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Introduction: Acinetobacter baumannii (A. baumannii) is a major pathogen
responsible for hospital-acquired bloodstream infections, with multidrug-resistant
(MDR) strains posing severe therapeutic challenges. Neonates are particularly
vulnerable, with infections often associated with high morbidity and mortality.
Thisstudy aimed to compare the genomic and phenotypic characteristics of A.
baumannii isolates from children and adults.

Methods: A total of 77 blood isolates of A. baumannii were collected, including
42 from children and 35 from adults. Antimicrobial susceptibility testing against
14 agents was performed. Whole-genome sequencing (WGS) was used for
multilocus sequence typing (MLST), antimicrobial resistance gene and virulence
gene detection, and phylogenetic analysis based on core-genome single-
nucleotide polymorphisms (SNPs). Key resistance mechanisms (p-lactamase
production and multidrug efflux pumps) and virulence factors (porins,
lipopolysaccharides, metal acquisition systems, and secretion systems) were
examined.

Results: Carbapenem resistance was significantly higher in pediatric isolates
(97.6%) compared with adult isolates (65.7%). Adult isolates exhibited greater
diversity in OXA-type carbapenemases. Virulence gene analysis revealed
widespread distribution of porins, lipopolysaccharide synthesis genes, metal
acquisition systems, and type VI secretion system components in both groups,
with a higher detection rate in pediatric isolates. The majority of isolates
belonged to ST2 (89.6%) and carried the blaOXA-23 gene, while ST466 and ST57
were exclusively identified in adult isolates.

Conclusion: These findings demonstrate age-related differences in the resistance
and virulence profiles of A. baumannii bloodstream isolates. Pediatric isolates
exhibited higher carbapenem resistance and virulence gene prevalence, whereas
adult isolates showed greater clonal diversity. This comparative analysis enhances
understanding of A. baumannii pathogenesis across age groups and provides
insights for guiding empirical therapy and strengthening infection control strategies.
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Introduction

Acinetobacter baumannii (A. baumannii), a Gram-negative
opportunistic pathogen, is a major cause of hospital-acquired infections,
including pneumonia, bloodstream infections (BSIs), urinary tract
infections, and meningitis (Papazachariou et al., 2024). Notably, the
carbapenem resistance rate of A. baumannii in China has shown a
consistent upward trend in recent years, with infections caused by
carbapenem-resistant A. baumannii (CRAB) being associated with
persistently high mortality rates (Xu et al., 2018). This organism has
emerged as a critical global threat due to its role in multidrug-resistant
(MDR) nosocomial infections (Cherubini et al., 2022). Among Gram-
negative bacterial infections, BSIs represent one of the most severe
clinical presentations, with morbidity and mortality rates further
exacerbated by the growing prevalence of MDR pathogens (Aydin Teke
et al,, 2017; Diekema et al., 2019). Surveillance data from U. S. intensive
care units (ICUs) indicate that A. baumannii BSIs carry a crude mortality

rate of 34%, ranking third among bacterial BSIs in lethality (Wisplinghoff

et al,, 2000). Although community-acquired bloodstream infections
caused by A. baumannii remain relatively rare, outbreaks among
immunocompromised populations have been documented, often
leading to poor clinical outcomes (Chen et al., 2018). Of particular
concern is the heightened vulnerability of infants admitted to the
neonatal intensive care unit (NICUs), who face prolonged and extensive
exposure to antibiotics and the hospital environments, resulting in a 30%
mortality rate associated with MDR Gram-negative bacterial (MDR-
GNB) colonization and infection (Folgori et al., 2018; Stapleton et al.,
2016; Hartz et al,, 2015). This underscores the necessity for targeted
infection prevention measures in this high-risk population. Current
research on A. baumannii predominantly focuses on antimicrobial
resistance patterns or hospital transmission dynamics within single
patient group, leaving underexplored the comparison between adult and
pediatric BSI isolates.

Specifically, systematic investigations into resistance gene profiles,
virulence factor distributions, and strain phylogeny remain scarce,
directly impeding the development of precision treatment protocols
and optimized infection control measures. To address this,
we analyzed clinical data and whole-genome sequencing results from
77 BSI isolates collected at our institution. By employing molecular
epidemiological approaches, this study systematically compares
antimicrobial resistance traits, virulence gene profiles, and clonal
relatedness between adult and pediatric A. baumannii strains, aiming
to generate evidence-based guidance for clinical antimicrobial therapy
and hospital infection control.

