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Nanoplastics and fungi: exploring
dual roles in degradation and
pathogenicity
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Plastic pollution, particularly in the form of nanoplastics, represents a growing
global environmental crisis with profound impacts on ecosystems and human
health. This review investigates the multifaceted interactions between fungi and
nanoplastics, highlighting fungi’'s dual role in both the degradation of plastics
and their potential pathogenicity. Fungi possess specialized enzymatic pathways,
which empower them to effectively break down a variety of plastic materials,
leading to innovative bioremediation approaches. However, the omnipresence
of nanoplastics in the environment poses significant challenges, as they can
adversely affect fungal physiology, altering metabolic processes, enhancing virulence,
and potentially contributing to antifungal resistance. This review examines the
mechanisms through which different fungal species degrade specific plastics
while emphasizing the influence of nanoplastics on fungal metabolic pathways
and collective community dynamics. It explores the adaptations fungi may exhibit
in response to nanoplastic exposure, including changes in enzymatic activity
and resistance mechanisms. Additionally, the review addresses the implications
of nanoplastic exposure for the pathogenicity of fungi, particularly concerning
their interactions with human hosts and resistance to antifungal treatments. By
providing a thorough analysis of the current understanding of nanoplastics and
fungi, this review calls for urgent research into the ecological consequences of
these interactions and the potential for increasing antifungal resistance. Ultimately,
this work aims to inform effective strategies for mitigating the dual threats of
plastic pollution and fungal-related health issues.

KEYWORDS

nanoplastics, fungi, pathogenicity, antifungal resistance, plastic degradation

1 Introduction

Plastic pollution has emerged as a critical global environmental challenge, significantly
affecting ecosystem health, human wellbeing, and long-term sustainability (Wilcox et al., 2015;
Geyer et al., 2017; Hoseini and Bond, 2022; Cowger et al., 2024). The degradation of plastic
materials occurs through various mechanisms, including UV irradiation, thermal degradation,
mechanical stress, and biodegradation. These processes ultimately lead to the formation of
microplastics and nanoplastics (Fotopoulou and Karapanagioti, 2019; Zhang et al., 2021).
Microplastics, defined as plastic particles smaller than 5 mm, and nanoplastics, defined as
particles smaller than 100 nm, have garnered significant attention in recent years (Kong et al.,
2025; Sun et al., 2025). Nanoplastics, in particular, are concerning due to their ubiquitous
presence in the environment and their potential harmful effects on living organisms. Their
unique physicochemical properties enhance both their reactivity and bioavailability, raising
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severe environmental and health concerns (Gigault et al., 2021;
Mitrano et al., 2021; Sui et al., 2023; Bu et al., 2025).

Nanoplastics are not only a pollutant but also an emerging factor
influencing microbial communities in various ecosystems (Nath et al.,
2020; Ren et al., 2022; Zhao et al., 2025). They interact with a diverse
array of microorganisms, including bacteria, archaea, and fungi,
potentially altering their physiological functions and ecological roles.
For instance, studies have demonstrated that exposure to polystyrene
nanoplastics leads to a decrease in both bacterial and fungal biomass
within microfabricated soil models (Mafla-Endara et al., 2023).
Interestingly, some bacterial species have demonstrated the ability to
either degrade nanoplastics or utilize them as a substrate. This
interaction can significantly affect microbial community dynamics
and nutrient cycling in aquatic environments (Wang et al., 2023). Such
changes are crucial, as they may influence the biogeochemical
processes that underpin ecosystem services. Fungi, as essential
microorganisms, play vital roles in nutrient cycling and overall
ecosystem functioning. Certain fungal species have shown remarkable
abilities to degrade various plastics, making them promising
candidates for bioremediation strategies (Rodrigues et al., 2019; Ryu
etal., 2020). Their significance in plastic biodegradation is attributed
to their capacity to secrete a diverse array of degrading enzymes,
which catalyze the conversion of complex plastic polymers into
simpler, more manageable compounds. This enzymatic activity
facilitates the oxidation or hydrolysis of plastics, resulting in the
formation of functional groups that increase hydrophilicity.
Consequently, high molecular weight plastics can be transformed into
lower molecular weight compounds that fungi can readily assimilate
(Temporiti et al., 2022; Ibrahim et al., 2024; Yang et al., 2024). Some
fungi exhibit the ability to effectively degrade specific plastics within
just a few days, underscoring their efficiency in addressing plastic
pollution (Ibrahim et al., 2024).

