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Integrated morphological,
proteomic and metabolomic
analyses reveal response
mechanisms of microalgae under
uranium exposure
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!State Key Laboratory of Chemistry for NBC Hazards Protection, Beijing, China, ?School of Life
Sciences, Southwest University of Science and Technology, Mianyang, China, *Engineering Research
Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology,
Mianyang, China

Introduction: The release of uranium (U)-containing wastewater poses a
significant threat to aquatic ecosystems. However, the response mechanisms of
microalgae to U stress remain poorly understood.

Methods: This study employed an integrated approach, combining
morphological, physiological, proteomic, and metabolomic analyses, to
investigate the tolerance and accumulation mechanisms of the microalga
Ulothrix sp. under a gradient of U exposure (40 to 400 pmol/L).

Results: Ulothrix sp. exhibited a dose-dependent U accumulation, reaching
up to 2,100 mg/kg dry weight, which competitively inhibited the uptake of
phosphorus and zinc. Physiologically, medium and high U concentrations
reduced chlorophyll *a* content by 49-65% and significantly impaired
photosystem Il efficiency (Fv/Fm), while increasing energy dissipation (Dlo/RC) by
1.82-2.01 times. Antioxidant defense responses were activated, with significant
upregulation of superoxide dismutase (SOD) and catalase (CAT) activities
(p < 0.05), a 2.2-fold increase in oxidized glutathione (GSSG), and inhibition
of peroxidase (POD) activity. Proteomic analysis revealed that differentially
expressed proteins (DEPs) were predominantly enriched in pathways related to
carbohydrate metabolism and transport. Concurrently, metabolomic profiling
indicated a specific activation of the glycine-serine-threonine pathway and a
significant enrichment in glycerophospholipid metabolism (ko00564).
Discussion: Our findings demonstrate that Ulothrix sp. mitigates U-induced
stress and maintains cellular homeostasis through a multi-level defense network.
This network encompasses the activation of antioxidant enzymes, remodeling
of key tricarboxylic acid (TCA) cycle metabolites, and strategic regulation of
the glycine-serine-threonine metabolic pathway. This study provides crucial
insights into the molecular and physiological basis of U tolerance in microalgae.
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microalgae, uranium, antioxidative enzyme, proteomic and metabolomic analysis,
bioremediation

01 frontiersin.org


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1679056&domain=pdf&date_stamp=2025-10-20
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1679056/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1679056/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1679056/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1679056/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1679056/full
mailto:xihailing@sklnbcpc.cn
mailto:spzhao@mail.ustc.edu.cn
https://doi.org/10.3389/fmicb.2025.1679056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1679056

Han et al.

1 Introduction

With the rapid development of the nuclear industry, uranium (U)
pollution has become a significant global environmental concern (Ma
et al., 2020). Nuclear energy production processes, such as mining,
uranium hydrometallurgy, and nuclear fuel manufacturing, generate
large amounts of U-containing wastewater that is discharged into the
environment (Zhu et al., 2022). Increasing U concentrations in water
pose a threat to human health; the combined chemical and radiological
toxicity of U present serious ecological risks (Parmar and Patel, 2025),
making its environmental behaviors and ecological risks a significant
focus. Since its chemical toxicity is significantly higher than that of its
radioactive isotopes, chemical toxicity is particularly substantial in
biological systems (Chen et al., 2024).

