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Marine endophytes are prolific sources of structurally diverse secondary metabolites with 
significant pharmaceutical potential, including anticancer, antimicrobial, and antioxidant 
agents. However, their commercial utilization is hindered by genomic instability in 
axenic cultures and inconsistent metabolite yields. While current studies focus on 
symbiotic interactions and compound discover, critical gaps persist in harnessing their 
biosynthetic capabilities. This review synthesizes knowledge on marine fungal metabolites 
and proposes a paradigm shift toward resource-driven research. It addresses strain 
improvement limitations and suggests strategies like mutagenesis, protoplast fusion, 
and metabolic engineering to bolster production stability and efficiency. The paper 
also discusses biological process optimization, including fermentation tuning, inducer 
and precursor addition, and adsorbent use, to enhance natural product synthesis. 
By identifying these research gaps and proposing a strategic roadmap, the review 
advances the stable and scalable production of bioactive metabolites, unlocking the 
commercial and therapeutic potential of marine endophytic fungi.
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1 Introduction

Marine endophytes, which live within the tissues of their hosts, are ecologically significant 
in the oceanic ecosystem. They engage in a symbiotic relationship with their hosts, influencing 
growth and evolution through complex signal transduction pathways and providing protective 
substances that enhance the host’s survival value (Handayani et al., 2019; Rodriguez et al., 
2009; Dastogeer et al., 2018). Building upon the xenohormesis hypothesis—which proposes 
that heterotrophs sense stress-induced chemical cues from other species to mount preemptive 
defenses—marine endophytes may utilize analogous mechanisms to perceive host-derived 
stress signals. This signaling interplay could trigger adaptive responses in endophytes, 
including the production of bioactive metabolites that synergistically enhance host defense 
(Howitz and Sinclair, 2008). Analogous to the biosynthesis of mycosporine-like amino acids 
(MAAs) in cyanobacteria—stress-induced molecules generated via conserved biosynthetic 
gene clusters that accumulate in marine consumers—metabolite induction in marine 
endophytes likely originates from fungal stress-responsive pathways (Jain et al., 2017). These 
pathways may function independently of host metabolite replication, consistent with 
observations that marine endophytic fungi represent a rich source of structurally unique 
bioactive compounds. Indeed, marine endophytic fungi have been demonstrated to be a rich 
source of biologically active natural products with unique structures and potent medicinal 
properties (Strobel and Daisy, 2003; Bugni and Ireland, 2004).
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Marine endophytic fungi are known to produce a plethora of 
bioactive secondary metabolites, such as steroids, alkaloids, 
terpenoids, and peptides, many of which possess biological activities 
including anti-inflammatory, antioxidant, antimicrobial, and 
antitumor properties (Mohamed El-Bondkly et al., 2020; El-Bondkly 
et al., 2021; Santos et al., 2019; Tan and Zou, 2001). These include 
potential anticancer drugs, antimicrobial agents, antifungal 
compounds, antiviral substances, and more (Mm et  al., 2015; 
El-Gendy et al., 2016; Strobel, 2018; El-Gendy et al., 2018; El-Gendy 
et al., 2008a; El-Gendy et al., 2000; El-Gendy et al., 2008b; El-Bondkly 
et  al., 2012; El-Gendy and El-Bondkly, 2010; El-Gendy and 
El-Bondkly, 2011; El-Gendy et al., 2017). The prospect of utilizing 
endophytic fungi for the sustainable production of life-saving drugs is 
highly promising. Despite the identification of a multitude of bioactive 
molecules from marine endophytic fungi over the past two decades, 
the commercial exploitation of these organisms as a source of 
biologically active secondary metabolites has yet to see substantial 
breakthroughs. The primary constraint on the commercialization is 
believed to be  the reduction in product yield following the 
subculturing of endophytic fungi under sterile conditions, which may 
be due to the loss of biosynthetic pathways or changes in regulatory 
mechanisms (Sandrawati et al., 2020; El-Bondkly and El-Gendy, 2010).

This review synthesizes literature evidence supporting the 
presence of host-independent biosynthetic machinery within 
endophytic fungi. It then explores the spectrum of marine endophytes 
and their secondary metabolites and highlights the need for a deeper 
understanding of the intricate interactions between marine endophytic 
fungi and their hosts. Advances in genetic engineering, such as 
CRISPR-Cas9 technology, offer new avenues for strain improvement, 
potentially enhancing the production of desired metabolites (Bary, 
1866; Hardoim et al., 2015; Wilson, 1995). Furthermore, cutting-edge 
fermentation optimization techniques, including systems biology 
approaches and synthetic biology, are discussed to create an optimal 
culture environment for the sustainable and high-yield production of 
valuable secondary metabolites (Hallmann et al., 1997; Petrini, 1991; 
Muralikrishnan, 2013). By integrating these strategies, the review aims 
to provide a roadmap for harnessing the full potential of marine 
endophytic fungi in the biotechnological and 
pharmaceutical industries.