Despite their beneficial potential, it is essential to recognize that fungi
are not exclusively advantageous. Invasive fungal species contribute to an
estimated 2.5 million human fatalities each year (Denning, 2024). Among
these, Cryptococcus neoformans, Aspergillus fumigatus, Candida albicans,
and Candida auris have been identified by the World Health Organization
(WHO) as some of the most dangerous pathogenic fungi to humans
(Kriegl et al,, 2024). As research increasingly investigates the interactions
between fungi and nanoplastics, it becomes crucial to evaluate how these
plastic nanoparticles impact fungal physiology and pathogenicity. The
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adsorption of nanoplastics onto fungal cell surfaces may lead to alterations
in physiological functions, potentially affecting ecological roles and
interactions with other organisms. Furthermore, the presence of
nanoplastics may influence the metabolic pathways of fungi, leading to
changes in their enzymatic profiles and nutrient assimilation capabilities.
This could result in both positive and negative outcomes, depending on
the specific context and species involved. For example, while some fungi
might enhance their plastic-degrading capabilities in response to
nanoplastic exposure, others may experience detrimental effects that
impair their metabolic functions and ecological interactions. The ability
of fungi to adapt to the presence of nanoplastics raises important
questions concerning their potential virulence and antifungal resistance,
particularly in human pathogenic species. The alterations in fungal
physiology due to nanoplastic interactions could lead to an increased
expression of virulence factors or enhanced resistance mechanisms
against antifungal agents. Understanding these dynamics is crucial for
developing effective strategies to combat both plastic pollution and
fungal infections.

This review aims to provide a comprehensive examination of
the relationships between nanoplastics and fungi by systematically
analyzing the mechanisms of plastic degradation by fungi, their
metabolic pathways, and physiological adaptations. Additionally,
it will address the potential implications for virulence and
antifungal resistance in human pathogenic fungi. By elucidating
these complex interactions, this review seeks to contribute to the
broader understanding of how nanoplastics impact fungal
communities and their ecological roles, as well as to inform
strategies aimed at mitigating the dual threats of plastic pollution
and fungal diseases.

2 The role of fungi in plastic
degradation

Fungi play a pivotal role in the degradation and assimilation of
various plastic materials (Figure 1), including polyethylene,
polystyrene, and polyvinyl chloride (Maity et al., 2021; Cowan et al.,
2022; Vaksmaa et al., 2023). Certain fungal species have demonstrated
the remarkable capacity to degrade specific plastics within a matter of
days, highlighting their potential for addressing plastic pollution
(Okal et al., 2023).

Plastic material

3 :>

Biofragmentation

extracellular enzyme

FIGURE 1
Schematics of fungal degradation process.
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The advantages of fungal degradation can be summarized into
three key points:

2.1 Enhanced substrate penetration

The apical growth pattern of filamentous fungal mycelia enables
these organisms to penetrate soil substrates more effectively than
bacteria. This capability is attributed to their secretion of extracellular
enzymes and hydrophobic proteins, which enhance their adhesion to
hydrophobic substrates (Sanchez, 2020). Such penetration is
particularly pronounced in soil environments where saprotrophic
fungi thrive (Dix et al., 1995).

2.2 Diverse enzymatic machinery

Fungi possess a wide range of non-specific enzyme cassettes
(Aranda, 2016; Deshmulkh et al., 2016), which equip them to degrade
and utilize hydrocarbons and aromatic compounds found in plastics
as carbon and energy sources. Secreted fungal enzymes, including

TABLE 1 Key fungal groups and their enzymatic roles in plastic degradation.
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lignin peroxidase, manganese peroxidase, laccase, and polyesterase
(Table 1), facilitate the oxidation or hydrolysis of plastic polymers,
leading to the formation of functional groups that increase
hydrophilicity. This enhanced hydrophilicity promotes the breakdown
of high molecular weight plastics into lower molecular weight
compounds that fungi can readily assimilate. Additionally, various
internal factors within fungal cells can induce pro-oxidant ions, which
promote degradation through oxidative reactions, particularly
through the generation of reactive oxygen species. Hydroxyl radicals,
recognized for their high redox potential, are particularly effective
oxidants in this context (Backa et al., 1993; Lawton and Robertson,
1999). This oxidative mechanism enables fungi to participate in the
degradation of a variety of recalcitrant pollutants, including
hydrocarbons, chlorophenols, and pesticides (Young et al., 2015;
Deshmukh et al., 2016; Hasan, 2018).

