 1–7 months after blood collection. This assay consists 
of four panels to detect immune responses against the SARS-
CoV-2 spike protein (panel 1), nucleocapsid protein (panel 3), 
membrane protein (panel 4), and proteins from endemic strains 
of coronaviruses (panel 13). During the study period, the majority 
of participants received at least one course of vaccination targeting 
the SARS-CoV-2 spike protein. Panel 1 (spike protein) was 
excluded from this study because the results cannot be used 
to distinguish between participants with a history of COVID-
19 and those who were vaccinated. Consequently, in this study, 
the responses to non-vaccine target proteins, such as the SARS-
CoV-2 nucleocapsid (Tspot_N assay) and membrane (Tspot_M 
assay) proteins, were evaluated. Viable PBMCs were counted using 
trypan blue staining with Cell Counter model R1 (Olympus, 
Tokyo, Japan). According to the manufacturer’s instructions, 
2.5 × 105 cells/well were used for T-SPOT R  Discovery analysis. 
Upon completion of the T-SPOT assays, spot-forming cells were 
counted using an ImmunoSpot S6 Entry M2 Analyzer (Cellular 
Technology Ltd., Ohio, USA), followed by visual confirmation 
of the results. PBMC preparations for T-SPOT R  Discovery 
SARS-CoV-2 PBMCs were counted using Cell Counter model 
R1 (Olympus, Tokyo, Japan), which can distinguish between 
viable and dead cells. Viable PBMCs were prepared at a final 
concentration of 2.5 × 105 cells/100 µL for the T-SPOT R  Discovery 
assay, in accordance with the manufacturer’s instructions. The 
T-SPOT assay results were classified in accordance with the 
manufacturer’s guidelines: positive (spot count ≥ 8), borderline (5– 
7), negative (≤4), and indeterminate (negative control well > 10 
or positive control well < 20). These classifications were employed 
to evaluate the positivity rate, sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), and 
McNemar’s test. For additional statistical analyses, spot counts 
were used to treat T-SPOT assays as quantitative measures. In 
the combination assays, a positive result was determined if at 
least one of the assays yielded a positive outcome, whereas 
a negative result was determined only if all assays yielded 
negative outcomes. 

2.5 Statistical analysis 

All the statistical analyses were performed using R version 
4.4.1 (R Foundation for Statistical Computing, Vienna, Austria). 
Statistical methods and libraries (packages) were employed as 
follows. The chi-square test or Fisher’s exact test was used 
for comparing categorical variables between groups. The Mann-
Whitney U test was used to compare continuous variables between 
groups. The sensitivity, specificity, PPV, and NPV were calculated 
with the epiR library, incorporating information on the duration 
between blood collection and infection or vaccination. Receiver 
operating characteristic (ROC) curve analysis was performed 
to determine the area under the curve (AUC) and assess the 
performance of each assay. McNemar’s test was used to compare 
the sensitivities and specificities between assays. The agreement rate 
and Cohen’s kappa (κ) coeÿcient were calculated for all assays in 
the irr library to determine the level of agreement and concordance, 
respectively, between assays. The PredictABEL library was used to 
calculate the net reclassification improvement (NRI) and integrated 
discrimination improvement (IDI) to assess the eÿcacy of the 
combination assay (Pencina et al., 2008). The two-category NRI and 
the continuous NRI were employed for NRI evaluation (Pencina 
et al., 2017), with the reclassification cuto set to the Youden index. 
Additionally, the AUC and Brier scores were calculated to further 
evaluate the eÿcacy of the combination assay (Hilden and Gerds, 
2014). 

3 Results 

3.1 Summary of the results of each assay 

The results of the T-SPOT assay are presented in 
Supplementary Table 2. Notably, approximately 20% of the 
PC cohort and 8%–10% of the NC cohort exhibited borderline 
or indeterminate results, which were subsequently excluded from 
further analysis. 