2 Definition, status and diversity of 
marine endophytic fungi

Endophytes, first identified by Bary (1866), are defined as 
organisms that can colonize the interior of plants without causing 
harm, a definition that has evolved over time (Hardoim et al., 2015; 
Wilson, 1995; Hallmann et  al., 1997; Petrini, 1991) definition 
encompasses a broad range of organisms, including bacteria, fungi, 
mycoplasmas, and archaea (Muralikrishnan, 2013; Zhao et  al., 
2011; Stone et al., 2000; Hollants et al., 2011). Endophytic fungi are 
particularly notable for their potential to produce a diverse array 
of bioactive compounds. Estimates suggest that there may be over 
a million species of endophytic fungi, with only a fraction 
described (Fau et al., 1997; Dreyfuss and Chapela, 1994). These 
fungi are found in a variety of marine organisms, from plants to 
invertebrates and vertebrates (Sandrawati et  al., 2020; Wu and 
Morris, 1973), and they play crucial roles in promoting growth, 

enhancing disease resistance, and improving environmental stress 
tolerance in their hosts (Cheng et  al., 2020). The symbiotic 
relationship between endophytic fungi and their hosts often results 
in the production of secondary metabolites with potential 
applications in medicine, agriculture, and industry (Cheng et al., 
2020; Strobel, 2002).

The identification of marine endophytic fungi has been advanced 
by molecular methods, which overcome the limitations of traditional 
culture methods (El-Gendy et al., 2008a; El-Gendy et al., 2010; Song 
et al., 2021; Fadiji and Babalola, 2020; Higgins et al., 2007). Endophytic 
fungi exhibit a range of host specificities, from narrow to broad, and 
their composition is influenced by factors such as geography and host 
age (Gao et al., 2018; González-Menéndez et al., 2014). Gao et al. (2018) 
found that even within the same geographical location, different sponge 
species harbor distinct endophytic fungal communities, highlighting 
the specificity and diversity of these associations. Marine endophytic 
fungi are a rich source of bioactive compounds, with marine algae and 
corals being particularly prolific sources (El-Demerdash et al., 2020; 
Couttolenc et  al., 2015). These fungi produce compounds with 
anticancer, antioxidant, antimicrobial, antiviral, and other properties 
(El-Bondkly et al., 2021; Burragoni and Jeon, 2021; Kamat et al., 2020). 
For instance, the endophytic algal fungus Paecilomyces variotii produces 
indole derivatives with cytotoxic effects on cancer cell lines, while the 
red algal endophytic fungus Microsporum sp. produces compounds that 
induce apoptosis in HeLa cells. The potential of marine endophytic 
fungi as a source of novel bioactive compounds is vast and largely 
unexplored (Drake et al., 2018). Figure 1 lists marine endophyte host 
organisms and their associated bioactive compound categories. As 
research progresses, these fungi are poised to become increasingly 
significant in the development of new pharmaceuticals and agricultural 
products (El-Demerdash et al., 2020; Couttolenc et al., 2015). Their 
unique ecological niches, characterized by conditions such as high 
salinity and pressure, drive the production of specialized metabolites 
with potential for novel pharmaceutical applications (Sharma et al., 
2020; Tidke et al., 2019).

3 High value compounds found in 
marine endophyte fungi

Marine fungal endophytes are known to establish symbiotic 
relationships with marine organisms such as sponges, corals, algae, 
and mangroves, producing a variety of bioactive metabolites with 
potential applications in agriculture, pharmaceuticals, food, and 
cosmetics (Cheng et al., 2020; Gao et al., 2018; Gouda et al., 2016). 
These metabolites, which include ayamycin, benzopyrone derivatives, 
and iso-coumarin derivatives, are often the basis for the development 
of drugs to treat various diseases (Cheng et al., 2020; Gao et al., 2018; 
Gouda et al., 2016). The secondary metabolites produced by marine 
endophytic fungi are diverse, encompassing alkaloids, benzopyranones, 
chinones, flavonoids, phenolic acids, quinones, steroids, saponins, 
tannins, terpenoids, tetra ketones, xanthones, and more (El-Gendy 
et al., 2016; Strobel, 2018; El-Gendy et al., 2008a; El-Gendy et al., 2000; 
El-Gendy et al., 2008b; El-Gendy et al., 2016; El-Gendy et al., 2003). 
These compounds are not only chemically diverse but also biologically 
active, making them valuable for various industries.

The symbiotic relationship between endophytic fungi and their 
hosts is mutually beneficial, with the fungi obtaining nutrients while 
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also enhancing the host’s environmental adaptability through the 
production of secondary metabolites (Bamisile et  al., 2018). For 
instance, fungal endophytes from algae promote algal growth and are 
isolated through careful culturing and surface disinfection to remove 
epiphytes (Wu and Morris, 1973; Teixeira et al., 2019; Zhang et al., 
2016). The metabolites produced by these associations are often 
peptides, polyketones, lactones, alkaloids, and terpenes, which are 
listed in Table 1. Sponges, as primitive metazoans, have been a source 
of a wide array of secondary metabolites and are considered a rich 
source of new drug candidates (Love et al., 2009; Faulkner, 2000). The 
fungi within sponge tissues, which can constitute a significant portion 
of the biomass, are believed to be the true producers of some sponge 
natural products (Cheng et al., 2020; Friedrich et al., 2001). Researchers 

have identified a range of compounds from sponge-derived endophytic 
fungi, including alkaloids, terpenoids, amino acids, nucleosides, cyclic 
peptides, polyethers, macrolides, peroxides, polyenes, polyalkynes, 
and steroids, many of which exhibit antiangiogenic, antimicrobial, 
antiparasitic, antitumor, antiviral, hemolytic, and cytotoxic activities 
(Elsebai et  al., 2021; Sun et  al., 2017). Corals, a class of marine 
invertebrates, is also a significant source of medicinal value, 
particularly due to the metabolic products of the symbiotic 
microorganisms (El-Demerdash et al., 2020; Liu et al., 2019). The 
study of the secondary metabolites of coral-associated fungi is an 
important field, with recent research focusing on their roles in 
antitumor, antibacterial, antifouling, and osteoclast differentiation 
inhibition (El-Demerdash et al., 2020; Liu et al., 2019). Galkiewicz’s 

FIGURE 1

Marine endophyte host organisms and their associated bioactive compound categories. This figure systematically categorizes the major marine host 
organisms (Corals, Mangrove, Algae, Sponge) and their corresponding bioactive compound classes (Peptide, Terpenoid, Flavonoid, Alkaloid, Steroid, 
Xanthone, Benzopyranone, Polyketide) produced by symbiotic endophytic fungi.
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TABLE 1  Examples of high value secondary metabolites isolated from marine endophytic fungal.