2.3 Adaptability to diverse environment

Fungi exhibit remarkable adaptability, enabling them to utilize
nearly any organic carbon source and thrive in conditions

Genus Representative species Enzymes Features References
Ganoderma lucidum; G. Lignin peroxidase, manganese Degradation of plastics and other
Ganoderma Mir-Tutusaus et al. (2018)
applanatum peroxidase, laccase, polyesterase organic materials
Capable of degrading polylactic
Cellulases, lignin peroxidase, acid (PLA), polyethylene (PE), Espinosa-Valdemar et al. (2011);
Pleurotus Pleurotus abalones; P. ostreatus
manganese peroxidase, laccase polypropylene (PP), and polyester Odigbo et al. (2023)
plastics such as PET
Wolski et al. (2012); Ogunmolu
Penicillium chrysogenum; P. Polyesterases, esterases, ligninases, Degradation of plastics such as
Penicillium etal. (2015); Sowmya et al.
Sfuniculosum; P. simplicissimum; cellulases, phenol oxidase polyurethane and polyethylene (2015)
A - Aspergillus niger; A. oryzae; A. Esterases, polyesterases, cellulases, Capable of degrading polyester Maeda et al. (2005); El-Dash
spergillus
pers fumigatus phenol oxidase, ligninases plastics, such as PET etal. (2023); Safdar et al. (2024)
Polyesterases, esterases, oxidases, Capable of degrading polyester Marchut-Mikolajczyk et al.
Mucor Mucor circinelloides; M. hiemalis
cellulases plastics (2015); Al Mousa et al. (2022)
Effective in plastic degradation,
Lignin peroxidase, manganese Arora and Sandhu (1984);
Trametes Trametes versicolor; T. hirsuta especially for polymers like
peroxidase, laccase, polyesterase Vr$anska et al. (2017)
polyurethane and polyethylene
Lignin peroxidase, manganese Degradation of lignin and certain
Phanerochaete Phanerochaete chrysosporium Kersten and Cullen (2007)
peroxidase, laccase, polyesterase plastics
Covino et al. (2010); Zavarzina
Lignin peroxidase, manganese Effective in degrading lignin and
Lentinus Lentinus edodes; L. tigrinus et al. (2018); Kobayashi et al.
peroxidase, laccase, cellulase some synthetic materials
(2023)
Cladosporium Cladosporium sp. P7 Cutinase (CpCutl) Polyurethane degradation Liu et al. (2024)
Alternaria Alternaria alternata FB1 Peroxidase, laccase Polyurethane degradation Gao et al. (2022)
Laccase, lipase, esterase, manganese Degradation of low density
Penicillium P, citrinum Khan et al. (2023)
peroxidase polyethylene
Malassezia Malassezia species Depolymerase, lipase Degradation of Polyvinyl Chloride | El-Dash et al. (2023)
Degradation of low density
Cladosporium Cladosporium sp. CPEF-6 Laccase Gong et al. (2023)
polyethylene
Clonostachys Clonostachys rosea Cutinases Degradation of polycaprolactone Gambarini et al. (2025)
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characterized by low humidity, nutrient scarcity, and acidic pH levels
(Case et al., 2025). Some species can endure dry periods through a
state of cryptobiosis (Magan, 2007; Mancera-Lopez et al., 2008). The
metabolic pathways within fungi are mediated by cytochrome P450
(CYP) monooxygenases (EC:1.14.13.12), which facilitate the oxidation
of substrates in microsomes (Durairaj et al., 2015; Asemoloye et al.,
2019). These enzymes belong to the heme-protein superfamily and are
involved in various biological processes, including adaptation to
environmental stress, toxin production, and the metabolism of both
endogenous and xenobiotic compounds, thereby enhancing fungal
fitness (Bernhardt, 2006; Van Beilen and Funhoft, 2007; Kelly et al.,
2009; Moktali et al., 2012). CYP monooxygenases typically function
as terminal oxidases in the electron transfer chain associated with
NADPH reductase, facilitating the incorporation of an oxygen atom
into the hydrocarbon chain of nanoplastics while reducing the other
oxygen atom to water (Chen et al., 2014). The number of CYP genes
varies according to the lifestyle of the fungal species; yeasts and yeast-
like fungi possess relatively few CYPs (e.g., three in Saccharomyces
cerevisiae, six in C. neoformans, and 10 in C. albicans), while
filamentous fungi typically harbor a greater number of CYP genes, as
exemplified by Aspergillus spp. with 79 genes and Agaricus bisporus
with 109 (Doddapaneni et al., 2013; Dauda et al., 2022). As a result,
plastic-degrading fungi are predominantly filamentous species
(Table 1), including Ganoderma lucidum, Pleurotus abalone,
Penicillium chrysogenum, and Aspergillus niger (Wolski et al., 2012;
Mir-Tutusaus et al., 2018; Odigbo et al., 2023; Safdar et al., 2024).
Ekanayaka et al. assessed 395 filamentous fungal strains from the
Ascomycota and Basidiomycota phyla, identifying over 200 species
capable of degrading various plastics under diverse environmental
conditions (Ekanayaka et al., 2022). Their findings revealed that fungi
such as Aspergillus tubingensis effectively disrupt the chemical bonds
within plastic molecules and successfully colonize plastic surfaces
(Ekanayaka et al., 2022). Numerous plastic-degrading fungi have been
isolated from both terrestrial and marine environments (Viel et al.,
2023), including Trichoderma sp., Clitocybe sp., Monascus sp., and
Phanerochaete sp., which enhance the degradation of polyethylene
(both LDPE and HDPE), polylactic acid, polyurethanes, polyethylene
terephthalate, and bisphenol A polycarbonate (Artham and Doble,
2010; EI-Morsy et al., 2017; Ojha et al., 2017; Satti et al., 2017; Janczak
et al., 2018; Munir et al., 2018). Marine environments have yielded
marine yeasts such as Rhodotorula mucilaginosa, Zalerion maritimum,
Alternaria alternata, Penicillium spp., and Aspergillus sp., which
significantly facilitate the degradation of polyethylene and polystyrene,
contributing to healthier ecosystems by reducing plastic waste (Ameen
et al.,, 2015; Sarkhel et al., 2020; Gao et al., 2022; Vaksmaa et al., 2023;
do Pago, A.M.S., 2024). Overall, the capacity of fungi to degrade
plastics presents a promising avenue for bioremediation strategies
aimed at mitigating the environmental impacts of plastic waste.
Advances in the exploration of fungal enzymes, along with genetic
engineering techniques, could enhance biodegradation processes and
contribute to sustainable waste management practices.

