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Plastic pollution, particularly in the form of nanoplastics, represents a growing 
global environmental crisis with profound impacts on ecosystems and human 
health. This review investigates the multifaceted interactions between fungi and 
nanoplastics, highlighting fungi’s dual role in both the degradation of plastics 
and their potential pathogenicity. Fungi possess specialized enzymatic pathways, 
which empower them to effectively break down a variety of plastic materials, 
leading to innovative bioremediation approaches. However, the omnipresence 
of nanoplastics in the environment poses significant challenges, as they can 
adversely affect fungal physiology, altering metabolic processes, enhancing virulence, 
and potentially contributing to antifungal resistance. This review examines the 
mechanisms through which different fungal species degrade specific plastics 
while emphasizing the influence of nanoplastics on fungal metabolic pathways 
and collective community dynamics. It explores the adaptations fungi may exhibit 
in response to nanoplastic exposure, including changes in enzymatic activity 
and resistance mechanisms. Additionally, the review addresses the implications 
of nanoplastic exposure for the pathogenicity of fungi, particularly concerning 
their interactions with human hosts and resistance to antifungal treatments. By 
providing a thorough analysis of the current understanding of nanoplastics and 
fungi, this review calls for urgent research into the ecological consequences of 
these interactions and the potential for increasing antifungal resistance. Ultimately, 
this work aims to inform effective strategies for mitigating the dual threats of 
plastic pollution and fungal-related health issues.
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1 Introduction

Plastic pollution has emerged as a critical global environmental challenge, significantly 
affecting ecosystem health, human wellbeing, and long-term sustainability (Wilcox et al., 2015; 
Geyer et al., 2017; Hoseini and Bond, 2022; Cowger et al., 2024). The degradation of plastic 
materials occurs through various mechanisms, including UV irradiation, thermal degradation, 
mechanical stress, and biodegradation. These processes ultimately lead to the formation of 
microplastics and nanoplastics (Fotopoulou and Karapanagioti, 2019; Zhang et al., 2021). 
Microplastics, defined as plastic particles smaller than 5 mm, and nanoplastics, defined as 
particles smaller than 100 nm, have garnered significant attention in recent years (Kong et al., 
2025; Sun et al., 2025). Nanoplastics, in particular, are concerning due to their ubiquitous 
presence in the environment and their potential harmful effects on living organisms. Their 
unique physicochemical properties enhance both their reactivity and bioavailability, raising 
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severe environmental and health concerns (Gigault et  al., 2021; 
Mitrano et al., 2021; Sui et al., 2023; Bu et al., 2025).

Nanoplastics are not only a pollutant but also an emerging factor 
influencing microbial communities in various ecosystems (Nath et al., 
2020; Ren et al., 2022; Zhao et al., 2025). They interact with a diverse 
array of microorganisms, including bacteria, archaea, and fungi, 
potentially altering their physiological functions and ecological roles. 
For instance, studies have demonstrated that exposure to polystyrene 
nanoplastics leads to a decrease in both bacterial and fungal biomass 
within microfabricated soil models (Mafla-Endara et  al., 2023). 
Interestingly, some bacterial species have demonstrated the ability to 
either degrade nanoplastics or utilize them as a substrate. This 
interaction can significantly affect microbial community dynamics 
and nutrient cycling in aquatic environments (Wang et al., 2023). Such 
changes are crucial, as they may influence the biogeochemical 
processes that underpin ecosystem services. Fungi, as essential 
microorganisms, play vital roles in nutrient cycling and overall 
ecosystem functioning. Certain fungal species have shown remarkable 
abilities to degrade various plastics, making them promising 
candidates for bioremediation strategies (Rodrigues et al., 2019; Ryu 
et al., 2020). Their significance in plastic biodegradation is attributed 
to their capacity to secrete a diverse array of degrading enzymes, 
which catalyze the conversion of complex plastic polymers into 
simpler, more manageable compounds. This enzymatic activity 
facilitates the oxidation or hydrolysis of plastics, resulting in the 
formation of functional groups that increase hydrophilicity. 
Consequently, high molecular weight plastics can be transformed into 
lower molecular weight compounds that fungi can readily assimilate 
(Temporiti et al., 2022; Ibrahim et al., 2024; Yang et al., 2024). Some 
fungi exhibit the ability to effectively degrade specific plastics within 
just a few days, underscoring their efficiency in addressing plastic 
pollution (Ibrahim et al., 2024).