Compound name Biological activity Fungal source 
(Genus/Species)

Source host Literature reference

Nigerasperone A-C

Inhibitory effects towards A-549 and 

SMMC-7721 cell lines and antifungal 

activity towards C. albicans and 

DPPH scavenging

Aspergillus niger EN-13
Brown alga Colpomenia 

sinuosa

Zhang et al. (2007) and 

Zhang et al. (2010)

Chrysin
Induced apoptosis, G1 phase cell cycle 

arrest, MMP loss and ROS production
Chaetomium globosum

Green alga Chaetomorpha 

media
Kamat et al. (2020)

Ascosalipyrrolidinone A

Antiplasmodial activity, antimicrobial 

and p56lck tyrosine kinase inhibiting 

activity

Ascochyta salicorniae Green alga Ulva sp. Osterhage et al. (2000)

Chaetominedione
Inhibitory activity toward p56lck 

tyrosine kinase
Chaetomium sp. Alga Abdel-Lateff (2008)

Chaetopyranin
Cytotoxic activity towardtumor cell 

lines
Chaetomium globosum

Red alga Polysiphonia 

urceolata
Wang et al. (2006)

Penicisteroids A Antifungal and cytotoxic activities
Penicillium chrysogenum

QEN-24S
Red alga Laurencia sp. Gao et al. (2011)

Epicoccone Antioxidative properties Epicoccum sp. Alga Fucus vesiculosus Abdel-Lateff et al. (2003a)

2,3,6,8-tetrahydroxy-1-methyl-

xanthone

Radical scavenging and antioxidative 

effects
Wardomyces anomalus Alga Enteromorpha sp. Abdel-Lateff et al. (2003b)

Isochaetoglobosin D Antitumor activity
Chaetomium globosum

KMITL-N0802

Marine green alga Ulva 

pertusa
Kanokmedhakul et al. (2002)

Chaetoglobosin Fex Antitumor activity
Chaetomium globosum

QEN-14
Green alga Ulva pertusa Cui et al. (2010b)

Noduliprevenone
Inhibitor of cytochrome P450 1A 

activity and anticancer activities
Nodulisporium sp. Alga Mediterranean sp. Pontius et al. (2008)

Monodictysin B Antineoplastic activity Monodictys putredinis Green alga Krick et al. (2007)

Spartinol A Inhibition of leukocyte elastase Phaeosphaeria spartinae Alga Ceramium sp. Elsebai et al. (2009)

Citrinal A
Cytotoxic effects on the A-549 and 

HL-60 cell lines
Penicillium sp. i-1-1 Alga Zhu et al. (2009)

Phenalenone
Cytotoxicity towards K562, SKM1 and 

U266 cancer cell lines
Coniothyrium cereale Alga Enteromorpha sp. Elsebai et al. (2016)

Alkaline cellulases

Applied to washing, food, chemical 

industry, manufacturing

paper, textile and waste water 

treatment

Chaetomium sp. Mangrove Chinnarajan et al. (2010)

Penochalasin I
Cytotoxicity against MDA-MB-435 

and SGC-7901 cells
Penicillium chrysogenum Mangrove Huang et al. (2016)

Penochalasin J Antifungal activity Penicillium chrysogenum Mangrove

24-hydroxylergosta-

4,6,8(14),22-tetraen-3-one
Inhibited the plant pathogenic fungi Aspergillus clavatus Mangrove Li et al. (2017)

Kotanin Antifungal activities Aspergillus clavatus Mangrove

(S)-5-hydroxy-2,6-dimethyl-

4H-furo[3,4-g]benzopyran-

4,8(6H)-dione

Inhibited Colletotrichum musae Aspergillus clavatus Mangrove

Orlandin Antifungal activities Aspergillus clavatus Mangrove

Cytoglobosins C Anticancer activities Penicillium sp. V11 Mangrove Huang et al. (2016)

Xyloketals A
Inhibiting activity against 

acetylcholine esterase
Xylaria sp. Mangrove Lin et al. (2001)

(Continued)
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TABLE 1  (Continued)

Compound name Biological activity Fungal source 
(Genus/Species)

Source host Literature reference

Isoflavone analog B Cytotoxicity targeted to cancer cells. Phomopsis sp. Mangrove Tao et al. (2010)

Prostaglandin analog A Anticancer activity Phomopsis sp. Mangrove Tao et al. (2010)

p-Terphenyl
Inhibitory towards α-glucosidase and 

acetyl cholinesterase
Penicillium chermesinum Mangrove Huang et al. (2011)

Phomoxanthones F Anti-HIV activity Phomopsis sp. Xy21
Mangrove Xylocarpus 

granatum
Hu et al. (2018)

Sterigmatocystin
Cytotoxic activity towards tumor cell 

lines
Fungi Mangrove Kandelia candel Zhu and Lin (2007)