2.4 The impact of nanoplastics on fungal
physiology and pathogenicity

Nanoplastics possess unique physical properties, including an
increased surface area, specific transport characteristics, and
distinctive interactions with light and natural colloids (Gigault et al.,
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2021). The larger surface area enhances the adsorption capacity of
nanoplastics for natural organic matter in the environment (Liu et al.,
2022). Adsorption predominantly occurs through chemical bonding
on certain types of nanoplastics, facilitated by ligand exchange
mechanisms with oxide nanoplastics. This interaction reduces surface
hydrophobicity, increases interactions among plastic particles, and
affects their aggregate size (Junaid and Wang, 2021). Furthermore, the
presence of electron-attracting groups within the aromatic rings of
nanoplastic polymers facilitates strong z—m interactions, contributing
to their exceptional ion adsorption properties (Hiiffer and Hofmann,
2016; Wang et al., 2020). The substances adsorbed onto nanoplastics
can interact with extracellular polymers secreted by fungal cells,
potentially enveloping the nanoplastics in a unique layered structure
referred to as the eco-corona. This eco-corona can significantly alter
the dynamics between nanoplastics and fungi (Liu et al., 2022). Fungal
cell wall thickness typically ranges from 0.1 to 1.0 micrometers, and
the formation of an ecological corona layer on these walls is contingent
upon the abundance and physicochemical properties of biomolecules
and plastic particles. The stability of this layer is influenced by
hydrogen bonds, van der Waals forces, hydrophobic interactions, and
other high-energy chemical or adhesive forces (Liu et al., 2022).
Research indicates that the zeta potential of fungal cell walls is highly
responsive to environmental conditions, generally fluctuating between
—14and —15 millivolts (Ramos et al., 2020). Changes in environmental
pH, along with varying concentrations of ions and proteins, can
promote heteroaggregation, which may consequently alter the zeta
potential (Mikolajczyk et al., 2015). Exposure of fungal cells to
nanoplastics may modulate the zeta potential of their cell walls,
thereby affecting their functional integrity and potentially contributing
to the toxicity of extracellularly secreted enzymes.

