
Frontiers in Microbiology 01 frontiersin.org

AI-powered three-category 
Helicobacter pylori diagnosis via 
magnetic controlled capsule 
endoscopy: a multicenter 
validation of a vision-language 
model
Xi Sun 1†, Jing Liu 1†, Lili Wu 1, Xiao Chen 1, Xiaona Ma 1, Fei Teng 1, 
Ting Zhang 2, Hui Su 3, Xin Fan 3, Jiaxin Li 4, Shiping Xu 1*, 
Peng Jin 3* and Hongmei Jiao 4*
1 Department of Gastroenterology and Hepatology, The Second Medical Center of Chinese PLA 
Hospital and National Clinical Research Center for Geriatric Diseases, Beijing, China, 2 The Institute of 
Geriatrics, The Second Medical Center of Chinese PLA Hospital and National Clinical Research Center 
for Geriatric Diseases, Beijing, China, 3 Department of Gastroenterology, The Seventh Medical Center 
of Chinese PLA General Hospital, Beijing, China, 4 Department of Geriatrics, Peking University First 
Hospital, Beijing, China

Introduction: Accurate classification of Helicobacter pylori (H. pylori) infection 
status is critical for gastric cancer risk stratification. Current methods based on 
traditional convolutional neural networks (CNNs) are limited by their reliance on 
fragmented single-image analysis and operator-dependent selection variability, 
impairing diagnostic reliability.
Methods: To overcome these limitations, we developed MC-CLIP, a vision-
language foundation model for the fully automated, three-categorical diagnosis 
of H. pylori infection using magnetically controlled capsule endoscopy (MCCE). 
The model was first pretrained on a large-scale dataset of 2,427,475 MCCE 
image-text pairs derived from 123,543 examinations. It was subsequently 
fine-tuned on 40,695 expertly annotated images from 864 patients. MC-CLIP 
autonomously selects 30 representative images per case for end-to-end 
classification. Its performance was rigorously evaluated on multicenter internal 
(n = 220) and external (n = 208) validation cohorts.
Results: On the internal and external validation cohorts, MC-CLIP achieved 
overall accuracies of 89.6% (95% CI: 85.5–93.6%) and 86.6% (80.8–90.3%), 
respectively. The model demonstrated particularly high sensitivity in detecting 
H. pylori infection: 91.4% for current infection and 83.7% for past infection. This 
performance significantly surpassed that of both senior endoscopists (84.3% and 
71.4%, respectively) and junior endoscopists (74.3% for current infection). MC-
CLIP also maintained high specificity (>90% across all categories) and excelled 
at identifying subtle mucosal changes following eradication therapy, thereby 
reducing the misclassification of past infections as non-infections.
Discussion: By integrating multimodal image-text data and performing end-
to-end analysis, MC-CLIP effectively addresses the fundamental limitations of 
CNN-based approaches. The model shows strong potential for enhancing the 
accuracy and reliability of MCCE-based gastric cancer screening programs.
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Introduction

Gastric cancer (GC) now ranks as the 3rd leading cause of cancer-
related mortality worldwide, causing severe global health burdens, 
particularly in East Asian countries (Bray et al., 2018). Early detection 
of GC via esophagogastroduodenoscopy (EGD) and successful 
eradication of H. pylori, the primary carcinogen for GC, could 
effectively reduce GC-related mortality (Correa and Houghton, 2007).

Currently, technical advances allow endoscopic GC screening to 
be performed in a noninvasive and comfortable manner (Liao et al., 
2016; Zou et al., 2015; Qian et al., 2018) A previous large population-
based cross-sectional study demonstrated that magnetic controlled 
capsule endoscopy (MCCE) performed well in GC screening (Zhao 
et al., 2018).