Materials and methods
Strain selection

Clinical data and whole blood samples from patients with
A. baumannii BSIs were collected prospectively from the Departments
of Laboratory Medicine at Shanghai Children’s Medical Center and
the Second Affiliated Hospital of Nanjing Medical University between
2018 and 2024. The cohort comprised 42 pediatric patients (aged from
1 month to 13 years) and 35 adult patients (predominantly elderly
individual ssuffering from complications such as kidney disease,
diabetes, hypertension, or heart disease). All isolates were transferred
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to the clinical microbiology laboratory and analyzed according to the
Clinical and Laboratory Standards Institute (CLSI) guidelines. Only
one A. baumannii strain per patient was included in the study.

Strain identification

Allisolates were collected from Nanjing Medical University Second
Affiliated Hospital and Shanghai Children’s Center between 2016 and
2024. Positive blood culture samples were streaked on blood and
chocolate agar plates (Comag, Shanghai, China) and incubated at 37 °C
in 5% CO, for 18-24 h. Distinct colonies were examined for morphology,
hemolysis, and growth on chocolate agar, and confirmed as Gram-
negative bacilli by Gram staining. Species identification was performed
using matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS; Smart MS database), following the
manufacturer’s guidelines. Only isolates with identification scores >2.0
were included for antimicrobial susceptibility testing and molecular
analysis. Escherichia coli ATCC 8739 served as the quality control strain.

Antimicrobial susceptibility testing

All isolates underwent antibiotic susceptibility testing using the
Vitek-2 Compact system with the VITEK 2 AST-N335 susceptibility
card (Menier, France). The minimum inhibitory concentrations
(MICs) of 15 antibiotics were determined via the microbroth dilution
method, following CLSI-M100 guidelines (Ii et al., 2023). Tested
antibiotics included: Piperacillin/Tazobactam (TZP), Ceftazidime
(CAZ), Cefoperazone/Sulbactam (CAS), Cefepime (FEP), Imipenem
(IPM), Meropenem (MEM), Amikacin (AMK), Tobramycin (TOB),
Gentamicin (GEN), Ciprofloxacin (CIP), Levofloxacin (LEV),
(TGC), (PB), Sulfamethoxazole/
Trimethoprim (SXT) Isolates were stored at —80 °C for further analysis.

Tigecycline Polymyxin B

Bacterial whole-genome sequencing

Whole-genome sequencing was performed on all 77 isolates. Using
high-quality DNA samplesto construct fragment libraries. Sequencing
was completed by Shanghai Biozeron Biotechnology Co., Ltd. (Shanghai,
China). According to the standard genomic DNA library preparation
protocol, paired-end libraries with insert fragment sizes of approximately
400 bp were prepared. After the library passes quality control, the
different libraries are pooled according to the requirements of effective
concentration and target sequencing data volume, then subjected to
next-generation sequencing. The basic principle of sequencing is
sequencing by synthesis. Four types of fluorescently labeled dNTPs,
DNA polymerase, and adapter primers are added in the sequencing flow
cell for amplification. The sequencer captures the fluorescence signal and
uses computer software to convert the light signal into sequencing peaks,
thereby obtaining the sequence information of the fragment to be tested.

Multilocus sequence typing

The FASTQ format generated from the whole-genome sequencing
results of 77 A. baumannii isolates was used for subsequent analysis.
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For sequence type (ST) determination, the filtered FASTQ files of each
isolate were uploaded to the PubMLST online platform' and analyzed
using the A. baumannii Pasteur multilocus sequence typing (MLST)
scheme. This scheme characterizes isolates by identifying the allelic
profiles of seven housekeeping genes: gltA, gyrB, gdhB, recA, cpné0,
gpi, and rpoD.

Core genome SNP phylogenetic tree

Using Parsnp (v1.2) to construct the core genome single-
nucleotide polymorphism (SNP) phylogenetic tree of the strains.
Among them, strains A-ab24, A-ab2530, A-ab255, A-ab3322,
A-ab3592, A-ab4388, and C-ab34 are genetically distant from the
other 70 strains and were not included in the construction of the core
genome SNP phylogenetic tree. The tree was visualized and annotated
using the Interactive Tree of Life (iTOL) platform.