The fungal cell wall serves as the outermost layer, directly
interacting with the external environment and playing a critical role
in various physiological and ecological functions. It is a primary target
for antimicrobial agents and the immune system, requiring a delicate
balance of strength and flexibility to provide protection while
facilitating nutrient uptake, membrane vesicle exchange, and external
signal reception (Gow and Lenardon, 2023). Previous studies have
shown that polymeric particles ranging from 100 nm to 300 nm do
not penetrate the cell walls of pathogenic fungi, such as A. fumigatus
and C. albicans (Orasch et al., 2023). Thus, it can be proposed that
nanoplastics exceeding 100 nm primarily interact with the surfaces of
fungal cell walls, impacting the outer wall polymers and glycoproteins
associated with the chitin and f-glucan-based inner wall skeleton.
This interaction could disrupt spatial organization and dynamic
regulatory functions, impairing the fungal ability to effectively
respond to changes in growth conditions and potentially leading to
toxicity. Interestingly, certain filamentous fungi may induce a “dusting
effect) wherein high concentrations of nanoplastics allow initially
colonizing hyphae to adsorb or internalize these particles into
vacuoles, subsequently metabolizing them into less toxic forms. This
adaptive response may mitigate toxicity to later-growing hyphae,
thereby promoting favorable conditions for fungal proliferation
(Mafla-Endara et al., 2023). Previous research in bacterial systems has
demonstrated that nanoplastics with diameters of 60 nm can penetrate
cells, accumulating internally and enhancing the generation of ROS,
which impose stress on bacterial cells and significantly inhibit their
growth (Dai et al,, 2022). It is plausible that nanoplastics of similar
sizes may also compromise pathogenic yeast cells, such as
C. neoformans, given that ROS can modulate the expression of
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virulence factors, including capsule and melanin production
(Zaragoza et al., 2008; Momin and Webb, 2021). The toxicological
impact of nanoplastics on fungal cells is multifaceted, encompassing
redox imbalances, membrane damage, immune responses, and
genotoxic effects, which can induce various forms of cellular injury
simultaneously. Collectively, nanoplastics have the potential to
significantly alter the physiological states of fungi, highlighting the
urgent need for further research to elucidate the complex interactions
and effects of nanoplastics on fungal ecology.