Rubasperone A Cytotoxicity targeted to cancer cells.
Aspergillus tubingensis GX1-

5E
Mangrove Pongamia pinnata Huang et al. (2010)

Rubasperone C
Inhibitory towards cancer cell 

U87MG

Aspergillus tubingensis GX1-

5E
Mangrove Pongamia pinnata Huang et al. (2010)

Sporothrins A
Inhibition activity of acetylcholine 

esterase
Sporothrix sp. Mangrove Kandelia candel Wen et al. (2009)

Guignardones F-I

Inhibitory activity towards 

Staphylococcus aureusand 

Staphylococcus aureus.

endophytic fungus A1
Mangrove Scyphiphora 

hydrophyllacea
Mei et al. (2012)

Eremophilane sesquiterpenes 

07H239-A
Activation activity on α-glucosidase Xylaria sp. BL321 Mangrove Song et al. (2012)

5-epi-Asperdichrome Antibacterial activities
Aspergillus versicolor 

HDN1009
Mangrove Yu et al. (2018)

Versixanthones N

Cytotoxicities against five cancer cell 

lines (HL-60, K562, H1975, MGC803, 

and HO-8910)

Aspergillus versicolor 

HDN1009
Mangrove

Versixanthones O Cytotoxicities against cancer cell lines
Aspergillus versicolor 

HDN1009
Mangrove

Arigsugacin I
Inhibitory activities against 

acetylcholinesterase
Penicillium sp. sk5GW1L Mangrove Kandelia candel Huang et al. (2013)

Terreulactone C
Inhibitory activities against 

acetylcholinesterase
Penicillium sp. sk5GW1L Mangrove Ding et al. (2016)

Pycnidione

Antiplasmodial, antifungal, cytotoxic 

activity and induced erythropoietin 

gene expression in human cells

Phoma sp.
Sponge Halichondria 

panacea.
Harris et al. (1993)

Microsphaeropsisin Antimicrobial activity Microsphaeropsis sp. Sponge Myxilla incrustans Rodriguez et al. (2009)

Ulocladol Enzyme inhibitory activity Ulocladium botrytis
Sponge Callyspongia 

vaginalis
Strobel (2002)

Citreonigrin B Inhibited protein kinases Penicillium citreonigrum
Sponge Pseudoceratina 

purpurea
El-Bondkly et al. (2021)

19-Epi-21-hydroxy-10,23-

dihydro-24,25-

dehydroaflavinine

Inhibitory activity towards Bacillus 

subtilis, Staphylococcus epidermidis 

and Staphylococcus aureus along with 

cytotoxicity toward HeLa, L-5178Y 

and PC-12 cell lines

Aspergillus niger Sponge Axinella damicornis Bacon (1994)

Marilines A and B Inhibited human leukocyte elastase Stachylidium sp.
Sponge Callyspongia cf. C.

flammea.
Almeida et al. (2012)

Marilone A Antiplasmodial activity Stachylidium sp.
Sponge Callyspongia sp. cf. 

C. flammea
Almeida et al. (2011b)

Marilone B
Antagonistic activity towards the 

serotonin receptor 5-HT2B
Stachylidium sp.

Sponge Callyspongia sp. cf. 

C. flammea
Almeida et al. (2011b)

(Continued)
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TABLE 1  (Continued)

Compound name Biological activity Fungal source 
(Genus/Species)

Source host Literature reference

Glycylrubropunctatin Anticancer and antioxidant activities Talaromyces verruculosus Sponge Lebeau et al. (2017)

Chrysazin
Antifungal activity against Candida 

albicans
Beauveria bassiana TPU942 Sponge Yamazaki et al. (2012)

Globosuxanthone

A

Repressed the HCT-15 and Jurkat 

cells proliferation
Beauveria bassiana TPU942 Sponge Yamazaki et al. (2012)

Dihydroauroglaucin

Antibacterial and antimicroalgal 

activity as well as inhibitory activity 

against tyronisase

Eurotium chevalieri MUT 

2316

Sponge Grantia compressa Bovio et al. (2019)

Flavoglaucin Used as a broad spectrum fungicide Eurotium chevalieri MUT 

2316

Sponge Grantia compressa Bovio et al. (2019)

Karimanone Inhibitory activity towards Salmonella 

enterica and Salmonella Typhi

Daldinia eschscholtzii Sponge Xestospongia sp. Sibero et al. (2020)

Penicifurans A Inhibitory activity against 

Staphylococcus albus

Penicillium sp. MWZ14-4 Sponge Qi et al. (2013)

Penicimarins A Antibacterial activities and cytotoxic 

activities

Penicillium sp. MWZ14-4 Sponge Qi et al. (2013)

Sclerotiorin Antiviral activity towards HSV and 

EV71

Penicillium sclerotiorum Sponge Wang et al. (2018)

Sydonol Inhibitory activity towards 

Scaphirhynchus albus and 

Micrococcus tetragenus

Aspergillus sp. Sponge Xestospongia 

testudinaria

Nukina et al. (1981)

Sydonic Acid Antibacterial activity Aspergillus sydowi Sponge Xestospongia 

testudinaria

Hamasaki et al. (1978)

Hydroxysydonic acid Antibacterial activity Aspergillus sydowi Sponge Xestospongia 

testudinaria

Yajima et al. (2021)

Sartorypyrone B Inhibitory activity against three cell 

lines (MCF-7, NCI-H460 and 

A375-C5)