Despite their beneficial potential, it is essential to recognize that fungi 
are not exclusively advantageous. Invasive fungal species contribute to an 
estimated 2.5 million human fatalities each year (Denning, 2024). Among 
these, Cryptococcus neoformans, Aspergillus fumigatus, Candida albicans, 
and Candida auris have been identified by the World Health Organization 
(WHO) as some of the most dangerous pathogenic fungi to humans 
(Kriegl et al., 2024). As research increasingly investigates the interactions 
between fungi and nanoplastics, it becomes crucial to evaluate how these 
plastic nanoparticles impact fungal physiology and pathogenicity. The 

adsorption of nanoplastics onto fungal cell surfaces may lead to alterations 
in physiological functions, potentially affecting ecological roles and 
interactions with other organisms. Furthermore, the presence of 
nanoplastics may influence the metabolic pathways of fungi, leading to 
changes in their enzymatic profiles and nutrient assimilation capabilities. 
This could result in both positive and negative outcomes, depending on 
the specific context and species involved. For example, while some fungi 
might enhance their plastic-degrading capabilities in response to 
nanoplastic exposure, others may experience detrimental effects that 
impair their metabolic functions and ecological interactions. The ability 
of fungi to adapt to the presence of nanoplastics raises important 
questions concerning their potential virulence and antifungal resistance, 
particularly in human pathogenic species. The alterations in fungal 
physiology due to nanoplastic interactions could lead to an increased 
expression of virulence factors or enhanced resistance mechanisms 
against antifungal agents. Understanding these dynamics is crucial for 
developing effective strategies to combat both plastic pollution and 
fungal infections.

This review aims to provide a comprehensive examination of 
the relationships between nanoplastics and fungi by systematically 
analyzing the mechanisms of plastic degradation by fungi, their 
metabolic pathways, and physiological adaptations. Additionally, 
it will address the potential implications for virulence and 
antifungal resistance in human pathogenic fungi. By elucidating 
these complex interactions, this review seeks to contribute to the 
broader understanding of how nanoplastics impact fungal 
communities and their ecological roles, as well as to inform 
strategies aimed at mitigating the dual threats of plastic pollution 
and fungal diseases.

2 The role of fungi in plastic 
degradation

Fungi play a pivotal role in the degradation and assimilation of 
various plastic materials (Figure  1), including polyethylene, 
polystyrene, and polyvinyl chloride (Maity et al., 2021; Cowan et al., 
2022; Vaksmaa et al., 2023). Certain fungal species have demonstrated 
the remarkable capacity to degrade specific plastics within a matter of 
days, highlighting their potential for addressing plastic pollution 
(Okal et al., 2023).

FIGURE 1

Schematics of fungal degradation process.
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The advantages of fungal degradation can be summarized into 
three key points:

2.1 Enhanced substrate penetration

The apical growth pattern of filamentous fungal mycelia enables 
these organisms to penetrate soil substrates more effectively than 
bacteria. This capability is attributed to their secretion of extracellular 
enzymes and hydrophobic proteins, which enhance their adhesion to 
hydrophobic substrates (Sánchez, 2020). Such penetration is 
particularly pronounced in soil environments where saprotrophic 
fungi thrive (Dix et al., 1995).

2.2 Diverse enzymatic machinery

Fungi possess a wide range of non-specific enzyme cassettes 
(Aranda, 2016; Deshmukh et al., 2016), which equip them to degrade 
and utilize hydrocarbons and aromatic compounds found in plastics 
as carbon and energy sources. Secreted fungal enzymes, including 

lignin peroxidase, manganese peroxidase, laccase, and polyesterase 
(Table 1), facilitate the oxidation or hydrolysis of plastic polymers, 
leading to the formation of functional groups that increase 
hydrophilicity. This enhanced hydrophilicity promotes the breakdown 
of high molecular weight plastics into lower molecular weight 
compounds that fungi can readily assimilate. Additionally, various 
internal factors within fungal cells can induce pro-oxidant ions, which 
promote degradation through oxidative reactions, particularly 
through the generation of reactive oxygen species. Hydroxyl radicals, 
recognized for their high redox potential, are particularly effective 
oxidants in this context (Backa et al., 1993; Lawton and Robertson, 
1999). This oxidative mechanism enables fungi to participate in the 
degradation of a variety of recalcitrant pollutants, including 
hydrocarbons, chlorophenols, and pesticides (Young et  al., 2015; 
Deshmukh et al., 2016; Hasan, 2018).