2.5 Potential effects of nanoplastics on
fungal drug resistance

The development of antifungal agents faces significant challenges
due to the shared eukaryotic structures and metabolic pathways
between humans and fungi, resulting in limited therapeutic options.
Fungal infections are increasingly exhibiting resistance to conventional
antifungal drugs, with the efficacy of existing treatments, such as
azoles and polyenes, diminishing in clinical settings. According to
data from the Centers for Disease Control and Prevention, drug-
resistant fungal infections were responsible for at least 35,900 deaths
in the United States in 2019 (Prevention, 2019). This resistance
typically arises through natural selection, often driven by genetic
mutations or gene transfer that confer additional resistant traits.
Notably, fungi are sensitive to chemical toxicity and demonstrate rapid
responses to environmental changes (Shruti et al., 2023). Recent
studies suggest that nanoplastics may play a critical role in promoting
antifungal resistance through several mechanisms. For instance,
exposure to nanoplastics can trigger stress responses and adaptive
mechanisms in fungi. In response to nanoplastic exposure, fungi may
activate defense pathways, including oxidative stress responses and
efflux pumps, which enhance their resistance to antifungal drugs. For
example, Lactarius deliciosus exhibits oxidative stress in the presence
of polystyrene, leading to increased secretion of organic acids and
enhanced absorption of phosphorus and potassium, although growth
is inhibited at high concentrations (Zhang and Gao, 2023). Moreover,
exposure to nanoplastics has been shown to augment the secretion of
extracellular enzymes in fungi, including p-glucosidase, glycine
aminopeptidase, and phenol oxidase, thereby altering the community
structure (Du et al., 2022). Similar observations in bacterial studies
indicate that polystyrene exposure induces oxidative stress, leading to
increased synthesis of glutathione and enhanced activity of the
tricarboxylic acid (TCA) cycle, as well as of efflux pumps, which
subsequently promote growth and resistance in Escherichia coli (Fang
etal, 2023; Liu et al., 2023). Nanoplastics may also induce oxidative
damage within fungal cells. For instance, low-density polystyrene has
been shown to alter the membrane composition of Trichoderma
harzianum, resulting in increased membrane permeability and
enhanced activities of ROS, superoxide dismutase (SOD), and catalase
(CAT) (Jasinska and Rozalska, 2022). Recent findings from our
research indicate that exposure to nanoplastics can induce ROS
production in C. neoformans, disrupting normal cellular functions
(unpublished data). Such oxidative damage may drive fungi to develop
resistance through mutations or other adaptive changes that enhance
their chances of survival. Moreover, fungal mitochondria play vital
roles not only in cellular energy metabolism and oxidative stress
responses but also in significantly influencing the activity and
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expression of drug efflux pumps (Black et al.,, 2021; Ma et al., 2025).
Given that nanoplastics have been shown to induce mitochondrial
damage in human cells (Lin et al., 2022), it is plausible to hypothesize
that they could similarly affect mitochondrial function in fungi.
Opverall, the interaction of nanoplastics with fungi has the potential to
significantly impact drug resistance (Figure 2). The multifaceted stress
responses triggered by nanoplastics may not only enhance the ability
of fungi to withstand antifungal agents but also promote the evolution
of resistance mechanisms. These findings underscore the need for
further research to elucidate the complexities of nanoplastic
interactions and their implications for fungal pathogenicity and
treatment strategies.

3 Conclusions and future perspectives

The intricate interactions between nanoplastics and fungi present a
dual-edged sword for environmental science and public health. As
emerging pollutants, nanoplastics have demonstrated significant effects
on fungal physiology, including alterations in metabolic pathways,
physiological responses, and even virulence factors. The ability of
certain fungal species to degrade plastics offers promising avenues for
bioremediation, yet the presence of nanoplastics complicates these
interactions by influencing fungal physiological functions and
potentially enhancing antifungal resistance mechanisms. This review
highlights the necessity for a deeper understanding of the multifaceted
relationships between nanoplastics and fungi. The evidence indicates
that while fungi have the ability to degrade plastic, exposure to these
pollutants may concurrently promote adaptations that enhance their
resistance to antifungal agents. This paradox emphasizes the urgency of
investigating the mechanisms underlying these interactions, as they
could have far-reaching implications for both ecological health and
clinical outcomes in fungal infections. Future research should focus on
several key areas to elucidate the complex dynamics of
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FIGURE 2
Schematic illustrating mechanisms of antifungal resistance
potentially induced by nanoplastics.
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nanoplastic-fungi interactions. Firstly, studies should aim to identify the
specific molecular pathways activated in fungi upon exposure to
nanoplastics, particularly regarding oxidative stress responses and
enzymatic adaptations. Recent advancements in image analysis
demonstrate how end-to-end image analysis and data fusion can
provide high throughput and objective phenotyping (Igbal et al., 2020;
Igbal et al., 2025), and can be adapted to quantify subtle, exposure-
dependent morphological shifts in hyphae, spores, and biofilms.
Secondly, the ecological impact of these interactions on fungal
communities in various environments, including terrestrial and aquatic
ecosystems, warrants further exploration. Long-term studies are
essential to assess the implications of chronic nanoplastic exposure on
fungal diversity and function. Additionally, advancing our
understanding of the link between nanoplastic exposure and antifungal
resistance mechanisms is critical. Investigating the potential for genetic
mutations and horizontal gene transfer in fungi exposed to nanoplastics
could provide insights into the development of resistance traits. This
knowledge is particularly vital given the rising incidence of drug-
resistant fungal infections that pose substantial public health threats. In
conclusion, while the potential of fungi in bioremediation strategies
remains promising, the challenges posed by nanoplastics necessitate a
comprehensive investigation into their effects on fungal physiology and
ecology. By addressing these research gaps, we can develop more
effective strategies for managing plastic pollution and mitigating the
associated risks to human health and the environment. Continued
interdisciplinary collaboration will be crucial in paving the way for
innovative solutions to combat the dual challenges of plastic pollution
and fungal diseases.
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