Despite the safety and comfort of MCCE, patients who are 
diagnosed with GC or have findings that are highly suspicious for GC 
or high-grade precancerous lesions via MCCE still require a subsequent 
EGD to confirm the diagnosis. Thus, for MCCE population-based GC 
screening, risk stratification by accurately classifying H. pylori infection 
status into three categories, namely, current-infection, non-infection 
and past- infection (eradicated), is necessary. Our previous work 
showed that, on the basis of the Kyoto classification of gastritis (KCG), 
three-categorical diagnosis of H. pylori infection status could 
be performed well using MCCE, with an accuracy of 80.3%(Xi et al., 
2022), comparable with that of an EGD study (Yoshii et al., 2020).

However, performing three-categorical diagnosis of H. pylori 
infection via MCCE is a challenging task, it not only is time-consuming 
but also requires a considerable level of expertise. The incorporation of 
artificial intelligence (AI) in clinical settings is anticipated to ameliorate 
this situation (Kaul et al., 2020). Convolutional neural network (CNN) 
model-based AI systems have been applied to various aspects of 
gastrointestinal endoscopy, including the diagnosis of H. pylori 
infection (Kaul et al., 2020; Dilaghi et al., 2022,; Jiang et al., 2025).

Despite their widespread use and excellent results for binary 
H. pylori infection diagnosis, CNN architectures such as ResNet-50 and 
Inception-v3 present inherent constraints for three-categorical H. pylori 
infection diagnosis (Shichijo et al., 2017; Nakashima et al., 2020; Seo 
et al., 2023; Li et al., 2025; Shichijo et al., 2019). Their single-image 
processing paradigm disregards contextual relationships between 
gastric regions, a critical flaw given that three-categorical diagnosis 
requires synthesizing findings from multiple anatomical sites (Shichijo 
et al., 2017; Nakashima et al., 2020; Seo et al., 2023; Li et al., 2025; 
Shichijo et al., 2019). Furthermore, the need for manual image selection 
creates operator-dependent variability, particularly for past eradication 
cases where subtle mucosal changes may be overlooked (Shichijo et al., 
2017; Seo et  al., 2023; Shichijo et  al., 2019). These shortcomings 
highlight the necessity of end-to-end systems capable of analyzing 
comprehensive image sets while minimizing human intervention.

Rapid technical advancements in AI algorithms led to the advent 
of the large language model (LLM), a highly successful model 
worldwide (Chen et al., 2024a, 2024b; Dosovitskiy et al., 2010). An 
LLM, such as contrastive language–image pretraining (CLIP), is 
capable of simultaneously processing multiple languages and images, 

enabling end-to-end diagnosis (Chen et al., 2024a, 2024b; Dosovitskiy 
et al., 2010). Previous studies have shown that LLMs work well for 
computational pathology tasks (Chen et  al., 2024a, 2024b), but 
whether they are suitable for determining a three-categorical H. pylori 
infection diagnosis remains unclear.

The aim of this study was to develop and validate a vision-language 
foundation model (MC-CLIP) for the automated three-categorical 
diagnosis of H. pylori infection status using MCCE. We envision the 
primary application of this model as an assistive tool for endoscopists. 
This output is designed to directly inform clinical decisions, such as 
initiating eradication therapy for “current-infection” or determining 
appropriate endoscopic surveillance intervals for “past-infection,” 
thereby integrating into the comfortable MCCE gastric cancer 
screening pathway to improve the efficiency.

Methods

Study design

This was a multicenter study approved by the ethics board of the 
Chinese PLA’s General Hospital (IRB No. 2021–674-02). Study 
participants were selected between December 2021 and May 2024. For 
the training cohort and internal validation cohort, we  recruited 
individuals who presented to the second medical center of the PLA’s 
General Hospital for MCCE examination. The external validation cohort 
was recruited from two other tertiary centers (the seventh medical 
center of the PLA’s general hospital, Peking University First Hospital).

All recruited participants had undergone MCCE and either a urea 
breath test (UBT) or a serological test to screen for H. pylori antibodies 
before the study. The training cohort was retrospectively recruited 
from patients who underwent an MCCE examination between 
December 2021 and October 2023. For validation, both the internal 
and external validation cohorts were established by consecutively 
enrolling naturally distributed cases from January 2024 to August 2024.