It is well-established that microorganisms play a vital role in the
remediation of water contaminated (Chen et al., 2025; Zhang et al.,
2025a). Studies have shown that live microalgae cells (e.g., Chlorella,
Spirulina) can effectively adsorb uranium (U) through mechanisms
such as cell wall complexation ion exchange, and intracellular
accumulation (Vogel et al., 2010; Embaby et al., 2022). For instance,
Ankistrodesmus sp. achieved a maximum removal rate of 98% at a
concentration of 80 mg/LU (Cheng et al, 2023). Moreover,
microalgae counteract stress by activating antioxidant enzyme
systems (such as SOD, CAT, and POD) and reprogramming their
metabolism to maintain cellular homeostasis (Tan et al., 2024). These
inherent characteristics render microalgae promising biological
agents for the bioremediation of uranium-contaminated aquatic
systems (John et al., 2022). Understanding of U toxicity and the
molecular mechanisms underlying U stress has increased significantly
in recent years (Sook et al., 2024). For example, U enters cells via
calcium ion channels (Sarthou et al, 2022) and endocytosis.
Carboxyl, amino, and organic/inorganic phosphate groups on the
microalgal cell wall participate in U complexation (Plohn et al.,
2021). A synergistic approach to uranium immobilization through
biomineralization, biosorption, and bioreduction (Liang et al., 2025).
U stress causes significant damage to cell division (Lavoie et al., 2014;
Feng et al., 2023) and inhibits photosynthesis (Herlory et al., 2013).
Microalgae utilize the regulation of oxidase activity to cope with
heavy metal stress (Huang et al., 2023; Qiu et al., 2022). Their stress
metabolic adaptations involve the accumulation of lipids and
carotenoids, and they can experience extensive cell lysis followed by
natural regeneration after prolonged U exposure and U
biomineralization (Acharya et al., 2017). However, existing research
predominantly focuses on single physiological or biochemical aspects
(e.g., antioxidant enzyme activity or adsorption capacity) or single-
omics levels. A lack of systematic understanding remains regarding
the response mechanisms of multi-level regulatory networks (e.g.,
protein-metabolite interactions) under U stress. Additionally, most
studies focus on cyanobacteria or algae (e.g., Anabaena, Chlorella),
with limited systematic research on filamentous microalgae in
response to U stress. The filamentous structure of Ulothrix sp.
provides a significantly higher surface area than that of unicellular
microalgae, such as Chlorella. This morphological trait enables highly
efficient biosorption of uranium onto cell surfaces. In addition, the
filamentous morphology facilitates easier harvesting and recovery.
Furthermore, Ulothrix sp. exhibits strong resilience to environmental
stressors, supporting its potential application under real remediation
conditions (Zhang and Luo, 2022).
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Therefore, this study selected the filamentous microalgae Ulothrix
sp. as the subject of research. Exposure experiments were conducted
with low (40 pmol/L), medium (200 pmol/L), and high (400 pmol/L)
U concentrations. Multidimensional data integrating growth
physiology and biochemical indicators, elemental analysis, proteomics,
and metabolomics were analyzed to investigate the characteristics of
intracellular uranium (U) enrichment in Ulothrix sp.

2 Materials and methods

2.1 Experimental design and microalgae
growth monitoring

The freshwater microalgae Ulothrix sp. (obtained from the
Freshwater Algae Culture Collection at the Institute of Hydrobiology,
Chinese Academy of Sciences) were selected as the experimental
material. The microalgae were cultured in sterile BG-11 medium
under controlled conditions at 25 + 2 °C, with a light intensity of 4,000
lux and a 12 h:12 h light/dark cycle for 7 days.

Uranium exposure was applied in the form of uranyl nitrate
[UO,(NO:s),], with concentrations set according to previous literature
(Cardenas et al., 2008) as follows: control (U0, 0 mmol/L), low
concentration (Ul, 40 pmol/L), medium concentration (U2,
200 pmol/L), and high concentration (U3, 400 pmol/L). Microalgae
culture (10 mL) in the logarithmic growth phase (initial ODgso & 0.8)
was into each experimental group. All treatments included three
independent biological replicates to ensure statistical reliability (Lai
et al., 2024; Zhao et al., 2024).

Two milliliters of microalgae culture from each treatment group
were sampled daily at a fixed time. The optical density at 680 nm
(ODsso) was measured using a Multiskan FC microplate reader
(Thermo Fisher Scientific, United States) with sterile BG-11 medium
as the blank control. Microalgae cell density was calculated according
to the standard curve regression equation: y (x10° cells/
mL) = 34.1x + 0.7 (R* = 0.9917), where x is the ODs¢s, value and y is
the cell density (x10° cells/mL) (Song et al., 2017).

2.2 Chlorophyll and carotenoid extraction
and quantification

A 5 mL aliquot of microalgae culture from each treatment group
was mixed with 5 mL of 95% (v/v) ethanol and an appropriate amount
of quartz sand. The mixture was thoroughly ground, followed by
extraction in the dark at 4 °C for 24 h. The extract was then adjusted
to a final volume of 10 mL, centrifuged at 3,000 rpm (2,000 x g) for
5 min, and the supernatant was collected. Absorbance was measured
at 665 nm (Asss), 720 nm (A7z), and 470 nm (A4yo) using a Cary 60
UV-Vis spectrophotometer (Agilent, United States). Chlorophyll a
(Chl a) and carotenoid concentrations were calculated using the
following equations (Castle et al, 2011;
Galinyte, 2016):

Sujetoviene and

Chla (ug/mL)=12.9447x(A665— A720)