Drug resistance gene

Antimicrobial resistance genes (ARGs) were annotated using the
Comprehensive Antibiotic Resistance Database (CARD) and
Resistance Gene Identifier (RGI). CARD provides annotations and
functional information about antibiotic resistance genes, while RGI is
primarily used to detect and predict genes related to antibiotic
resistance in bacterial genomes or transcriptomes.

Virulence gene profiling

Virulence factors were identified via the software DIAMOND
BLASTp (E-value: 1 x 107% Identity: >70%; Coverage: >90%), the
virulence factors of the strain’s genome were identified and analyzed
through the Virulence Factor Database (VFDB)? (Hong et al., 2023).

Statistical analysis

All statistical analyses were conducted using IBM SPSS Statistics
27 (IBM Corp, United States). Categorical variables are presented as
counts (percentages), and continuous variables as mean + standard
deviation (SD). The comparison of categorical variables between
groups was conducted using the chi-square test or Fisher’s exact tests
(categorical variables) or Mann-Whitney U tests (non-normally
distributed continuous variables). Odds ratios (ORs) with 95%
confidence intervals (CI) were calculated. Two-tailed p values <
0.05were considered statistically significant.

1 https://pubmlst.org/
2 http://www.mgc.ac.cn/VFs/
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Results

Univariate analysis comparing pediatric
and adult patients

A classification and univariate analysis was performed on 77
A. baumannii strains identified from blood samples, including 35
from adults and 42 from pediatric patients. Among the pediatric
isolates, 37 (88.1%) originated from the Pediatric Intensive Care Unit
(PICU), while the remaining 4 were from the cardiothoracic and
oncology departments (Table 1). Previous studies have reported that
primary diseases, immunodeficiencies, broad-spectrum antibiotics
use, and invasive procedures increase the incidence of bloodstream
infections in children (Hong et al., 2023). In this study, 15 children
(35.7%) exhibited pneumonia symptoms, 7 children (16.7%) were
diagnosed with leukemia, and 7 children (16.7%) had congenital heart
disease. Additionally, studies have shown that prematurity is an
independent risk factor for carbapenem-resistant A. baumannii
bacteremia (Punpanich et al., 2012). Notably, 25 isolates (59.5%) were
from infants under 1 year old. In contrast, most adult patients were
elderly, with an average age of 70 + 13 years. Fewer patients were from
the ICU (31.4%), and pneumonia was the main manifestation (17.1%).

Antimicrobial resistance profile

Antimicrobial susceptibility testing of 77 isolates of A. baumannii
revealed high rates of resistance to imipenem and meropenem (64,
83.1%) and piperacillin/tazobactam and ciprofloxacin (62, 80.5%),
exceeding 80% (Table 2). Resistance analysis indicated that
A. baumannii isolates exhibited strong resistance to p-lactam
antibiotics, carbapenems, and third-generation cephalosporins. In the
pediatric group, resistance rates for ciprofloxacin, piperacillin/
tazobactam, carbapenems, and third-generation cephalosporins all
exceeded 90%. The resistance rates to imipenem, meropenem, and
ceftazidime reached as high as 97.6% (41 strains). In this study, the
overall resistance rate of A. baumannii to imipenem and meropenem
was 83.1%. Further analysis revealed that the resistance rate to both
antibiotics was significantly higher in the pediatric group (97.6%) than
in the adult group (65.7%) (p < 0.001). These findings indicate a more
severe carbapenem resistance profile in pediatric A. baumannii
infections. Therefore, it can be seen that pediatric isolates
demonstrated higher resistance overall, posing greater risks of
mortality and complications, underscoring the urgency of infection
control measures.

Distribution of antibiotic resistance genes

The resistance gene profiles of A. baumannii isolates from adults
and children were shown in Tables 3, 4. In terms of carbapenem
resistance genes, differences were observed between pediatric and
adult isolates. In the pediatric group, the prevalence of OXA-23
(41/42,97.6%), OXA-66 (39/42, 92.9%), and OXA-167 (40/42, 95.2%)
were exceptionally high. These three genes, are key contributors to the
markedly high imipenem resistance rate (97.6%) in pediatric isolates.
Of particular note is that NDM-1, OXA-58, and OXA-510 were
detected simultaneously in the pediatric isolate C-ab14, but OXA-23
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TABLE 1 Univariate analysis was used to compare the differences of bloodstream infection between the children and adults.