Neosartorya tsunodae KUFC 

9213

Sponge Aka coralliphaga Eamvijarn et al. (2013)

Tetrahydroaltersolanol C Antiviral activity towards the porcine 

reproductive and respiratory 

syndrome virus

Alternaria sp. ZJ-2008003 Coral Sarcophyton spp. Zheng et al. (2012)

Alterporriol P Cytotoxic activity towards the PC-3 

and HCT-116 cell lines

Alternaria sp. ZJ-2008003 Coral Sarcophyton spp. Zheng et al. (2012)

Aniduquinolone AD Antifouling activity Scopulariopsis sp. Coral Gorgonian sp. Shao et al. (2015)

Chrysogeamides A-E Discriminating activity in promoting 

angiogenesis

Penicillium chrysogenum Coral Gorgonian sp. Hou et al. (2019)

Asperversiamides A-C Inhibitory activity towards 

Mycobacterium Marinum

Aspergillus versicolor Coral Gorgonian sp. Hou et al. (2019)

Phomaethers A-B Antibacterial activity Phoma sp. Coral Gorgonian sp. Shi et al. (2017)

Pestaloxazine A Anti-EV71 activity and antiviral 

activities

Pestalotiopsis sp. Coral Sarcophyton sp. Jia et al. (2015)

Terreusterpenes A-B Inhibitory activity towards BACE1 Aspergillus terreus Coral Sarcophyton subviride Qi et al. (2018)

Aszonapyrones A Inhibitory activity against three cell lines 

(MCF-7, NCI-H460 and A375-C5)

Neosartorya laciniosa KUFC 

7896

Coral Porites lutea Eamvijarn et al. (2013) and 

Gomes et al. (2014)

Chaetomugilins Antimicrobial, nitric oxide inhibitory, 

gp120-CD4-binding

inhibitory, monoamine oxidase 

inhibitory and platelet-derived growth 

factor-binding inhibitory activities

Chaetomium globosum OUPS-

T106B-6

Marine fish Mugil cephalus Yamada et al. (2008)
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work marks the first report of fungi extracted from deep-sea corals, 
providing insight into the microbial community’s constituent members 
and their potential functions (Galkiewicz et  al., 2012). Mangrove 
ecosystems, characterized by their unique saline environment and rich 
mineral resources, are home to a diverse array of endophytic fungi that 
form the second largest group of marine microorganisms (Glaser and 
Mayer, 2009; Xing and Guo, 2011). The endophytic fungi in 
mangroves, including Aspergillus, Penicillium, Trichoderma, 
Pestalotiopsis, and Streptomyces, produce a wide range of metabolites 
such as coumarin, chromone, terpenoids, alkaloids, peptides, 
quinones, and esters (Deshmukh et al., 2018; Ananda and Sridhar, 
2002). These compounds represent a vast natural pharmacy with novel 
structures and significant biological activities (Deshmukh et al., 2018; 
Xin et al., 2013; Li et al., 2010).

4 Using endophytic fungi as 
production platforms for marine 
natural products

The necessity of employing marine endophytic fungi as production 
platforms for secondary metabolites is underscored by several critical 
factors. Firstly, the natural abundance of marine organisms that produce 
valuable secondary metabolites is often insufficient for large-scale 
pharmaceutical applications, particularly for species such as sponges and 
soft corals. The limited biomass of these organisms poses a significant 
constraint for the sustainable extraction of bioactive compounds in 
quantities sufficient for drug development and commercial production 
(El-Bondkly and El-Gendy, 2010; El-Bondkly and El-Gendy, 2012).

Marine endophytic fungi, which coexist with marine flora and 
fauna in a symbiotic relationship, have demonstrated the capacity to 
evolve unique biosynthetic pathways. This evolutionary adaptation 
suggests that these fungi may be the actual producers of the secondary 
metabolites traditionally attributed to their host organisms (Cheng 
et al., 2020; Gao et al., 2018). The ability of marine endophytic fungi 
to synthesize a range of bioactive compounds, including those with 
antibacterial, antifungal, and anticancer properties, positions them as 
promising candidates for the production platforms of these valuable 
metabolites (Gouda et al., 2016; Hyde, 2019).

Numerous valuable compounds have been isolated from 
endophytic fungi associated with marine organisms. These include 
antibacterial agents such as benzopyrone and isocoumarin derivatives 
(El-Gendy et al., 2008a; El-Gendy et al., 2000; El-Gendy et al., 2008b; 
El-Gendy and El-Bondkly, 2010), antifungal compounds like mycopane 
and sardamycin (El-Bondkly et al., 2012; El-Gendy and El-Bondkly, 
2010), and anticancer agents including lovastatin (Nurunnabi et al., 
2020; Sopalun and Iamtham, 2020). Additionally, bioactive compounds 
such as antifungal and cytotoxic polyoxygenated steroids (Penicisteroids 
A and B), anthraquinone, cyclopentanone, and naphthoquinone 
derivatives have been isolated from algae endophytes (Gao et al., 2018). 
Furthermore, isobenzofuranone derivatives, marilones A-C, stachylines 
A-D, and marilines A-C with antioxidant properties have been 
extracted from algicolous fungi and sponge-derived fungi (Almeida 
et al., 2011a; Almeida et al., 2011b; Kamat et al., 2020).