Carotenoids (g /mL)= (4. 1x A470) —(0.0435 xChl a)
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2.3 Analysis of chlorophyll fluorescence
parameters

Rapid chlorophyll fluorescence induction kinetics (OJIP)
were analyzed using a handheld chlorophyll fluorometer
(FluorPen FP 110, Photon Systems Instruments, Czech Republic).
Before measurement, 5 mL of microalgae culture was dark-
adapted for 30 min to ensure steady-state photosynthetic
conditions. Key fluorescence parameters were recorded,
including: maximum photon yield (Fv/Fm), absorbed photon flux
per unit photoreaction center (ABS/RC), unit Initial electron
transfer photon flux of photoreaction center (ETo/RC), initial
capture photon flux per unit photoreaction center (TRo/RC),
energy dissipation per unit reaction center (DIo/RC), light
absorption performance index (Pi_Abs) (Yang et al., 2019).

2.4 Micro-morphology and FT-IR analysis
of Ulothrix sp.

Microalgae cells exposed for 7 days were collected and
processed for micro-morphological analysis. Samples underwent
fixation, dehydration, critical point drying, and gold sputter
coating to preserve surface structures and enhance conductivity.
Micro-morphological observations of Ulothrix cells were
conducted using a Regulus 8100 field emission scanning electron
microscope (FE-SEM, HITACH]I, Japan). Simultaneously, semi-
quantitative elemental analysis was performed using an attached
energy-dispersive X-ray spectroscopy (EDS) system to identify
the types of elements and determine their relative abundances in
specific micro-regions of the cell surface.

For compositional analysis, freeze-dried algal samples were
mixed with potassium bromide (KBr) at a mass ratio of
approximately 1:100, thoroughly ground, and pressed into pellets.
FT-IR spectra were acquired using an ALPHA II Fourier
(Bruker,
characterize the structural features of the major functional

transform infrared spectrometer Germany) to

groups in the microalgae cells.

2.5 Analysis of oxidative stress-related
enzyme activities in microalgae

After 7 days of uranium (U) exposure, microalgae cultures
from each treatment group (U0, U2, U3) were centrifuged at 4 °C
and 800 x g for 5 min to harvest the microalgae cells. The
collected cells were washed twice with ice-cold phosphate-
buffered saline (PBS, pH 7.4) to remove residual culture medium.
Microalgae cell lysates were prepared, and the activities of
catalase (CAT), superoxide dismutase (SOD), and peroxidase
(POD), as well as the content of oxidized glutathione (GSSG),
were measured using commercial assay kits (Solarbio Science and
Technology Co., Ltd., Beijing, China) following the protocols. All
biochemical parameters were normalized to cell number
(expressed as enzyme activity units per 10° cells or GSSG content
in nmol per 10° cells) before statistical analysis to account for
potential variations in cell density.
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2.6 Elemental content analysis in
microalgae biomass

Following 7 days of uranium exposure, microalgae cells were
harvested by vacuum filtration and subsequently rinsed three
times with sterile phosphate-buffered saline (PBS, pH 7.4) to
remove residual culture medium. The collected biomass was
subjected to freeze-drying and ground into a homogeneous fine
powder. Approximately 0.1 g of freeze-dried microalgae powder
was precisely weighed into a digestion vessel. A mixture of 5 mL
concentrated nitric acid (HNOj;, GR) and 2 mL hydrogen
peroxide (H20,, 30%, GR) was added, followed by closed-vessel
digestion in a graphite furnace digestion system at 120 °C until
the solution achieved complete clarity and transparency. After
cooling to ambient temperature, the digested samples were
diluted to a fixed volume with ultrapure water.

Elemental analysis was performed using inductively coupled
plasma mass spectrometry (ICP-MS, NexIon 1000G, PerkinElmer,
United States) to quantify uranium (U) and mineral elements,
including potassium (K), phosphorus (P), sulfur (S), iron (Fe), nickel
(N1i), zinc (Zn), copper (Cu), and molybdenum (Mo). Each treatment
group was analyzed with three independent biological replicates to
ensure statistical reliability.

2.7 Quantitative proteomics analysis

The proteomic workflow comprised protein extraction,
quantification, in-solution digestion, peptide desalting, and liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis
using a timsTOF HT mass spectrometer (Bruker). Data acquisition
was performed in data-independent acquisition (DIA) mode to
enhance reproducibility and coverage. Protein expression profiles
were visualized via principal component analysis (PCA) to identify
inter-group variations.