The positivity rates for each assay are listed in Supplementary 
Table 3. The two antibody tests (iF_N and Lumi_N) and Tspot_N 
assays had similar positivity rates. In quantitative assays, the 
median values of the PC cohort were significantly greater than 
those of the NC cohort. Seven discrepancies were found among 
the antibody tests (five results for iF_N-positive/Lumin_N-negative 
and two results for iF_N-negative/Lumi_N-positive). However, 
no discrepancy was found in the NC cohort. The Tspot_M 
assay had the lowest the positivity rate of all assays. Thirty-
six discrepancies were observed among the T-SPOT assays (34 
results for Tspot_N-positive/Tspot_M-negative, and two results for 
Tspot_N-negative/Tspot_M-positive). False-positive results were 
found in 1.6% of Tspot_N and 3.2% of Tspot_M assays. The 
interval between the last recorded infection and the subsequent 
blood collection in the PC cohort is shown in Supplementary 
Figure 1. The date of the most recent COVID-19 infection was 
not available for three out of 122 individuals in the PC cohort. 
Approximately half of the PC cohort (60/119 [50.4%]) experienced 
infection within 180 days of blood collection (Supplementary 
Table 4). Regarding the antibody test assays (iF_N and Lumi_N), 
the positivity rate in the PC cohort was significantly higher 
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within 180 days postinfection than beyond 180 days postinfection 
(p < 0.001 for each antibody test assay). Such dierences were not 
observed in the T-SPOT assays (Tspot_N and Tspot_M), however. 
More than 90% of the participants had received vaccinations. The 
interval between the last vaccination and blood collection is also 
shown in Supplementary Figure 2. 

In the PC cohort, 22 individuals with prior COVID-19 were 
asymptomatic (18.0%) (Supplementary Table 5). The positivity 
rate of the Tspot_N assay among symptomatic individuals was 
greater than that among asymptomatic individuals, although this 
dierence was not statistically significant (p = 0.289). In the other 
assays, no significant dierences in the positivity rate were observed 
between symptomatic and asymptomatic individuals. 

3.2 Agreement rate and Cohen’s kappa 
(κ) concordance 

The concordance rate between the antibody tests (iF_N 
and Lumi_N assays) was notably high (96.3%); however, the 
concordance rates between the antibody tests and T-SPOT assays 

were relatively low, ranging from 63.1% to 74.9% (Table 2). Cohen’s 
κ concordance analysis corroborated this trend; the κ value for the 
antibody tests was 0.924 (95% CI: 0.869–0.979), indicating almost 
perfect agreement. Conversely, the κ values between the antibody 
tests and T-SPOT assays ranged from 0.104 to 0.395, indicating no 
to slight-to-moderate agreement between the tests. The observed 
relationships between the antibody tests and T-SPOT assays, 
including similar sensitivity, specificity, AUC, and reclassification 
improvement values but lower concordance rates or κ values, imply 
dierences in the detectable population contingent on the assay 
employed. These assays may improve performance when utilized 
in a complementary manner. 

3.3 Sensitivity, specificity, positive 
predictive value (PPV), and negative 
predictive value (NPV) 

The sensitivity of each assay ranged from 60% to 70%, 
whereas the specificity exceeded 96%, as determined by the default 
cuto values described in the Section “2 Materials and methods” 

TABLE 2 Agreement rate and concordance between antibody tests and interferon-γ release assays. 

Assays comparison N* Cohen’s kappa coefficient Agreement 

Value (95% CI) P-value rate (%)

iF_N vs. Lumi_N 189 0.924 (0.869, 0.979) <0.001 96.3 

iF_N vs. Tspot_N 157 0.395 (0.248, 0.542) <0.001 71.3 

iF_N vs. Tspot_M 160 0.104 (-0.017, 0.224) 0.072 63.1 

Lumi_N vs. Tspot_N 157 0.364 (0.215, 0.514) <0.001 70.1 

Lumi_N vs. Tspot_M 160 0.082 (−0.04, 0.204) 0.164 63.1 

Lumi_N vs. Tspot_N & Tspot_M 155 0.392 (0.245, 0.539) <0.001 71.0 

CI, confidence interval; Lumi_N, nucleoprotein assay of the MAGPIX R  system (Luminex); iF_N, iFlash-SARS-CoV-2 IgG assay; Tspot_N, nucleocapsid assay of T-SPOT R  Discovery SARS-
CoV-2; Tspot_M, membrane protein assay of T-SPOT R  Discovery SARS-CoV-2. *Number excluding missing values. Bold values indicate a p-value of less than 0.05. 