Variables Children

Univariate analysis

OR (95% ClI) P value

Age, mean + SD (years) 2.8+4.0 702 £13.7 <0.001
Male sex (1, %) 28 (66.7) 26 (74.3) 0.69 (0.26-1.87) 0.467
Distribution of departments (n, %)
ICU 37 (88.1) 11(31.4) 16.15 (4.98-52.30) <0.001
Department of Hematology 3(7.14) 7 (20.0) 0.31 (0.07-1.30) 0.183
Thoracic Surgery 2(4.8) 0 1.88 (1.52-2.31) 0.498
Respiratory Medicine Department 0 3(8.6) 2.31 (1.78-3.00) 0.089
Other Departments 0 14 (40.0) 3.00 (2.12-4.25) <0.001
Specimen source (n, %)
Blood 42 (100) 35 (100) 1.20 (0.02-61.89) 1
Comorbidities (n, %)
Pneumonia 15(35.7) 6(17.1) 2.69 (0.91-7.92) 0.068
Leukemia 7 (16.7) 1(2.9) 6.80 (0.79-58.25) 0.065
CHD 7(16.7) 0 15.0 (0.83-273.55) 1

ICU, Intensive Care Unit; CHD, Congenital Heart Disease; OR, Odds Ratio; CI, Confidence Interval. Bold values indicate statistically significant differences (p < 0.001).

was not detected. Multilocus sequence typing (MLST) results suggest
that this strain is a novel ST (ST-). In contrast, adult isolates, while still
carrying a significant proportion of OXA-23 (21/35, 60%), OXA-66
(24/35, 68.6%) and OXA-167 (25/35, 71.4%), exhibited a lower overall
prevalence and a wider diversity of OXA gene types. These included
sporadic detections of novel carbapenemases such as OXA-259,
OXA-421, OXA-500, and OXA-532, suggesting the emergence of new
resistance determinants within the adult population (Table 3). The
high resistance rate of ciprofloxacin in the drug susceptibility test is
consistent (Table 2). This resistance mechanism is related to the
antibiotic efflux pump (Jacoby et al., 2014). The genes monitored
through sequencing mainly belong to the resistance-nodulation-cell
division (RND) antibiotic efflux pump, such as adeL/G, while the abaF
(42/42, 100%) observed in children is a major facilitator superfamily
(MFS) efflux pump, which is the reason for the resistance to
phosphonic acid antibiotics.

Following this, macrolide resistance genes were also commonly
detected, such as macA (77/77, 100%), mphE, and msrE (55/70, 71.4%),
which were prevalent (Table 4). MphE and msrE belong to the msr-type
ABC-F protein and macrolide phosphotransferase gene families,
respectively, and they mediate different resistance mechanisms.

For aminoglycoside antibiotics such as gentamicin, tobramycin,
and amikacin, the distribution among adults and children is highest in
the chart, especially the high resistance rates in children for gentamicin
(35/42, 83.3%) and tobramycin (32/42, 76.2%) (Table 2). These drugs
are contraindicated in children under six due to toxicity, and the
observed high resistance rates further limit their clinical applicability
in pediatric cases, necessitating alternative therapeutic strategies.

Homology and ST typing

The phylogenetic tree shows the evolutionary relationships
among the sample strains (Figure 1). Overall, the strains (C-ab3,
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C-ab85, A-ab599, A-ab3670, A-ab284, A-ab263, C-ab14, A-ab92)
are relatively close in position on the tree, indicating that they are
more closely related phylogenetically, with smaller genomic
differences. Through MLST typing, a total of 11 ST types were
detected (ST119, ST131, ST164, ST2, ST209, ST33, ST396, ST40,
ST466, ST57, ST68), as well as 2 unidentified types (ST-). Among
them, ST131, ST209, ST33, ST396, ST466, and ST57 have not
been reported in the literature; ST2 (62/77, 80.5%) accounted for
the highest proportion in all samples and carry blaoxa .
We isolated an ST164 strain from blood, which carried blagyx,.»;
and blaox, o1, and the plasmid carried tet (39). Additionally, ST33
and ST40 types were relatively concentrated on the phylogenetic
tree, forming independent evolutionary branches. On the other
hand, the ST-type strains could not match any known types in the
existing database, possibly representing new ST types or those
not yet included in the database, requiring further research to
determine their genetic background.