Differentially expressed proteins (DEPs) were identified based on
fold change (FC)>2 and p-value < 0.05 thresholds. Pearson’s
correlation coefficient was applied to assess relationships among
DEPs. Comparative analyses were conducted for the following groups:
U1 vs. U0, U2 vs. U0, and U3 vs. U0. Functional annotation and
pathway enrichment were performed using the Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.
Comprehensive details  are

experimental provided in

Supplementary S1.

2.8 Metabolomic analysis (LC—-MS)

After 7 days of uranium (U) exposure, microalgae cells were
rapidly collected, immediately frozen in liquid nitrogen, and stored
for metabolite extraction. The metabolite extraction protocol was
performed as follows: 1 mL of a methanol-water extraction solvent
was mixed with 200 pL of chloroform and 20 pL of the internal
standard, L-2-chlorophenylalanine. The mixture underwent
ultrasonic-assisted extraction, followed by freeze-thaw cycling,
centrifugation, vacuum drying, reconstitution in solvent, and vacuum

filtration to obtain the final metabolite extract.
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Metabolic profiling was conducted using an ultra-performance liquid
chromatography (UPLC) system (Nexera, Shimadzu, Japan) coupled to a
Q Exactive HE-X high-resolution mass spectrometer (Thermo Fisher
Scientific, United States). Data preprocessing, including peak detection,
alignment, and normalization, was performed using Progenesis QI v3.0
(Nonlinear Dynamics, Newcastle, UK).

Differentially expressed metabolites (DEMs) were identified via
orthogonal partial least squares-discriminant analysis (OPLS-DA)
with stringent selection criteria: variable importance in projection
(VIP) > 1, p-value < 0.05. Significant DEMs were subjected to Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis to elucidate affected metabolic pathways. Comprehensive
experimental details are provided in Supplementary S1.

10.3389/fmicb.2025.1679056

2.9 Data analysis

All statistical analyses were performed using SPSS Statistics
(v21.0, IBM, United States). Differences among treatment groups were
assessed by one-way analysis of variance (ANOVA), followed by
Fisher’s least significant difference (LSD) post-hoc test to identify
statistically significant differences. A significance threshold of p < 0.05
was applied for all comparisons. Data visualization was conducted
using Microsoft Excel 2010 (Microsoft, United States), Origin
(United States), and OmicShare online tools (https://www.omicshare.
com/tools/). Final figure refinement, including layout adjustments and
esthetic enhancements, was performed using Adobe Ilustrator
(United States).

Effects of different uranium treatments on the physiological characteristics of Ulothrix sp. (A) Scanning electron microscopy (SEM) images. (B—E)
Energy-dispersive X-ray spectroscopy (EDS) analysis. Data represent the mean + SD of three independent biological replicates. Different lowercase
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3 Results and discussion

3.1 Physiological responses of Ulothrix sp.
to uranium exposure

The physiological effects of uranium concentrations on Ulothrix
sp. after 7days of exposure are presented in Figure 1. SEM
observations (Figure 1A) demonstrated that increasing U
concentrations induced progressive morphological changes in algal
cells, characterized by irregular cell membrane shrinkage hallmark of
ion stress-induced deformation. EDS confirmed significant U
accumulation on the cell surface (Figures 1B-E), with relative U
contents of 0% (control), 0.07, 0.79, and 2.43% in the respective
treatment groups (U0-U3). Notably, EDS analysis revealed a
correlated distribution pattern between U and phosphorus (P) on the
cell surface, suggesting potential mechanisms of bioaccumulation.

FT-IR spectroscopy (Supplementary Figure S1) revealed alterations
in surface functional groups; the Ul group spectral profiles closely
resembled the UO, indicating minimal perturbation. U2 and U3
concentration groups: Amide band intensification: increased
absorption peaks at 1648.0 cm™ (amide I, C=O stretching) and

1545.0 cm™ (amide II, N-H/C-H bending) suggested protein structural

10.3389/fmicb.2025.1679056

modifications. Phosphate group shifts: the P-O stretching vibration
peak (U0: 1040.0 cm™) shifted to 1000.6 cm™ post-exposure,
implicating direct interactions between uranyl ions (UO,**) and
phosphate-containing biomolecules (e.g., phospholipids, nucleic acids).

These findings collectively demonstrate that uranium exposure
induces morphological damage (cell membrane shrinkage), surface U
bioaccumulation, and evidence of protein and phosphate group
alterations, highlighting mechanisms of uranium toxicity in
Ulothrix sp.