TABLE 3 Sensitivity, specificity, PPV, and NPV of each assay, including combination assays. 

Assays Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) 

Lumi_N 64.8% (55.6%, 73.2%) 100.0% (94.6%, 100.0%) 100.0% (95.4%, 100.0%) 60.9% (51.1%, 70.1%) 

iF_N 67.2% (58.1%, 75.4%) 100.0% (94.6%, 100.0%) 100.0% (95.6%, 100.0%) 62.6% (52.7%, 71.8%) 

Tspot_N 62.5% (52.0%, 72.2%) 98.4% (91.2%, 100.0%) 98.4% (91.2%, 100.0%) 62.5% (52.0%, 72.2%) 

Tspot_M* 15.3% (8.8%, 24.0%) 96.8% (88.8%, 99.6%) 88.2% (63.6%, 98.5%) 42.0% (33.8%, 50.5%) 

Tspot_N* & Tspot_M* 67.0% (56.6%, 76.4%) 96.7% (88.7%, 99.6%) 96.9% (89.3%, 99.6%) 65.6% (54.8%, 75.3%) 

Lumi_N* & Tspot_N* 88.0% (80.7%, 93.3%) 98.4% (91.2%, 100.0%) 99.0% (94.8%, 100.0%) 81.1% (70.3%, 89.3%) 

Lumi_N & Tspot_N* & Tspot_M* 89.1% (82.0%, 94.1%) 96.8% (89.0%, 99.6%) 98.1% (93.5%, 99.8%) 82.4% (71.8%, 90.3%) 

Lumi_N_yc 97.5% (93.0%, 99.5%) 80.6% (69.1%, 89.2%) 90.2% (83.7%, 94.7%) 94.7% (85.4%, 98.9%) 

Tspot_N_yc 90.0% (83.2%, 94.7%) 84.1% (72.7%, 92.1%) 91.5% (85.0%, 95.9%) 81.5% (70.0%, 90.1%) 

Tspot_M_yc 54.2% (44.8%, 63.3%) 85.7% (74.6%, 93.3%) 87.8% (78.2%, 94.3%) 49.5% (39.8%, 59.3%) 

Tspot_N_yc & Tspot_M_yc 91.7% (85.2%, 95.9%) 74.6% (62.1%, 84.7%) 87.3% (80.2%, 92.6%) 82.5% (70.1%, 91.3%) 

Lumi_N_yc & Tspot_N_yc 98.4% (94.2%, 99.8%) 71.4% (58.7%, 82.1%) 87.0% (80.2%, 92.1%) 95.7% (85.5%, 99.5%) 

Lumi_N_yc & Tspot_N_yc & Tspot_M_yc 95.1% (89.6%, 98.2%) 76.1% (64.1%, 85.7%) 87.9% (81.1%, 92.9%) 89.5% (78.5%, 96.0%) 

CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; Tspot_N, T-SPOT R  Discovery using nucleocapsid protein as stimulants; Tspot_M, T-SPOT R  Discovery 
using membrane protein as stimulants; iF_N, iFlash-SARS-CoV-2 IgG assay using iFlash 3000 instruments (YHLO); Lumi_N, antibody test targeting nucleocapsid protein using the MAGPIX R

system (Luminex). Each assay name with “yc” denotes the use of the Youden index to determine the cuto (Lumi_N, 316; Tspot_N, 2; and Tspot_M, 2, respectively). *Positive cuto value is 8, 
according to the manufacturer’s guidelines. 
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(Table 3). Compared with the other assays, the Tspot_M assay 
demonstrated the lowest specificity (15.3%). The PPVs and NPVs 
of the assays are presented in Table 3. Both antibody assays 
(iF_N and Lumi_N) exhibited equivalent performances across all 
metrics, with no significant dierence in sensitivity according to 
McNemar’s test (p = 0.257) (Table 4). No dierence was observed 
between the antibody assays and the Tspot_N assay in terms of 
specificity or sensitivity; however, the sensitivity of the Tspot_M 
assay was significantly lower than that of the antibody assays 
(p < 0.001). In Supplementary Table 6, the sensitivity and specificity 
metrics are detailed for each interval subsequent to the latest 
COVID-19 infection. 