2.3 Adaptability to diverse environment

Fungi exhibit remarkable adaptability, enabling them to utilize 
nearly any organic carbon source and thrive in conditions 

TABLE 1  Key fungal groups and their enzymatic roles in plastic degradation.

Genus Representative species Enzymes Features References

Ganoderma
Ganoderma lucidum; G. 

applanatum

Lignin peroxidase, manganese 

peroxidase, laccase, polyesterase

Degradation of plastics and other 

organic materials
Mir-Tutusaus et al. (2018)

Pleurotus Pleurotus abalones; P. ostreatus
Cellulases, lignin peroxidase, 

manganese peroxidase, laccase

Capable of degrading polylactic 

acid (PLA), polyethylene (PE), 

polypropylene (PP), and polyester 

plastics such as PET

Espinosa-Valdemar et al. (2011); 

Odigbo et al. (2023)

Penicillium
Penicillium chrysogenum; P. 

funiculosum; P. simplicissimum;

Polyesterases, esterases, ligninases, 

cellulases, phenol oxidase

Degradation of plastics such as 

polyurethane and polyethylene

Wolski et al. (2012); Ogunmolu 

et al. (2015); Sowmya et al. 

(2015)

Aspergillus
Aspergillus niger; A. oryzae; A. 

fumigatus

Esterases, polyesterases, cellulases, 

phenol oxidase, ligninases

Capable of degrading polyester 

plastics, such as PET

Maeda et al. (2005); El-Dash 

et al. (2023); Safdar et al. (2024)

Mucor Mucor circinelloides; M. hiemalis
Polyesterases, esterases, oxidases, 

cellulases

Capable of degrading polyester 

plastics

Marchut-Mikolajczyk et al. 

(2015); Al Mousa et al. (2022)

Trametes Trametes versicolor; T. hirsuta
Lignin peroxidase, manganese 

peroxidase, laccase, polyesterase

Effective in plastic degradation, 

especially for polymers like 

polyurethane and polyethylene

Arora and Sandhu (1984); 

Vršanská et al. (2017)

Phanerochaete Phanerochaete chrysosporium
Lignin peroxidase, manganese 

peroxidase, laccase, polyesterase

Degradation of lignin and certain 

plastics
Kersten and Cullen (2007)

Lentinus Lentinus edodes; L. tigrinus
Lignin peroxidase, manganese 

peroxidase, laccase, cellulase

Effective in degrading lignin and 

some synthetic materials

Covino et al. (2010); Zavarzina 

et al. (2018); Kobayashi et al. 

(2023)

Cladosporium Cladosporium sp. P7 Cutinase (CpCut1) Polyurethane degradation Liu et al. (2024)

Alternaria Alternaria alternata FB1 Peroxidase, laccase Polyurethane degradation Gao et al. (2022)

Penicillium P. citrinum
Laccase, lipase, esterase, manganese 

peroxidase

Degradation of low density 

polyethylene
Khan et al. (2023)

Malassezia Malassezia species Depolymerase, lipase Degradation of Polyvinyl Chloride El-Dash et al. (2023)

Cladosporium Cladosporium sp. CPEF-6 Laccase
Degradation of low density 

polyethylene
Gong et al. (2023)