3.2 Growth and photosynthetic impairment
in Ulothrix sp. under uranium stress

Uranium exposure significantly inhibited the growth of Ulothrix
sp. with cell density declining in a dose-dependent manner
(Figure 2A). Consistent with biomass reduction, Chl a and
carotenoid contents were significantly reduced by 49-65% and
51-56%, respectively, under U2 and U3 treatment levels
(*p* <0.05), while the low concentration (Ul) showed no
significant effect (Figure 2B). The photosystem II maximum
quantum yield of PSII (Fv/Fm) decreased notably under U2 and U3
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- 15} -¢-U2 ’ 4
E -a-U3 P *
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FIGURE 2
Effects of different uranium treatments on the growth and photosynthesis of Ulothrix sp. (A) Growth curve of Ulothrix sp. under different treatment
concentrations. (B) Chlorophyll a (Chl a) and carotenoid content after exposure to uranium. Data represent the mean + SD of three independent
biological replicates. Different lowercase letters indicate statistically significant differences (P < 0.05) among treatment groups at the same sampling time.

TABLE 1 Effects of U exposure on kinetics parameters of rapid chlorophyll fluorescence induction in microalgae.

Parameters Treatment group
Ul u2

Fv/Fm 0.297 + 0.008a 0.294 + 0.005a 0.217 +0.010b 0.187 +0.011c
ABS/RC 2.730 + 0.138¢ 2.800 + 0.230c 4.472 +0.309b 5.653 + 0.286a
ETo/RC 0.487 + 0.013b 0.500 + 0.042b 0.526 + 0.032a 0.574 + 0.168a
TRo/RC 0.809 + 0.028¢ 0.822 + 0.068¢ 0.972 + 0.086b 2.119 + 0.416a
DIo/RC 1.921 +0.114c 1.978 +0.165¢ 3.500 + 0.239b 3.867 +0.601a
Pi_Abs 0.235 + 0.023a 0.231 +0.021a 0.074 + 0.008b 0.085 + 0.064b

Different lowercase letters indicated significant differences at the 0.05 level (N = 3).
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treatments, indicating damage to PSII reaction centers. Key
fluorescence parameters including absorption (ABS/RC), trapped
energy (TRo/RC), and dissipated energy flux per reaction center
(DIo/RC) increased significantly by 1.63-2.07, 1.20-2.62, and 1.82-
2.01-fold, respectively (Table 1; Supplementary Figure S2). The
electron transport flux per reaction center (ETo/RC) also exhibited
an increasing trend, suggesting enhanced energy dissipation and
reduced electron transport efficiency under U stress.

10.3389/fmicb.2025.1679056

Morphological and spectral changes (cell membrane shrinkage,
U-P distribution correlation, and FT-IR peak shift) indicate U binding
to cell surface components, such as peptidoglycan, polysaccharides,
and phospholipids, consistent with previous reports (Dutta et al.,
2022; Liu et al., 2022; Yu et al,, 2022). This binding may lead to the
precipitation and accumulation of uranium on the cell surface, thereby
disrupting membrane integrity and altering membrane permeability
(Kolhe et al., 2020). Under uranium stress, although TRo/RC
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increased, the efficiency of energy utilization for photochemistry
(reflected by decreased Fv/Fm and altered ETo/RC) declined.
Consequently, excess light energy was predominantly dissipated as
heat via non-photochemical quenching (NPQ), resulting in a
significant rise in DIo/RC. This enhanced energy dissipation likely
constitutes an adaptive protective mechanism that mitigates oxidative
damage to the PSII complex caused by excessive excitation energy (Li
et al,, 2022). However, under medium and high U exposure, this
mechanism was insufficient to fully counteract the damage, ultimately
leading to photosynthetic pigment reduction and growth inhibition
(Figures 1EG).

3.3 Effect of uranium exposure on
elemental uptake in Ulothrix sp.

Mineral elements are essential micronutrients for organismal
growth, participating in numerous biological functions, such as
photosynthesis, respiration, and enzymatic reactions. Principal
component analysis (PCA) results (Figure 3A) showed that
samples from different U treatment groups (U0, Ul, U2, U3)
exhibited distinct separation trends in the PCA plot, indicating
that U exposure significantly altered the mineral element
composition within Ulothrix sp. (Figure 3B). Ulothrix sp.
exhibited significant uranium enrichment capability. The
uranium content in the microalgal biomass (dry weight) of the
treatment groups (U1, U2, U3) was 54 mg/kg DW, 761 mg/kg
DW, and 2,100 mg/kg DW, respectively (Figure 3C), and the
enrichment level was positively correlated with the exposure
dose. The U accumulation capacity of Ulothrix sp. (2,100 mg/kg
DW) exceeds values reported for many common microalgae, such

10.3389/fmicb.2025.1679056

as Chlorella vulgaris [typically <600 mg/kg DW under comparable
conditions (Camille et al., 2024)]. The content of mineral
elements was also significantly affected by U exposure
(Figures 3D-K). With increasing U exposure concentration, the
contents of S, Fe, Ni, Cu, and Mo showed a significant increasing
trend. The changes in P and zinc Zn contents exhibited a different
pattern. They initially increased and then decreased with
increasing exposure concentration, showing a significant
reduction in the U3 group.