3.4 ROC curve analysis, AUC, DeLong’s 
test, and reclassification analysis (NRI 
and IDI) 

To assess the diagnostic eÿcacy in detecting past COVID-19 
infections, we performed ROC curve analysis of the quantitative 
assays, specifically the Lumi_N, Tspot_N, and Tspot_M assays, and 
their combinations. The findings are presented in Figures 2, 3 and 

Supplementary Table 7. The AUC for the Tspot_M assay was 0.726, 
whereas the other assays and their combinations presented AUCs 
exceeding 0.923 (Figure 2). The use of combination assays generally 
increased the diagnostic performance of the individual, except 
those incorporating the Tspot_M assay (Figure 3). Notably, the 
AUC for the combination of Lumi_N and Tspot_N was significantly 
greater than that for the Lumi_N assay alone (p = 0.012 [DeLong’s 
test], 0.979 vs. 0.949). The combination of Lumi_N and Tspot_N 
achieved the highest AUC of 0.979; however, the inclusion of 
the Tspot_M assay slightly diminished the diagnostic performance 
(AUC = −0.040, p = 0.750). 

The optimal cuto values for the Lumi_N, Tspot_N, and 
Tspot_M assays were established on the basis of the maximum value 
of the Youden index (Figure 2). The sensitivities of these optimized 
assays were approximately 30% higher than those assessed with 
the original cuto value (Table 3), while the specificities of 
these assays ranged from 80.6% to 85.7%. We performed two-
category and continuous NRI and IDI analyses to assess assay 
combinations (Table 5). Combining the Tspot_N assay with the 
Lumi_N assay increased the AUC from 0.949 to 0.979, with 
p-values less than 0.001 for all analyses. The Tspot_M assay showed 
no improved diagnostic performance when combined with other 

TABLE 4 Comparative analysis of assay sensitivities and specificities with McNemar’s test. 

Comparing assays, p-value of 
McNemar’s test 

Sensitivity (95% CI) Specificity (95% CI) N* 

iF_N vs. Lumi_N 189 

iF_N 67.2% (58.1%, 75.4%) 100.0% (94.6%, 100.0%) 

Lumi_N 64.8% (55.6%, 73.2%) 100.0% (94.6%, 100.0%) 

P-vlaue 0.257 NA 

iF_N vs. Tspot_N 157 

iF_N 62.5% (52.0%, 72.2%) 100.0% (94.1%, 100.0%) 

Tspot_N 62.5% (52.0%, 72.2%) 98.4% (91.2%, 100.0%) 

P-value 1.000 0.317 

iF_N vs. Tspot_M 160 

iF_N 63.3% (52.9%, 72.8%) 100.0% (94.6%, 100.0%) 

Tspot_M 15.3% (8.8%, 24.0%) 96.8% (88.8%, 99.6%) 

P-value <0.001 0.157 

Lumi_N vs. Tspot_N 157 

Lumi_N 60.4% (49.9%, 70.3%) 100.0% (94.1%, 100.0%) 

Tspot_N 62.5% (52.0%, 72.2%) 98.4% (91.2%, 100.0%) 

P-value 0.768 0.317 

Lumi_N vs. Tspot_M 160 

Lumi_N 61.2% (50.8%, 70.9%) 100.0% (94.2%, 100.0%) 

Tspot_M 15.3% (8.8%, 24.0%) 96.8% (88.8%, 99.6%) 

P-value <0.001 0.157 

Lumi_N vs. Tspot_N & Tspot_M 155 

Lumi_N 59.6% (49.0%, 69.6%) 100.0% (94.1%, 100.0%) 

Tspot_N & Tspot_M 67.0% (56.6%, 76.4%) 96.7% (88.7%, 99.6%) 

CI, confidence interval; iF_N, iFlash-SARS-CoV-2 IgG assay using iFlash 3000 instruments (YHLO); Lumi_N, antibody test targeting nucleocapsid protein using the MAGPIX R  system 
(Luminex); Tspot_N, T-SPOT R  Discovery using nucleocapsid protein as stimulants; Tspot_M, T-SPOT R  Discovery using membrane protein as stimulants; NA, not available. *Number 
excluding missing values. 
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FIGURE 2 