Despite the potential of endophytic fungi to produce high-value 
pharmaceuticals, commercial production of these fungi for drug 
synthesis has not yet been realized. The primary obstacle to 
commercialization is the reduction in target product yield following the 

subculturing of endophytes, which some researchers attribute to the loss 
of biosynthetic capabilities in vitro (Heinig et al., 2013). However, studies 
such as those by Yang et al., who conducted whole-genome sequencing 
and multiple sequence alignment of the paclitaxel-producing endophyte 
Penicillium aurantiogriseum NRRL 62431, have refuted this notion (Yang 
et al., 2014). Genomic analysis by Yang et al. revealed that Penicillium 
aurantiogriseum NRRL 62431 possesses evolutionarily distinct 
biosynthetic pathways for paclitaxel synthesis, with key enzymes (e.g., 
taxadiene synthase homologs) sharing <30% amino acid identity to those 
in Taxus hosts. This supports the capacity for autonomous production of 
secondary metabolites in axenic culture across multiple generations, 
though natural symbiotic metabolite exchange remains possible.

5 Strategies for enhancing secondary 
metabolite production in marine 
endophytic fungi

Despite their promise as a source of natural therapeutics, marine 
endophytic fungi produce secondary metabolites at levels that are 
typically too low for commercial viability. To overcome this, strain 
enhancement techniques are crucial for increasing the yield and 
efficiency of metabolite production to a scale suitable for industrial 
applications. Advanced strains can then be subjected to fermentation 
medium optimization, which is a key to further boosting the output 
and productivity of these valuable compounds. Figure 2 outlines a 
strategic approach for the industrial-scale production of secondary 
metabolites derived from marine endophytic fungi.

5.1 Isolation and culture of marine 
endophytic fungi

Isolating and culturing marine endophytic fungi is essential for 
harnessing their secondary metabolites. It involves extracting these 
fungi from a variety of marine habitats while meticulously excluding 
epiphytic microorganisms to ensure the purity of endophytic isolates. 
Selecting healthy, disease-free samples is crucial to prevent the 
isolation of pathogenic species and to focus on endophytes with 
beneficial traits (Strobel and Daisy, 2003; Strobel, 2003). To minimize 
contamination risks, samples should be processed promptly or kept at 
4 °C in temporary storage (Strobel et  al., 1996; Bacon and 
White, 2018).

The surface sterilization of samples, tailored to the host’s species 
and tissue type, is a critical step to guarantee the isolation of true 
endophytes (Bissegger and Sieber, 1994). This process commonly 
employs mechanical, enzymatic, or chemical methods (Hollants 
et al., 2010). For delicate organisms like algae, sterilization must 
be  carefully adapted to their specific characteristics (Schulz and 
Boyle, 2005). Typically, this involves rinsing with sterile water, 
followed by treatment with 70% ethanol and sodium hypochlorite 
(1–4%), and finally rinsing with sterile distilled water to eliminate 
residual NaOCl (Stone et  al., 2000; Strobel, 2002; Arnold et  al., 
2000). The appropriate concentration and duration of sterilization 
are determined based on the host and tissue type, with successful 
sterilization confirmed by the lack of microbial growth on the 
growth medium (Schulz and Boyle, 2005). Post-sterilization, 
samples are aseptically dissected and transferred to culture media, 
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often supplemented with antibiotics like chloramphenicol, 
streptomycin, tetracycline, or penicillin to curb bacterial 
contamination (Tupac Otero et al., 2002). After incubation at 26 °C, 
fungal hyphal tips are isolated for subculturing, and the strains are 
archived. Through repeated transfers, endophytes are purified from 
the interior tissues (Suryanarayanan et al., 2003). Figure 3 provides 
a visual overview of the marine endophyte isolation process and 
metabolite profiling.

5.2 Strain improvement of marine 
endophytic fungi

The inherent activity of marine endophytic fungal strains found 
in nature is often insufficient for industrial-scale production of 
secondary metabolites. To bridge this gap, strain improvement 
techniques are imperative to enhance their productivity. With the 
advancement of biotechnology, methods such as mutagenesis and 
genetic engineering have become central to boosting the metabolite 
yield of these fungi (Demain and Adrio, 2008; Kong et al., 2022; 
Kong et al., 2021). Mutagenesis, both physical and chemical, is a 
traditional approach to induce genetic changes in microorganisms. 
Physical mutagens like ultraviolet radiation and chemical agents 

including alkylating compounds are used to increase the genetic 
variation, which can lead to strains with improved metabolite 
production (Shima et al., 1996; Hu et al., 2002). Resistance screening, 
leveraging antibiotic resistance as a selection tool, is a straightforward 
and effective method for isolating strains with desirable traits 
(Partridge et al., 2018). However, mutagenesis breeding suffers from 
inherent limitations including uncontrollable mutation sites and 
phenotypic instability. As evidenced by Khoshbakht et al.’s study, 
only 5 novel chalaniline derivatives were successfully generated from 
23 precursor modifications (Khoshbakht et  al., 2021). The low 
positive mutation rate significantly escalates both time investment 
and operational costs.

Protoplast fusion, a technique that merges cells by fusing their 
protoplasts, has been instrumental in developing high-yielding strains. 
This method was employed to develop a recombinant strain of 
Streptomyces pristinaespiralis with enhanced pristinamycin production 
capability. Through four rounds of protoplast fusion and screening, 
the obtained recombinant strain G4-17 achieved a pristinamycin yield 
of 0.89 g/L, representing a 145.9% increase compared to the original 
strain, while demonstrating excellent genetic stability (Xu et al., 2008). 
These results confirm the potential of protoplast fusion methodology 
for microbial strain improvement. While protoplast fusion offers 
significant potential, it faces considerable challenges in overcoming 

FIGURE 2

Harnessing marine endophytic fungi for industrial secondary metabolite yield.
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FIGURE 3

Marine endophyte isolation process and metabolite profiling.

species barriers and may compromise the integrity of secondary 
metabolic gene clusters.