Clonostachys Clonostachys rosea Cutinases Degradation of polycaprolactone Gambarini et al. (2025)
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characterized by low humidity, nutrient scarcity, and acidic pH levels 
(Case et al., 2025). Some species can endure dry periods through a 
state of cryptobiosis (Magan, 2007; Mancera-López et al., 2008). The 
metabolic pathways within fungi are mediated by cytochrome P450 
(CYP) monooxygenases (EC:1.14.13.12), which facilitate the oxidation 
of substrates in microsomes (Durairaj et al., 2015; Asemoloye et al., 
2019). These enzymes belong to the heme-protein superfamily and are 
involved in various biological processes, including adaptation to 
environmental stress, toxin production, and the metabolism of both 
endogenous and xenobiotic compounds, thereby enhancing fungal 
fitness (Bernhardt, 2006; Van Beilen and Funhoff, 2007; Kelly et al., 
2009; Moktali et al., 2012). CYP monooxygenases typically function 
as terminal oxidases in the electron transfer chain associated with 
NADPH reductase, facilitating the incorporation of an oxygen atom 
into the hydrocarbon chain of nanoplastics while reducing the other 
oxygen atom to water (Chen et al., 2014). The number of CYP genes 
varies according to the lifestyle of the fungal species; yeasts and yeast-
like fungi possess relatively few CYPs (e.g., three in Saccharomyces 
cerevisiae, six in C. neoformans, and 10  in C. albicans), while 
filamentous fungi typically harbor a greater number of CYP genes, as 
exemplified by Aspergillus spp. with 79 genes and Agaricus bisporus 
with 109 (Doddapaneni et al., 2013; Dauda et al., 2022). As a result, 
plastic-degrading fungi are predominantly filamentous species 
(Table  1), including Ganoderma lucidum, Pleurotus abalone, 
Penicillium chrysogenum, and Aspergillus niger (Wolski et al., 2012; 
Mir-Tutusaus et al., 2018; Odigbo et al., 2023; Safdar et al., 2024). 
Ekanayaka et al. assessed 395 filamentous fungal strains from the 
Ascomycota and Basidiomycota phyla, identifying over 200 species 
capable of degrading various plastics under diverse environmental 
conditions (Ekanayaka et al., 2022). Their findings revealed that fungi 
such as Aspergillus tubingensis effectively disrupt the chemical bonds 
within plastic molecules and successfully colonize plastic surfaces 
(Ekanayaka et al., 2022). Numerous plastic-degrading fungi have been 
isolated from both terrestrial and marine environments (Viel et al., 
2023), including Trichoderma sp., Clitocybe sp., Monascus sp., and 
Phanerochaete sp., which enhance the degradation of polyethylene 
(both LDPE and HDPE), polylactic acid, polyurethanes, polyethylene 
terephthalate, and bisphenol A polycarbonate (Artham and Doble, 
2010; El-Morsy et al., 2017; Ojha et al., 2017; Satti et al., 2017; Janczak 
et al., 2018; Munir et al., 2018). Marine environments have yielded 
marine yeasts such as Rhodotorula mucilaginosa, Zalerion maritimum, 
Alternaria alternata, Penicillium spp., and Aspergillus sp., which 
significantly facilitate the degradation of polyethylene and polystyrene, 
contributing to healthier ecosystems by reducing plastic waste (Ameen 
et al., 2015; Sarkhel et al., 2020; Gao et al., 2022; Vaksmaa et al., 2023; 
do Paço, A.M.S., 2024). Overall, the capacity of fungi to degrade 
plastics presents a promising avenue for bioremediation strategies 
aimed at mitigating the environmental impacts of plastic waste. 
Advances in the exploration of fungal enzymes, along with genetic 
engineering techniques, could enhance biodegradation processes and 
contribute to sustainable waste management practices.

2.4 The impact of nanoplastics on fungal 
physiology and pathogenicity

Nanoplastics possess unique physical properties, including an 
increased surface area, specific transport characteristics, and 
distinctive interactions with light and natural colloids (Gigault et al., 

2021). The larger surface area enhances the adsorption capacity of 
nanoplastics for natural organic matter in the environment (Liu et al., 
2022). Adsorption predominantly occurs through chemical bonding 
on certain types of nanoplastics, facilitated by ligand exchange 
mechanisms with oxide nanoplastics. This interaction reduces surface 
hydrophobicity, increases interactions among plastic particles, and 
affects their aggregate size (Junaid and Wang, 2021). Furthermore, the 
presence of electron-attracting groups within the aromatic rings of 
nanoplastic polymers facilitates strong π–π interactions, contributing 
to their exceptional ion adsorption properties (Hüffer and Hofmann, 
2016; Wang et al., 2020). The substances adsorbed onto nanoplastics 
can interact with extracellular polymers secreted by fungal cells, 
potentially enveloping the nanoplastics in a unique layered structure 
referred to as the eco-corona. This eco-corona can significantly alter 
the dynamics between nanoplastics and fungi (Liu et al., 2022). Fungal 
cell wall thickness typically ranges from 0.1 to 1.0 micrometers, and 
the formation of an ecological corona layer on these walls is contingent 
upon the abundance and physicochemical properties of biomolecules 
and plastic particles. The stability of this layer is influenced by 
hydrogen bonds, van der Waals forces, hydrophobic interactions, and 
other high-energy chemical or adhesive forces (Liu et  al., 2022). 
Research indicates that the zeta potential of fungal cell walls is highly 
responsive to environmental conditions, generally fluctuating between 
−14 and −15 millivolts (Ramos et al., 2020). Changes in environmental 
pH, along with varying concentrations of ions and proteins, can 
promote heteroaggregation, which may consequently alter the zeta 
potential (Mikolajczyk et  al., 2015). Exposure of fungal cells to 
nanoplastics may modulate the zeta potential of their cell walls, 
thereby affecting their functional integrity and potentially contributing 
to the toxicity of extracellularly secreted enzymes.