Receiver operating characteristic (ROC) curves of the assays. The red curve represents the ROC curve of the T-SPOT R Discovery SARS-CoV-2 assay 
targeting the nucleocapsid protein (Tspot_N). The green curve represents the ROC curve of the T-SPOT R Discovery SARS-CoV-2 assay targeting the 
membrane protein (Tspot_M). The blue curve represents the ROC curve of the antibody test using the MAGPIX R system, which targets the 
nucleocapsid protein (Lumi_N). The area under the ROC curve (AUC) for each assay is shown in the lower part of the figure. The points on each 
ROC curve denote the maximum Youden index, with parentheses indicating the optimal cutoff point. On the basis of the AUC values, the Tspot_N 
and Lumi_N assays demonstrated good diagnostic performance and outperformed the Tspot_M assay. 

assays. The analyses confirmed that only the Lumi_N and Tspot_N 
combination improved COVID-19 diagnostic performance. 

4 Discussion 

In this study, we assessed the eÿcacy of the T-SPOT assay 
using frozen PBMCs and their combinations with antibody tests 
in diagnosing a history of SARS-CoV-2 infection. Our findings 
indicate that the Tspot_N assay has comparable performance to 
the Lumi_N assay, particularly in terms of sensitivity, specificity, 
and AUC. Notably, the distribution of test-positive participants 
diered across assays, possibly due to the discrepancy between the 
principles underlying the functioning of the assays and targeted 
immunity. Specifically, IGRAs, such as the T-SPOT assay, reflect the 
cellular immunity mediated by T lymphocytes and their immune 
memory, whereas antibody tests reflect the humoral immunity 
associated with circulating antibodies. Numerous studies have 
evaluated the utility of IGRAs and their advantages over antibody 
tests (Barreiro et al., 2022, Fernández-González et al., 2022). IGRAs 

can detect COVID-19 in the earlier stages and remain positive 
for longer periods than antibody tests (Johnson et al., 2023). In 
our study, the positivity rates of the antibody assays significantly 
decreased in the later stages of infection. However, such dierences 
in positivity were not observed with the IGRAs, with the Tspot_N 
assay even exhibiting the highest sensitivity beyond 180 days post-
SARS-CoV-2 infection. T-cell assays may provide additional value 
in diagnosing prior COVID-19 by complementing antibody assays. 
As previously documented, the positivity rate of antibody assays 
in the PC cohort decreased over the course of COVID-19. These 
dierences between the antibody tests and T-SPOT assays may 
influence the development of combination assay strategies (e.g., the 
combination of Lumi_N and Tspot_N). 

The manufacturer’s instructions specify the use of fresh 
peripheral PBMCs. In surveillance studies, such as those assessing 
infectious disease prevalence, the use of PBMCs can be challenging 
owing to the complexity of their preparation. Consequently, we 
employed frozen and preserved PBMCs for the T-SPOT R  Discovery 
SARS-CoV-2 assay, facilitating an eective IGRA by allowing the 
testing of multiple samples in a single batch. A previous study 
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FIGURE 3 

Receiver operating characteristic (ROC) curves of the combination assays. The black ROC curve represents the baseline model, which encompasses 
both the single and combination assays. The red ROC curve illustrates the new model that was generated by incorporating one or more assays into 
the baseline model. Each ROC curve was derived from logistic regression analysis. (a) Comparison between the Lumi_N assay (baseline model) and 
the combination of antibody assays Lumi_N and iF_N. (b) Comparison between the Lumi_N assay (baseline model) and the combination of the 
Lumi_N and Tspot_N assay. (c) Comparison between the Lumi_N assay (baseline model) and the combination of the Lumi_N and Tspot_M assay. (d) 
Comparison between the Tspot_N assay (baseline model) and the combination of the Tspot_N and Tspot_M assays. (e) Comparison between the 
Lumi_N assay (baseline model) and the combination of the Lumi_N, Tspot_N, and Tspot_M assays. (f) Comparison between the combination of the 
Lumi_N and Tspot_N assays (baseline model) and the combination of the Lumi_N, Tspot_N, and Tspot_M assays. The combination of the Lumi_N 
and Tspot_N assays had the highest diagnostic performance, and no additional benefit was observed when the Tspot_M assay was incorporated. 

TABLE 5 Results of reclassification analyses. 