The results indicate that U exposure induced a reconstruction
of the mineral element profile in Ulothrix sp. The underlying
mechanism may involve competitive absorption between
elements and regulation of transport. For example, this study
found a decrease in P content in the high-concentration (U3)
group 3E), which the
characteristic peak shift of the phosphate group observed in

treatment (Figure corroborates
FT-IR (Supplementary Figure S1), suggesting competitive
inhibition or shared transport pathways between uranium (U)
and phosphate (PO,*") (Schilz et al., 2022). Uranyl ions (UO,*)
may bind to phosphate groups on the cell surface or competitively
bind to phosphate transporters, thereby interfering with normal
phosphorus uptake. Previous studies have indicated that uranium
can compete with Zn** for the same divalent cation transporters
(Hayek et al., 2018). Furthermore, the decrease in Zn content
observed in the U3 group (Figure 3I) may result from the
competitive inhibition of Zn uptake by U, leading to reduced
Zn levels.

The cell membrane is a critical interface for substance transport,
including ion translocation (Nguyen et al., 2022). Morphological
damage to the cell membrane induced by U exposure (Figure 1A)
compromises membrane integrity and consequently affects the
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function of membrane transport proteins and the efficiency of ion
transmembrane transport. That may be one of the crucial reasons for
the disordered absorption of multiple mineral elements.

3.4 Integrated antioxidant defense
mechanisms under uranium stress

(ROS)
accumulation, activating the antioxidant defense system of Ulothrix sp.

Uranium stress induced reactive oxygen species

The oxidative stress analysis is shown in Figure 4. Compared to the U0,
SOD activity in all treatment groups (U1, U2, U3) was significantly
upregulated (p <0.05) (Figure 4A), exhibiting a dose-dependent
enhancement trend. SOD is the first line of defense for scavenging
superoxide anion radicals (O,e7). The increase in its activity indicates
that Ulothrix sp. effectively enhanced its capacity to convert O,e™ into
hydrogen peroxide (H,O,). CAT activity also showed a significant
upregulation trend (p < 0.05) (Figure 4B). The enhancement of CAT

10.3389/fmicb.2025.1679056

activity indicates that Ulothrix sp. improved its ability to directly
decompose and scavenge H,O, (catalyzing the decomposition of H,O,
into H,O and O,). POD activity in all U exposure treatment groups (U1,
U2, U3) was significantly lower than that in the U0 group (p < 0.05), and
showed a significant decreasing trend with increasing U concentration
(Figure 4C). U exposure led to a significant increase (p < 0.05) in the
content of oxidized glutathione (GSSG) in Ulothrix sp. cells (Figure 4D).
In the U3 group, the GSSG content reached 2.2 times that of the control.

The activated antioxidant defense system effectively mitigated
uranium-induced intracellular ROS accumulation, forming a critical
physiological basis for Ulothrix sp’s adaptive response to uranium stress
(Figure 4E). This integrated response involves sequential enzymatic
reactions: SOD catalyzes the dismutation of superoxide anion radicals
(O¢7) into hydrogen peroxide (H,O,) and molecular oxygen (O,),
while CAT further decomposes H,O, into water (H,O) and O, (Moenne
et al,, 2020). Concurrent with the activation of antioxidant enzymes,
significant GSSG accumulation (Figure 4D) served as a key biomarker
of oxidative stress. This GSSG increase is typically accompanied by
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reduced glutathione (GSH) depletion, thereby disrupting the cellular
redox equilibrium. To restore redox homeostasis, GSSG is recycled into
GSH through glutathione reductase (GR)-mediated reactions (Rola
etal,, 2022). The GSH/GSSG redox pair constitutes the core component
of the cellular antioxidant system, directly modulating resistance to
heavy metal-induced oxidative damage (Kizilbay and Karaman, 2022).