The fungal cell wall serves as the outermost layer, directly 
interacting with the external environment and playing a critical role 
in various physiological and ecological functions. It is a primary target 
for antimicrobial agents and the immune system, requiring a delicate 
balance of strength and flexibility to provide protection while 
facilitating nutrient uptake, membrane vesicle exchange, and external 
signal reception (Gow and Lenardon, 2023). Previous studies have 
shown that polymeric particles ranging from 100 nm to 300 nm do 
not penetrate the cell walls of pathogenic fungi, such as A. fumigatus 
and C. albicans (Orasch et al., 2023). Thus, it can be proposed that 
nanoplastics exceeding 100 nm primarily interact with the surfaces of 
fungal cell walls, impacting the outer wall polymers and glycoproteins 
associated with the chitin and β-glucan-based inner wall skeleton. 
This interaction could disrupt spatial organization and dynamic 
regulatory functions, impairing the fungal ability to effectively 
respond to changes in growth conditions and potentially leading to 
toxicity. Interestingly, certain filamentous fungi may induce a “dusting 
effect,” wherein high concentrations of nanoplastics allow initially 
colonizing hyphae to adsorb or internalize these particles into 
vacuoles, subsequently metabolizing them into less toxic forms. This 
adaptive response may mitigate toxicity to later-growing hyphae, 
thereby promoting favorable conditions for fungal proliferation 
(Mafla-Endara et al., 2023). Previous research in bacterial systems has 
demonstrated that nanoplastics with diameters of 60 nm can penetrate 
cells, accumulating internally and enhancing the generation of ROS, 
which impose stress on bacterial cells and significantly inhibit their 
growth (Dai et al., 2022). It is plausible that nanoplastics of similar 
sizes may also compromise pathogenic yeast cells, such as 
C. neoformans, given that ROS can modulate the expression of 
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virulence factors, including capsule and melanin production 
(Zaragoza et al., 2008; Momin and Webb, 2021). The toxicological 
impact of nanoplastics on fungal cells is multifaceted, encompassing 
redox imbalances, membrane damage, immune responses, and 
genotoxic effects, which can induce various forms of cellular injury 
simultaneously. Collectively, nanoplastics have the potential to 
significantly alter the physiological states of fungi, highlighting the 
urgent need for further research to elucidate the complex interactions 
and effects of nanoplastics on fungal ecology.

2.5 Potential effects of nanoplastics on 
fungal drug resistance

The development of antifungal agents faces significant challenges 
due to the shared eukaryotic structures and metabolic pathways 
between humans and fungi, resulting in limited therapeutic options. 
Fungal infections are increasingly exhibiting resistance to conventional 
antifungal drugs, with the efficacy of existing treatments, such as 
azoles and polyenes, diminishing in clinical settings. According to 
data from the Centers for Disease Control and Prevention, drug-
resistant fungal infections were responsible for at least 35,900 deaths 
in the United  States in 2019 (Prevention, 2019). This resistance 
typically arises through natural selection, often driven by genetic 
mutations or gene transfer that confer additional resistant traits. 
Notably, fungi are sensitive to chemical toxicity and demonstrate rapid 
responses to environmental changes (Shruti et  al., 2023). Recent 
studies suggest that nanoplastics may play a critical role in promoting 
antifungal resistance through several mechanisms. For instance, 
exposure to nanoplastics can trigger stress responses and adaptive 
mechanisms in fungi. In response to nanoplastic exposure, fungi may 
activate defense pathways, including oxidative stress responses and 
efflux pumps, which enhance their resistance to antifungal drugs. For 
example, Lactarius deliciosus exhibits oxidative stress in the presence 
of polystyrene, leading to increased secretion of organic acids and 
enhanced absorption of phosphorus and potassium, although growth 
is inhibited at high concentrations (Zhang and Gao, 2023). Moreover, 
exposure to nanoplastics has been shown to augment the secretion of 
extracellular enzymes in fungi, including β-glucosidase, glycine 
aminopeptidase, and phenol oxidase, thereby altering the community 
structure (Du et al., 2022). Similar observations in bacterial studies 
indicate that polystyrene exposure induces oxidative stress, leading to 
increased synthesis of glutathione and enhanced activity of the 
tricarboxylic acid (TCA) cycle, as well as of efflux pumps, which 
subsequently promote growth and resistance in Escherichia coli (Fang 
et al., 2023; Liu et al., 2023). Nanoplastics may also induce oxidative 
damage within fungal cells. For instance, low-density polystyrene has 
been shown to alter the membrane composition of Trichoderma 
harzianum, resulting in increased membrane permeability and 
enhanced activities of ROS, superoxide dismutase (SOD), and catalase 
(CAT) (Jasińska and Różalska, 2022). Recent findings from our 
research indicate that exposure to nanoplastics can induce ROS 
production in C. neoformans, disrupting normal cellular functions 
(unpublished data). Such oxidative damage may drive fungi to develop 
resistance through mutations or other adaptive changes that enhance 
their chances of survival. Moreover, fungal mitochondria play vital 
roles not only in cellular energy metabolism and oxidative stress 
responses but also in significantly influencing the activity and 