Metabolic engineering offers a targeted strategy for enhancing the 
biosynthesis of specific metabolites. By understanding the metabolic 
pathways and identifying rate-limiting steps, metabolic engineers can 
redirect the flow of metabolites towards the desired products (Kong 
et al., 2021). This can be achieved by overexpressing key genes or 
introducing synthetic gene clusters into the fungi. The endophytic 
paclitaxel-producing fungus Ozonium sp. EFY-21 represents a 
successful case of metabolic engineering for enhancing the production 
of high-value compounds (Wei et al., 2010). Studies demonstrated that 
by introducing the rate-limiting enzyme gene taxadiene synthase (ts) 
to modify the paclitaxel biosynthetic pathway, the paclitaxel yield in 
engineered transformant T4 significantly increased from 
87.4 ± 6.3 μg/L in the wild-type strain to 417.1 ± 22.3 μg/L, achieving 
a 3.77-fold enhancement (Wei et  al., 2012). However, metabolic 
engineering faces limitations in pathway elucidation, with the vast 
majority of biosynthetic gene clusters (BGCs) in marine fungi 
remaining functionally uncharacterized (Kumar et  al., 2018). 
Moreover, heterologous expression may reduce enzymatic activity in 
certain cases, significantly diminishing the synthesis yield of 
target metabolites.

In summary, technological integration represents a breakthrough 
strategy. The synergistic combination of mutagenesis, protoplast 
fusion, and metabolic engineering significantly enhances the 
robustness of industrial microbial strains, thereby enabling sustainable 
and efficient production of high-value secondary metabolites. This 
approach is crucial for meeting industrial-scale metabolite production 
demands and facilitates the discovery of novel compounds with 
therapeutic potential.

5.3 Metabolic pathway engineering 
strategies for marine endophytic fungi

Beyond strain optimization, fermentation conditions significantly 
impact the production of target metabolites and their precursors in 
marine endophytic fungi. A well-designed fermentation process is 
essential to realize the full potential of engineered strains for natural 
product synthesis (Lau et al., 2002; Singh et al., 2017). Target product 
yields can be  enhanced through precursor feeding, fermentation 
medium optimization, and the strategic use of inducers and adsorbent 
resins (Parekh et  al., 2000). Fermentation conditions, including 
medium composition, pH, temperature, and stirring speed, are critical 
for improving secondary metabolite yields. The OSMAC (One Strain 
Many Compounds) strategy, pioneered by Bode et al. in 2002(Bode 
et  al., 2002), systematically modulates culture parameters (e.g., 
medium composition, salinity, physical state) to activate silent 
biosynthetic gene clusters, thereby greatly expanding the metabolic 
diversity of a single strain (Wang et  al., 2014). For instance, the 
endophytic fungus Hypomontagnella monticulosa cultivated in 
Wickerham medium produced 23 metabolites including antibacterial 
and anticancer briarane-type diterpenes (Lutfia et  al., 2024). 
Comparative cultivation of Fucus vesiculosus symbionts in liquid vs. 
solid media resulted in 40% condition-exclusive metabolic nodes, with 
specific media inducing anticancer activity (Fan et al., 2019). Addition 
of NaI to rice medium triggered the production of unprecedented 
sulfur-containing alkaloids (aplospojaveedins A–C) in Aplosporella 
javeedii (Gao et al., 2024). These cases demonstrate OSMAC’s power 
to unlock novel chemical scaffolds and diversify metabolite profiles, 
proving essential for discovering antimicrobial and anticancer lead 
compounds. Inducer selection and timing are crucial for maximizing 
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the yield of microbial secondary metabolites. By considering the 
physiological state and growth capacity of engineered strains, the 
appropriate induction conditions can be determined to enhance the 
expression of exogenous pathway proteins and target product yield 
(Sassi et al., 2016). Precursors feeding is another effective strategy, as 
demonstrated by the significant increase in argenocarcin production 
through proline and glucose supplementation (Dhakal et al., 2016).

In situ product removal (ISPR) is a valuable technique for 
managing self-toxic metabolites, ensuring high product levels and 
preventing their detrimental effects on microbial growth (Singh et al., 
2010; Schügerl and Hubbuch, 2005). Solid adsorbents, such as 
polymer resins, are preferred over liquid solvents due to their lower 
toxicity risk and are widely applicable in endophytic fungal 
fermentation (Xu et al., 2009). The use of inert solid carriers has also 
been shown to enhance metabolite production and discovery (Bigelis 
et al., 2006). Environmental stimuli in liquid media can influence 
fungal development and metabolism, affecting metabolite production. 
This strategy has been effectively utilized in the fermentation of 
Phomopsis sp., where the use of adsorbent materials increased 
mycoepoxydiene production (Thammajaruk et  al., 2011). These 
metabolic engineering strategies are pivotal for planning and 
executing the efficient production of secondary metabolites in marine 
endophytic fungi.