Models NRI (categorical) NRI (continuous) IDI 

Model_1 
(baseline model) 

Model_2 (new 
model) 

Value (95% CI) P-value Value (95% CI) P-value Value (95% CI) P-value 

Lumi_N Lumi_N & iF_N −0.025 (−0.052, 0.003) 0.079 −0.284 (−0.53, −0.038) 0.023 −0.004 (−0.009, 0.002) 0.170 

Lumi_N Lumi_N & Tspot_N 0.180 (0.083, 0.277) <0.001 0.898 (0.688, 1.108) <0.001 0.168 (0.122, 0.214) <0.001 

Lumi_N Lumi_N & Tspot_M 0 (−0.055, 0.055) 1.000 0.428 (0.205, 0.65) <0.001 0.020 (−0.002, 0.043) 0.079 

Tspot_N Tspot_N & Tspot_M 0 NA NA 0.274 (0.003, 0.544) 0.047 0.001 (−0.002, 0.004) 0.440 

Lumi_N Lumi_N & Tspot_N & 

Tspot_M 

0.172 (0.073, 0.27) 0.001 0.933 (0.716, 1.15) <0.001 0.170 (0.124, 0.216) <0.001 

Lumi_N & Tspot_N Lumi_N & Tspot_N & 

Tspot_M 

0.016 (−0.023, 0.054) 0.420 0.078 (−0.192, 0.349) 0.571 0.002 (−0.006, 0.01) 0.676 

CI, confidence interval; NRI, net reclassification improvement; IDI, integrated discriminatory index; CI, confidence interval; Lumi_N, nucleoprotein assay of the MAGPIX R  system (Luminex); 
iF_N, iFlash-SARS-CoV-2 IgG assay; Tspot_N, nucleocapsid assay of T-SPOT R  Discovery SARS-CoV-2; Tspot_M, membrane protein assay of T-SPOT R  Discovery SARS-CoV-2. Bold values 
denote a p-value of less than 0.05. 

compared fresh and frozen PBMCs in performing the T-SPOT 

COVID-19 test (Nadat et al., 2022). The results of that study 

revealed that frozen PBMCs were generally applicable, although 

some caution was warranted, and the authors emphasized the 

necessity of using viable PBMCs. We utilized CELLBANKER1 to 

store PBMCs, which ensures their viability for extended periods, 

maintaining a viability rate exceeding 70% at −80 ◦C. We prepared 

2.5 × 106 cells/mL viable PBMCs using a cell counter with trypan 

blue staining. With the Tspot_N and Tspot_M assays, interpretable 

results were obtained for approximately 80% of the PC cohort and 

90% of the NC cohort, and the sensitivity of each assay was 62.5% 

and 15.3%, respectively. One study assessed the sensitivity of the 

Frontiers in Microbiology 08 frontiersin.org 

https://doi.org/10.3389/fmicb.2025.1675605
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1675605 September 19, 2025 Time: 19:10 # 9

Yamamoto et al. 10.3389/fmicb.2025.1675605 

T-SPOT assay using nucleocapsid protein as a stimulant (Pitiriga 
et al., 2023). The sensitivities in our study were expected to be 
slightly lower than those reported in a previous study that employed 
the nucleocapsid protein T-SPOT assay. The use of frozen PBMCs 
may have contributed to these dierences in the performance 
of the T-SPOT nucleocapsid assays. However, as described in a 
previous study (Johnson et al., 2023), IFN-γ ELISPOT assays, such 
as T-SPOT assays, are labor intensive and require a minimum of 
2 days to return results. Therefore, the use of frozen samples is 
essential for conducting surveillance studies using IFN-γ ELISPOT 
assays, particularly for prevalence surveillance studies. 