expression of drug efflux pumps (Black et al., 2021; Ma et al., 2025). 
Given that nanoplastics have been shown to induce mitochondrial 
damage in human cells (Lin et al., 2022), it is plausible to hypothesize 
that they could similarly affect mitochondrial function in fungi. 
Overall, the interaction of nanoplastics with fungi has the potential to 
significantly impact drug resistance (Figure 2). The multifaceted stress 
responses triggered by nanoplastics may not only enhance the ability 
of fungi to withstand antifungal agents but also promote the evolution 
of resistance mechanisms. These findings underscore the need for 
further research to elucidate the complexities of nanoplastic 
interactions and their implications for fungal pathogenicity and 
treatment strategies.

3 Conclusions and future perspectives

The intricate interactions between nanoplastics and fungi present a 
dual-edged sword for environmental science and public health. As 
emerging pollutants, nanoplastics have demonstrated significant effects 
on fungal physiology, including alterations in metabolic pathways, 
physiological responses, and even virulence factors. The ability of 
certain fungal species to degrade plastics offers promising avenues for 
bioremediation, yet the presence of nanoplastics complicates these 
interactions by influencing fungal physiological functions and 
potentially enhancing antifungal resistance mechanisms. This review 
highlights the necessity for a deeper understanding of the multifaceted 
relationships between nanoplastics and fungi. The evidence indicates 
that while fungi have the ability to degrade plastic, exposure to these 
pollutants may concurrently promote adaptations that enhance their 
resistance to antifungal agents. This paradox emphasizes the urgency of 
investigating the mechanisms underlying these interactions, as they 
could have far-reaching implications for both ecological health and 
clinical outcomes in fungal infections. Future research should focus on 
several key areas to elucidate the complex dynamics of 

FIGURE 2

Schematic illustrating mechanisms of antifungal resistance 
potentially induced by nanoplastics.
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nanoplastic-fungi interactions. Firstly, studies should aim to identify the 
specific molecular pathways activated in fungi upon exposure to 
nanoplastics, particularly regarding oxidative stress responses and 
enzymatic adaptations. Recent advancements in image analysis 
demonstrate how end-to-end image analysis and data fusion can 
provide high throughput and objective phenotyping (Iqbal et al., 2020; 
Iqbal et al., 2025), and can be adapted to quantify subtle, exposure-
dependent morphological shifts in hyphae, spores, and biofilms. 
Secondly, the ecological impact of these interactions on fungal 
communities in various environments, including terrestrial and aquatic 
ecosystems, warrants further exploration. Long-term studies are 
essential to assess the implications of chronic nanoplastic exposure on 
fungal diversity and function. Additionally, advancing our 
understanding of the link between nanoplastic exposure and antifungal 
resistance mechanisms is critical. Investigating the potential for genetic 
mutations and horizontal gene transfer in fungi exposed to nanoplastics 
could provide insights into the development of resistance traits. This 
knowledge is particularly vital given the rising incidence of drug-
resistant fungal infections that pose substantial public health threats. In 
conclusion, while the potential of fungi in bioremediation strategies 
remains promising, the challenges posed by nanoplastics necessitate a 
comprehensive investigation into their effects on fungal physiology and 
ecology. By addressing these research gaps, we  can develop more 
effective strategies for managing plastic pollution and mitigating the 
associated risks to human health and the environment. Continued 
interdisciplinary collaboration will be crucial in paving the way for 
innovative solutions to combat the dual challenges of plastic pollution 
and fungal diseases.
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