Virulence gene analysis

Conduct virulence gene profiling analysis of A. baumannii
isolates from children and adults to evaluate genes associated
with key virulence factors such as fimbriae, biofilm formation,
lipopolysaccharide synthesis, iron acquisition, and type IIT and
type VI secretion systems (Figure 2). All strains contain the
Outer Membrane Protein A (ompA) gene (77/77, 100%), which is
an important virulence factor mediating antibiotic resistance,
biofilm formation, and host interactions (Mortensen and Skaar,
2012; Scribano et al., 2024). The gene deletion portions shown in
the figure mostly come from the Csu pili (csuA/B (66/77, 85.7%),
csuC, csuD, csuE) and hep/tssD (60/77, 77.9%) genes (Table 4).
Analysis of the T6SS components hcp/tssD showed that these
genes are dispersed, with 7 strains (16.7%) in children and 5
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TABLE 2 Antimicrobial susceptibility of Acinetobacter baumannii lsolates.

10.3389/fmicb.2025.1684049

Antimicrobial Resistance, n (%) P value

Total (n = 77) Children Adults (n=35) P (CvsA) P(CvsT) P(AvsT)

(n =42)

Piperacillin/tazobactam 62 (80.5) 39(92.9) 23 (65.7) 0.003 0.073 0.090
Ceftazidime 53 (68.8) 41 (97.6) 12 (34.3) <0.001 <0.001 <0.001
Cefoperazone/sulbactam 37 (48.1) 29 (69.0) 8(22.9) <0.001 0.028 0.012
Cefepime 63 (81.8) 40 (95.2) 23 (65.7) <0.001 0.040 0.061
Imipenem 64 (83.1) 41 (97.6) 23 (65.7) <0.001 0.019 0.040
Meropenem 64 (83.1) 41 (97.6) 23 (65.7) <0.001 0.019 0.040
Amikacin 9(11.7) 8 (19.0) 1(2.9) 0.065 0.273 0.245
Tobramycin 47 (61.0) 32(76.2) 15 (42.9) 0.003 0.095 0.073
Gentamicin 49 (63.6) 35(83.3) 14 (40.0) <0.001 0.024 0.019
Ciprofloxacin 62 (80.5) 39 (92.9) 23 (65.7) 0.003 0.073 0.090
Levofloxacin 38 (49.4) 29 (69.0) 9(25.7) <0.001 0.038 0.019
Tigecycline 1(1.3) 0 1(2.9) 0.455 1 0.529
Polymyxin B 1(1.3) 1(2.4) 0 1 1 1
Sulfamethoxazole/ 46 (59.7) 37(88.1) 9(25.7) <0.001 0.001 <0.001
trimethoprim

Cvs A, Comparison between adults and children; C vs T, Children compared with the total; A vs T, Adults compared with the total.

TABLE 3 Prevalence of acquired blaoys genes in children and adult A.
baumannii isolates.
Children (n, %)

blacxa-like genes Adults (n, %)

detected

OXA-23 41(97.6) 21 (60.0)
OXA-64 0 1(29)
OXA-66 39 (92.9) 24 (68.6)
OXA-69 1(24) 0
OXA-96 1(2.4) 0
OXA-106 0 1(2.9)
OXA-120 1(24) 0
OXA-167 40 (95.2) 25 (71.4)
OXA-259 0 1(2.9)
OXA-409 0 1(29)
OXA-421 0 2(5.7)
OXA-500 0 1(29)
OXA-502 0 1(29)
OXA-510 1(2.4) 0
OXA-532 0 1(29)

strains (14.2%) in adults missing them. In addition, this study
detected the presence of the rmIB gene in three pediatric and
three adult isolates. Vertically, the pilA (62/77, 80.5%) deletions
were concentrated in a few larger branches of bacteria (Figure 2),
which are fimbrial-related genes. The expression of the pilA gene
aids in the adhesion and colonization of A. baumannii during the
early stages of infection, thereby enhancing its pathogenicity
(Cerqueira et al., 2014).
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Discussion