Numerous studies have demonstrated the eÿcacy of IFN-γ 
release assays in identifying previous COVID-19. However, none of 
these studies addressed the eÿcacy of the IFN-γ release assay when 
implemented in conjunction with antibody tests. To evaluate the 
eects of such combination assays, we performed ROC curve, NRI, 
and IDI analyses, which indicated a significant improvement in 
the identification of prior COVID-19. Additionally, we conducted 
Brier score analysis as a supplementary evaluation (Vickers et al., 
2019, Hilden and Gerds, 2014). The NRI and IDI primarily assess 
the added value of new biomarkers when implemented within 
existing predictive models and determine their utility in assessing 
the risk of clinical events (Cook, 2018). Numerous studies have 
evaluated the additive eects of biomarkers, such as those for acute 
ischemic stroke and the diagnosis of pulmonary tuberculosis (Mu 
et al., 2024, Ling et al., 2013), using the NRI and IDI. Importantly, 
the NRI, both categorical and continuous, may overestimate the 
improvement in diagnostic performance if the original model was 
poorly fit (Pepe et al., 2015). Other statistics, such as the AUC 
and Brier score, are not aected by model quality. With respect 
to the combinations of the Lumi_N and Tspot_N assays, both 
the AUC and Brier scores also indicated a positive evaluation, 
which was consistent with the results of the NRI and IDI analyses 
(Supplementary Table 7). These findings support the ability to 
improve diagnosis with this combination assay. 

IGRAs encompass several methods for detecting responses 
against specific proteins, such as ELISPOT (T-SPOT), ELISA 
detection of IFN-γ, or FCM (Johnson et al., 2023, Törnell et al., 
2022). In some severe cases, T-cell counts, including those of 
CD4+ and CD8 + T cells, decrease. Because ELISA-based tests for 
detecting IFN-γ, such as the QuantiFERON SARS-CoV-2 assay, use 
whole blood, the results may be influenced by blood cell counts. 
Conversely, measuring viable T-cell counts using the T-SPOT test 
allows standardization of the T-SPOT assay. Moreover, ELISPOT 
(T-SPOT) assays exhibit advantages in sensitivity, surpassing 
intracellular cytokine (FCM) staining (Karlsson et al., 2003), and 
are up to 200 times more sensitive than ELISAs (Tanguay and 
Killion, 1994). Previous studies have evaluated the responses 
of the T-SPOT assay and other IGRAs to SARS-CoV-2 spike 
proteins (Jang et al., 2023, Seo et al., 2023). However, evaluations 
of IGRAs that target SARS-CoV-2 nucleocapsid or membrane 
proteins are limited. We addressed these shortcomings in this study 
and reported that the T-SPOT assay targeting the SARS-CoV-2 
nucleocapsid protein (Tspot_N assay), alone or in combination 
with antibody tests, facilitated the diagnosis of past SARS-CoV-2 
infection among vaccinated participants. Certain limitations of the 
T-SPOT assays should be acknowledged, however. The availability 
of interpretable test results was lower than that of antibody testing 
because of the presence of indeterminate and borderline results. 

The percentage of interpretable results of the T-SPOT assays ranged 
from 78.7% to 92.5%, whereas no invalid results were observed for 
antibody testing. 

This study had several limitations. First, the participants were 
predominantly young, particularly within the PC cohort, with a 
median age of 36 years. Immune responses dier between younger 
and older populations, potentially influencing the outcomes of both 
antibody tests and IFN-γ release assays (Jo et al., 2023). Second, 
it is important to acknowledge occupational bias. A significant 
proportion of participants, 91.0% of the PC cohort and 65.7% of the 
NC cohort, were hospitality workers, who had been vaccinated at a 
high rate. Third, this study included a limited number of patients 
with severe infection and none with critical infection. Therefore, 
the relationship between disease severity and the results of the 
assays included in this study was not thoroughly assessed. Fourth, 
the number of patients in the NC cohort was relatively small, 
constituting approximately half of the PC cohort. Nevertheless, 
assuming a sample size of 67 per group, the estimated power 
was 89% to detect the dierence between proportions of 0.88 
(sensitivity of the Lumi_N and Tspot_N combination) and 0.65 
(sensitivity of Lumi_N) with a two-sided α = 0.05. This finding 
supports the present study. Finally, similar to other studies, our 
study faced challenges in strictly excluding infected individuals 
from the negative control group, particularly those who contracted 
the infection within 2 weeks prior to blood collection (Goletti et al., 
2021). Therefore, these results should be interpreted with caution, 
and additional research is needed to validate these results. 

5 Conclusion 

The use of frozen PBMCs is feasible for performing T-SPOT 
assays to detect a history of COVID-19, particularly when 
combined with antibody testing. These combinations improve 
diagnostic performance and may contribute to more eective 
prevalence studies. 
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