3.5 Effect of uranium exposure on the
proteome of Ulothrix sp.

Proteomic analysis identified a total of 1,412 proteins, with 3,403
peptides ranging in length from 7 to 20 amino acids
(Supplementary Figures S3A-C). Principal component analysis
(PCA) revealed significant differences in protein expression profiles
among Ulothrix sp. treatment groups (Supplementary Figure S2D).
Pearson correlation coefficient analysis further confirmed high
reproducibility within groups and distinct clustering between groups

10.3389/fmicb.2025.1679056

(Supplementary Figure S3E), indicating that U exposure reshaped the
protein expression profile of Ulothrix sp. Analysis of differentially
expressed proteins (DEPs) between groups showed that in the Ul
group, 595 DEPs were screened (447 upregulated, 148
downregulated). In the U2 group, 722 DEPs were screened
(569 upregulated, 153 downregulated). In the U3 group,
255 DEPs were screened (121 upregulated, 134 downregulated)
(Supplementary Figure S4A). The decrease in DEPs at U3 likely
reflects partial metabolic shutdown and loss of cellular viability, as
supported by reduced Fv/Fm and elevated oxidative damage markers.
Subcellular localization prediction indicated that DEPs were
primarily distributed in the Cytoplasm, accounting for over 50% in
all groups (Supplementary Figure S4B).
GO functional enrichment
Supplementary Figure S5. In the Ul group, the highest number of
proteins in the biological process was “Carbohydrate metabolic
process” (21), and the highest numbers in the cellular components
were “Cytoplasm” (99) and “Cytosol” (91). In the U2 group, the top
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biological processes were “Translation” (28) and “Carbohydrate
metabolic process” (25). In the U3 group, the top biological processes
were “Translation” (11) and “Carbohydrate metabolic process” (8).
The top cellular component was “Cytosol” (25). “Translation” and
“Carbohydrate metabolic process” were commonly enriched pathways
across all concentration groups.

KEGG pathway analysis indicated that U stress primarily affected
protein expression in pathways related to “Carbohydrate metabolism,”
“Amino acid metabolism,” and “Energy” (Figure 5). Protein—protein
interaction (PPI) network topology analysis of key nodes revealed that
the ATP synthase beta subunit (atpD) occupied a central position in
the network across all U1-U3 groups (Figure 6), with atpD exhibiting
sustained high expression (fold change: 14.5 — 18.9 — 4.0).

Overall, under low concentration stress, the number of DEPs
increased, indicating that cells actively responded to stress by
enhancing translation and metabolism. However, under high-
concentration stress, the total number of DEPs sharply decreased. Cells
conserve energy by suppressing non-essential biological processes and

10.3389/fmicb.2025.1679056

reallocating resources toward critical defense pathways (Judith et al.,
2023). This study found that the U stress response focused on the
cytosol compartment, with “Translation” and “Carbohydrate
metabolism” serving as core regulatory pathways. These pathways
synergistically maintain protein homeostasis and energy balance in
response to stress. The sustained high expression of atpD, a key
component of ATP synthase, indicates that U stress-induced reactive
oxygen species (ROS) burst forced cells to accelerate ATP synthesis to
support energy-consuming processes such as antioxidant defense and
ion transport.

3.6 Effect of uranium stress on the
metabolic network

LC-MS untargeted metabolomics identified a total of 2,969
metabolites. PCA results showed clear separation between
treatment groups and the control group (Supplementary Figure S6).
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KEGG enrichment pathway analysis of differentially expressed metabolites (DEMs). DEM-associated pathway details are in Supplementary Table S7.
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In the Ul vs. U0, 928 DEMs were identified (Significant up: 23,
Significant down: 905). In the U2 vs. U0, 807 DEMs were
identified (Significant up: 99, Significant down: 708). In the U3
vs. U0, 734 DEMs were identified (Significant up: 51, Significant
down: 683) (Supplementary Figure S7). KEGG metabolic pathway
analysis (Figure 7A) revealed that DEMs were primarily
concentrated in the “Amino acid metabolism” and “Lipid
metabolism” pathways. In the U3 group, DEMs were mainly
enriched in “Amino acid metabolism” and “Carbohydrate
metabolism.” Enriched pathway analysis (Figure 7B) showed that
in the Ul and U2 exposure groups, differential metabolites were
significantly enriched in the “Glycerophospholipid metabolism”
(ko00564) pathway. In the U3 group, differential metabolites
were significantly enriched in “Valine, leucine and isoleucine
degradation” (ko00280), “Pentose phosphate pathway” (ko00030),
and “Oxidative phosphorylation” (ko00190). Further analysis of
the Glycerophospholipid metabolism (ko00564) pathway

10.3389/fmicb.2025.1679056

(Figure 8) revealed that Glycine and L-Threonine are closely
associated with glycerophospholipid metabolism.