Population-based BSI surveillance projects from various regions
indicate that Escherichia coli and Staphylococcus aureus are the two most
common BSI pathogens, with estimated incidence rates of 35/100,000
and 25/100,000, respectively (Diekema et al., 2019). However, in the past
5 years, the clinical significance of A. baumannii as a nosocomial
pathogen has been increasing, with isolation rates as high as 20-40% in
hospital-acquired BSI cases (Yang et al., 2019; Wareth et al., 2020).
Patients with A. baumannii BSI are more often hospitalized in ICU and
more frequently receive mechanical ventilation. In this study, compared
to adults, 88.1% of Abn-BSI pediatric came from the PICU. Among the
45 Abn-BSI pediatric, 35.7% (15/45) had pneumonia, and 16.7% (7/45)
had acute leukemia and congenital heart disease. The underdevelopment
of the immune system and immature immune defense functions in
neonates are significant factors leading to bloodstream infections,
resulting in a higher incidence rate (Hong et al., 2023). 31.4% (11/35) of
the adults came from the ICU, with an mean age of approximately
70 years. The clinical diagnoses were mostly severe pneumonia,
malignant tumors, or post-brain surgery, indicating a higher prevalence
of underlying diseases.

The rapid development of antibiotic resistance and/or multidrug
resistance patterns has attracted global attention (Nogbou et al., 2022),
with significant differences in the sensitivity to antimicrobial agents
and the infection rates in epidemics (Table 1). Our data show that the
resistance rate to carbapenem antibiotics is as high as 83.1% for all
strains, which is consistent with the results of earlier studies (Nogbou
et al., 2021). The resistance rates for adults and children are 65.7 and
97.6%, respectively. Several factors may explain this discrepancy: First,
identifying pathogens early in critically ill children is challenging,
making them more likely to receive broad-spectrum antibiotics such
as carbapenems and broad-spectrum cephalosporins as empirical
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TABLE 4 Frequencies of virulence genes and drug resistance genes among A. baumannii isolates in blood samples obtained from adults and children.

A. baumannii (n, %)

(n=77)

Children (n, %)

Adults (n, %)
(n = 35)

p-value

(n =42)

Virulence genes

pilA 62 (80.5) 40 (51.9) 22 (28.6) <0.001
fimV 72 (93.5) 42 (54.5) 30 (39.0) 0.016
gspO/pilD 76 (98.7) 42 (54.5) 34 (44.2) 0.455
csuA/B 66 (85.7) 38 (49.4) 28 (36.4) 0.191
rmlB 6(7.8) 3(3.9) 3(3.9) 1
Drug resistance genes

AAC(E)-Tb’ 24 (31.2) 19 (24.7) 5(6.5) 0.004
Adec 65 (84.4) 40 (51.9) 25 (32.5) 0.004
ADC-73 27 (35.1) 13 (16.9) 14 (18.2) 0.407
APH(")-Ib 23(29.9) 16 (20.8) 7(9.1) 0.084
catB8 27 (35.1) 20 (26.0) 7(9.1) 0.011
Smef 73 (94.8) 42 (54.5) 31 (40.3) 0.039
tet(B) 61(79.2) 39 (50.6) 22 (28.6) 0.001
adeG 75 (97.4) 41 (53.2) 34 (44.2) 1
AAC()-Tb’ 24 (31.2) 19 (24.7) 5(6.5) 0.004
ADC-30 36 (46.8) 26 (33.8) 10 (13.0) 0.004
armA 52 (67.5) 31(40.3) 21(27.3) 0.198
adeC 65 (84.4) 40 (51.9) 25 (32.5) 0.004
arlR 12 (15.6) 2(2.6) 10 (13.0) 0.004
catB8 27 (35.1) 20 (26.0) 7(9.1) 0.011
msrE 55 (71.4) 33 (42.9) 22 (28.6) 0.129
MphE 55 (71.4) 33 (42.9) 22 (28.6) 0.129
cprR 11(14.3) 1(1.3) 10 (13.0) 0.001
mexN 73 (94.8) 41(53.2) 32 (41.6) 0.482
smeF 73 (94.8) 42 (54.5) 31(40.3) 0.039
acrD 74 (96.1) 42 (54.5) 32 (41.6) 0.089
sull 27 (35.1) 20 (26.0) 7(9.1) 0.011
adeL/G 76 (98.7) 42 (54.5) 34 (44.2) 0.455
AbaF 77 (100.0) 42 (54.5) 35 (45.5) 1