In conclusion, marine endophytic fungi represent not only 
integral components supporting the health and function of marine 
ecosystems but also constitute a treasure trove of high-value bioactive 
substances due to their unique metabolic capabilities and adaptation 
to diverse ecological niches (El-Bondkly et al., 2021; Sahoo et al., 2021; 
Tan et al., 2023). Their ability to produce a wide array of specialized 
metabolites in response to environmental stressors positions them as 
a promising and sustainable source for discovering new drugs and 
advancing biotechnological applications (Sahoo et al., 2021; Tan et al., 
2023). As essential synthesis factories for secondary metabolites, they 
offer a scalable solution to current bottlenecks in drug discovery and 
development within the marine biotechnology sector, underscoring 
the critical importance of continued research and exploration in 
this field.

6 Discussion

Marine endophytic fungi inhabit diverse marine ecosystems, 
constituting an underexplored reservoir of biodiversity. These 
symbiotic microorganisms serve as crucial sources of structurally 
diverse and biologically significant secondary metabolites (e.g., 
anticancer, antimicrobial, and antioxidant compounds), further 
highlighting their potential as a valuable resource for biotechnological 
innovation (El-Bondkly et  al., 2021; Wang et  al., 2025). However, 
industrial applications currently face bottlenecks such as genomic 
instability and metabolic yield fluctuations under pure culture 
conditions (Shabana et al., 2021). Prevailing research predominantly 
focuses on strain isolation and preliminary activity screening, 
suffering from methodological homogeneity and insufficient 
quantitative production data, which severely hinders the translation 
from basic research to industrial applications.

To achieve efficient resource utilization, a transition from the 
conventional “species–compound–activity” model to a resource-driven 
research paradigm is imperative. This paradigm emphasizes dual-track 
advancement through strain improvement and process optimization: 

Strain enhancement: Integrating mutagenesis, protoplast fusion, and 
metabolic engineering to boost strain stability and biosynthetic efficiency; 
Process innovation: Implementing dynamic fermentation control, 
precision addition of elicitors/precursors, and targeted adsorption 
techniques to enhance metabolite production. For instance, our earlier 
work significantly increased the production of L-piperazic acid and 
putrescine in Aureobasidium melanogenum by employing metabolic 
engineering and optimized culture conditions, thereby validating the 
pivotal role of process engineering (Kong et al., 2022; Kong et al., 2021).

The integration of synthetic biology and systems biology heralds 
a transformative era in gene cluster mining. CRISPR-Cas9-mediated 
activation of silent biosynthetic gene clusters (BGCs) will enable the 
discovery of novel molecular scaffolds (e.g., isocoumarins, 
aminofulvenes). For instance, CRISPR-Cas9-mediated disruption of 
the Fusarium graminearumC16 BGC (targeting polyketide synthase 
PKS15 and terpene synthase TS genes) confirmed its products as 
decalin-containing diterpenoid pyrones FDDP-D and FDDP-E (Noor 
et al., 2020). Future efforts should combine bioinformatics-driven 
BGC prediction (e.g., antiSMASH analysis) with optimized 
heterologous expression platforms (e.g., yeast artificial chromosome 
systems) to reconstruct complex pathways directionally.

Advancements in PDB technology represent a pivotal 
breakthrough. Khoshbakht et  al. successfully generated five novel 
chalaniline derivatives via 23 precursor modifications, demonstrating 
the enzymatic flexibility of fungal systems (Khoshbakht et al., 2021). 
Future strategies should integrate machine learning-assisted precursor 
design with enzyme engineering (e.g., P450 enzyme specificity 
modulation) for customized production of bioactive molecules. 
Concurrently, developing bionic fermentation systems (e.g., algal-
fungal co-culture mimicking host microenvironments) could resolve 
metabolic instability in pure cultures, facilitating scaled-up production 
of algal-derived metabolites.

To establish a fully-integrated development system that bridges 
the pathway from strain to product, a “Strain-Process-Product” trinity 
framework serves as the ultimate solution. This includes: 1. Strain 
improvement: Integrating mutagenesis and genomic reprogramming 
to enhance the robustness of industrial strains; 2. Intelligent 
fermentation: Coupling real-time metabolic sensing with adaptive 
control (e.g., gradient elicitor release technology) to increase product 
titers; 3. Green separation: Developing biomimetic adsorption 
materials (e.g., functionalized XAD-7 resins) to reduce downstream 
purification costs. Through interdisciplinary technological integration, 
marine endophytic fungi are poised to become highly efficient “cell 
factories,” providing a sustainable repository of high-value natural 
products for drug development.

7 Future perspective

To fully unlock the potential of marine endophytic fungi as 
sustainable sources of high-value natural products, future research must 
adopt an integrated and interdisciplinary strategy. Moving beyond 
traditional isolation and screening approaches, efforts should prioritize 
the development of robust, industrially applicable systems through 
synergistic advances in strain engineering, process control, and pathway 
discovery. Key directions will include: leveraging CRISPR-Cas9 and 
synthetic biology tools to activate silent biosynthetic gene clusters and 
enable heterologous production of novel compounds; employing 
machine learning and enzyme engineering to optimize 

https://doi.org/10.3389/fmicb.2025.1684777
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kong et al.� 10.3389/fmicb.2025.1684777

Frontiers in Microbiology 11 frontiersin.org

precursor-directed biosynthesis and metabolic flux; and designing bionic 
co-culture systems to mimic native host microenvironments and stabilize 
metabolic output. Ultimately, the implementation of a holistic “Strain–
Process–Product” framework—combining genetically enhanced strains, 
intelligently controlled fermentation, and eco-friendly downstream 
purification—will transform these fungi into efficient cell factories, 
bridging the gap between laboratory discovery and industrial-scale 
production of pharmaceuticals and other bioactive compounds.
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