The enrichment of glycerophospholipid metabolism in the
low and medium treatment groups (U1/U2) indicates that
Ulothrix sp. adjusts its metabolism through associated changes in
Glycine and L-threonine to support this pathway. In the group
U3, the pentose phosphate pathway generates NADPH to support
antioxidant defense, while the oxidative phosphorylation pathway
efficiently synthesizes ATP. Dimethylglycine (DMG) can
effectively scavenge biological free radicals (Aon et al., 2020); its
significant attenuation in the U3 group is directly linked to the
inhibition of algal cell growth (Figure 1A). The upregulation of
metabolites such as amino acids indicates that threonine, aspartic
acid, and others alleviate oxidative damage by scavenging ROS
and maintaining the TCA cycle, collectively forming a stress
defense barrier together with lipid metabolism (Li et al., 2023;
Zhang et al., 2025b).
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FIGURE 10
Impact of uranium exposure on the fundamental energy cycle of Ulothrix sp. Solid arrows indicate direct pathways; dashed arrows indicate indirect
pathways.

3.7 Effect of uranium exposure on the
fundamental energy cycle of Ulothrix sp.

Based on the joint analysis of DEPs and DEMs, a bubble plot was
constructed to visualize the shared pathways (Figure 9), aiming to
systematically decipher the molecular response mechanisms of Ulothrix
sp. under uranium stress. Shared pathways included the TCA cycle and
Oxidative phosphorylation. Based on these findings, a schematic diagram
of the fundamental energy metabolism pathway in Ulothrix sp. was
constructed (Figure 10). Within the TCA cycle, metabolites associated
with malate (such as choline) were upregulated. Succinate was
upregulated, while glycerophospholipid and phenylalanine were
significantly upregulated. Citrate was downregulated under high-
concentration exposure. The upregulation of malate and succinate drives
an increase in TCA cycle flux, providing reducing power (NADH/
FADH,) for ATP synthesis (via oxidative phosphorylation) (Qu et al.,
2021). The downregulation of citrate (the initial metabolite of the TCA
cycle) in the U3 group indicates that high-concentration uranium directly
inhibits respiration, leading to impaired function of this energy hub. The
sustained upregulation of glycerophospholipid suggests that Ulothrix sp.
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responds to oxidative stress by enhancing membrane lipid synthesis to
maintain cell membrane integrity and reduce lipid peroxidation damage.
Previous studies have shown that lipid accumulation is a survival strategy
for microalgae under stress conditions, protecting cells from oxidative
stress (Zhang et al., 2023).

The results indicate that the acceleration of the glycolytic pathway
and TCA cycle can provide energy to overcome the inhibition of
cellular energy production caused by stress, demonstrating that the
fundamental energy cycle of Ulothrix sp. plays a key role in
resisting adversity.

4 Conclusion

Ulothrix sp. exhibits significant uranium enrichment capability
(reaching 2,100 mg/kg DW under 400 pmol/L exposure), and its
U accumulation increases in a dose-dependent manner with
exposure concentration. High-concentration U exposure inhibited
the growth of Ulothrix sp., significantly interfered with the
synthesis of chlorophyll and carotenoids, and had a marked effect
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on photosynthetic parameters. It suppressed light energy capture
efficiency and impaired photosystem II (PSII). Uranium exposure
damaged the microalgal cell structure and disrupted ion transport,
with Zn and P exhibiting competitive inhibition against
U. Uranium exposure induces a burst of reactive oxygen species
(ROS), triggering the cells to activate their antioxidant defense
systems. Integrated proteomic and metabolomic analysis revealed
that under low concentrations, protein synthesis was active,
supporting the stress response. Under high-concentration stress,
energy metabolism was remodeled: key tricarboxylic acid (TCA)
cycle metabolites (succinate, malate) were upregulated, enhancing
electron transport efficiency to compensate for photosynthetic
damage. Unlike many unicellular algae, Ulothrix sp. demonstrates
a multi-faceted adaptive strategy under U stress, including the
activation of the Gly-Ser-Thr metabolic pathway, synergistic
upregulation of SOD/CAT with GSSG accumulation, and
sustained energy metabolism via TCA cycle remodeling. These
key adaptive strategies collectively enhance its tolerance under
high U conditions.
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