Bold values indicate statistically significant differences (p < 0.001).

therapy. Second, children in PICUs—particularly neonates and
infants—possess immature immune systems and frequently require
antibiotics alongside invasive devices like central venous catheters and
ventilators. This environment facilitates bacterial adaptation into
low-metabolism persister populations, which exhibit heightened
resistance to carbapenems and cephalosporins. Resistance gene clusters
are enriched in pediatric isolates. For instance, this study found
pediatric patients frequently carried the blaOXA-23 carbapenemase
gene (97.6%) and OXA-167 (OXA-23-like, 95.2%). Previous studies
have demonstrated that OXA-23-like enzymes are the most prevalent
acquired carbapenemases in A. baumannii, conferring high-level
resistance to carbapenems (Evans and Amyes, 2014), while OXA-51-
like, though intrinsic, can significantly enhance resistance when
combined with insertion sequences such as ISAbal (Chan et al., 2022;
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Brown et al., 2005). It is worth noting that although the imipenem
resistance rate of adult isolates is lower than that of children, adult
isolates exhibit a more diverse spectrum of OXA-type carbapenemases
compared to pediatric isolates such as OXA-259, OXA-409, OXA-421,
OXA-500, OXA-502, and OXA-532. This may stem from heterogeneity
in the genetic background of adult-derived A. baumannii clones within
AbaR/AbGRI-type resistance islands and transposable elements like
ISAbal/Tn2006, which carry different blaoy, genes. This heterogeneity
amplifies the diversity of detectable OXA-type carbapenemases within
the same healthcare facility (Douraghi et al., 2020). Concurrently,
studies indicate that high resistance rates in pediatric ICUs are
primarily driven by the expansion of a single clone, such as GC2,
carrying blaoy, »; and enhanced by upstream expression via ISAbal.
While this increases overall carbapenem resistance rates, it reduces
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FIGURE 1

Phylogenetic tree of 70 isolates. Construct a phylogenetic tree based on whole-genome SNPs using the maximum likelihood method, and display the

source of strains and ST typing on the tree.

OXA-type diversity due to clonal homogeneity (Yousefi Nojookambari
et al, 2021). In addition, we identified a novel sequence type (ST-)
pediatric isolate (C-ab14) harboring NDM-1, OXA-58, and OXA-510
simultaneously, but notably lacking OXA-23. Although previous
reports have documented the coexistence of NDM-1 and OXA-58 in
individual cases (Rodrigues et al., 2024), the combination of these three
carbapenemase genes within a novel ST has not been
previously described.

The resistance rates of A. baumannii to fluoroquinolone
antibiotics vary significantly. Wisplinghoff et al. (2012) reported a
levofloxacin resistance rate of 33.2%, while A. baumannii from a

tertiary hospital in Pretoria, South Africa, showed an 83% resistance
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rate to ciprofloxacin (Nogbou et al, 2021), indicating high
resistance. In contrast, A. baumannii isolated from patients with
nosocomial pneumonia or ventilator-associated pneumonia in a
hospital in Vietnam (Wareth et al., 2021) exhibited resistance rates
exceeding 90% to cephalosporins, fluoroquinolones, and
carbapenems. In comparison, our study shows both similarities and
differences in resistance patterns. The overall resistance rates to
levofloxacin and ciprofloxacin were 49.4 and 80.5%, respectively.
However, subgroup analysis revealed that in pediatric patients, the
resistance rates to levofloxacin and ciprofloxacin were 69 and
92.9%, respectively, while in adult patients, the corresponding rates

were 25.7 and 65.7%.
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It has been determined that tigecycline is suitable for the treatment of
bloodstream infections owing to Gram-negative bacteria (GNB) (Jean
etal, 2022). In our study results, most isolates retained susceptibility to
tigecycline. Polymyxins, although effective, serve as second-line therapies
due to nephrotoxicity and neurotoxicity risks (Nang et al., 2021). The
currently preferred backbone for the treatment of carbapenem-resistant
colistin-resistant A. baumannii is sulbactam. However, the optimal
combination regimen remains unclear. New agents like sulbactam-
durlobactam, a bactericidal p-lactamase inhibitor combination, have
demonstrated promising activity against CRAB, yet their high cost and
limited availability currently restrict routine use (Kaye et al.,, 2023). This
highlights the urgent need for rational antibiotic stewardship.

Virulence factors such as fimbriae associated with biofilm
formation and adhesion are very common in the isolated strains,
indicating their role in bloodstream infections.

According to MLST typing analysis of A. baumannii, we revealed
that ST2 was the predominant clade, accounting for 80.5% (62/77) of
the isolates, all of which carried the carbapenemase gene blaOXA-23.
This clade dominates in bloodstream infections, highlighting its
significance for clinical diagnosis and treatment, and demonstrates
strong adaptability and virulence across different age groups. Sabrina
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etal. (Cherubini et al., 2022) also isolated ST2-type A. baumannii from
patients with bacterial sepsis. Notably, ST2 belongs to the International
Clone (IC2), one of the most common clonal types in global
A. baumannii genome sequencing. Additionally, this study also isolated
a strain of ST164, which also carries the bla-OXA23 carbapenemase
gene. This is a newly emerging carbapenem-resistant A. baumannii that
has attracted global attention (Liu et al., 2024).

The csuA/BCDE operon is essential for fimbriae synthesis in
A. baumannii. Fimbriae are crucial components of mature biofilms,
mediating bacterial adhesion and promoting disease development,
and play a significant role in attachment to abiotic surfaces and biofilm
formation (Ahmad et al, 2023; Ramezanalizadeh et al., 2020).
We found that 87% (67/77) of the strains in the isolates contained the
cus operon, highlighting the importance of biofilm-related genes in
enhancing the pathogenicity of A. baumannii, which is also one of the
factors contributing to its high virulence. The study also found
differences in the prevalence of certain virulence genes between adults
and children. For example, pilA (40/42, 95.2%) was detected more
frequently in pediatric isolates, posing significant challenges to current
CRAB treatment regimens for children (Lee et al,, 2017). In addition,
the rmIB gene was detected in a subset of adult and pediatric isolates.
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This gene, involved in lipopolysaccharide biosynthesis, plays a critical
role in maintaining outer membrane integrity and immune evasion
mechanisms (Li et al., 2022). Its functional role in A. baumannii
bloodstream infections warrants further investigation, especially given
its association with LPS-related immune modulation.

This study primarily analyzed resistance genes and virulence
factors at the genomic level, without further exploring their functional
mechanisms. It also faced limitations such as insufficient sample size.
Future research should also incorporate larger datasets and evaluate
the therapeutic potential of novel agents such as sulbactam-
durlobactam in pediatric CRAB infections.

Conclusion

Overall, this study’s comparative analysis of antibiotic resistance,
genetic, and virulence profiles of 77 strains of A. baumannii isolated
from adult and pediatric blood samples revealed that the Carbapenem
resistance rate in pediatric isolates (97.6%) was significantly higher
than in adults (65.7%). Virulence and resistance genes were detected
at higher rates in children, while oxa-type carbapenemases exhibited
greater diversity in adults. This finding contributes to a deeper
understanding of the pathogenicity of A. baumannii. Concurrently,
the presence of multidrug resistance and virulence factors underscores
the need for new treatment strategies and ongoing surveillance to
address A. baumannii infections in clinical settings.

Importance

A. baumannii is one of the most important pathogens of
hospital-acquired infections, which can cause a variety of clinical
diseases, among which bloodstream infections are more serious and
are characterized by difficulties in treatment and high mortality. In
this study, comparative analyses of antibiotic resistance, virulence
factors, and resistance genes were performed on A. baumannii
blood isolates from children and adult patients. The results showed
that child isolates had higher rates of antimicrobial resistance,
virulence levels, and resistance gene detection than adult isolates;
whereas adult isolates exhibited more diverse OXA-type
carbapenemases. These findings provide new insights into the
differences in disease severity and prognosis following A. baumannii
infection in different age groups, and highlight the importance of
targeted surveillance and optimisation of antimicrobial use in
patients with bloodstream infections.
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