Those who had gastric surgery, poor image quality, inadequate 
gastric preparation and those who had recently taken medications that 
affect gastric mucosa (such as antibiotics or proton pump inhibitor/
PPI) were excluded from the study.

MCCE procedure and definition of H. pylori 
infection status

The NaviCam MCCE system (Ankon Technologies (Wuhan) Co., 
Ltd.) was used for GC screening in this study, and all MCCE procedures 
were conducted according to the guidebook described in previous 
publications (Liao et al., 2016; Zou et al., 2015; Qian et al., 2018).

The definition of the three categories of H. pylori infection status 
was as follows: individuals who had a UBT lower than 4.0 U/mL and 
who claimed no H. pylori eradication history and who tested negative 
for the serological antibody were defined as “non-infection” whereas 
those who claimed an eradication history and tested positive for the 
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serological antibody were defined as “past-infection.” Individuals with 
a UBT equal to or greater than 4.0 U/mL were classified as “current-
infection,” regardless of their eradication history.

Training dataset

For the pretraining of the model, we extensively collected more 
than 2,427,475 MCCE image–text data from 123,543 MCCE cases 
(Table  1) to construct a contrastive language-image pretraining 
(CLIP) model. The CLIP model is a multimodal pretraining neural 
network developed by Open AI (Yan et  al., 2023) dedicated to 
investigating the alignment relationship between images and text 
through comparative studies (Figure 1A). This MC-CLIP includes 
an image encoder and a text encoder (Figure 1) and was fine-tuned 
with the aim of maximizing the cosine similarity for correct text–
image pairs and minimizing the cosine similarity for incorrect text–
image pairs. We  utilized three Nvidia A100 GPUs for model 
training, iterating over 50 epochs, and ultimately selected the 
optimal model as the pretrained model for MCCE images.

The H. pylori classification model was subsequently established for 
post training. Two experts on MCCE extracted a total of 40,695 images 
of three categorical H. pylori infection status from the data of 864 
individuals in the training cohort (Figure 1B). Disparities of annotation 
between two experts were solved through mutual discussion. 
According to the KCG (Xi et al., 2022; Yoshii et al., 2020), characteristic 
findings of H. pylori infection status are mostly located in the gastric 
body (diffuse redness, mucosal swelling, regular arrangement of 
collecting venules, RAC) and antrum (nodularity, map like redness). 
Images of these two locations were extracted to train the model.

Prior to training the H. pylori classification model, specifically the 
multilayer perceptron (MLP) model, we applied data augmentation 
techniques to every case in the H. pylori classification dataset. Each 
image was subjected to approximately 10-fold data augmentation 
using techniques such as random rotation, horizontal and vertical 
flipping, and random distortion. The images were encoded using the 
image encoder of the MC-CLIP model, resulting in 30*512 feature 
vectors that served as the input data for the H. pylori classification 
model (Supplementary materials).

Validation dataset

Step one of dataset validation is image selection. On the basis 
of the MC-CLIP model described above, we used text prompts to 
retrieve all gastric body and antrum images from each individual’s 
MCCE data. These images were compared to a predefined 
H. pylori atlas (derived from the training set) for similarity 
retrieval, retaining those with a cosine similarity >0.96—a 
threshold selected based on pilot analyses achieving >95% 
concordance with expert-annotated images. After removing 
redundant or poorly exposed images, we  selected 30 images, 
including 20 gastric body and 10 gastric antrum images (reflecting 
the Kyoto classification’s emphasis on these regions). If the initial 
pool exceeded 30 images, the top 30 by similarity were chosen; if 
fewer were available, the highest-similarity images were reused to 
ensure consistent input dimensions (Figure 1C).

Step two is image classification. We used an MLP, as previously 
described, to set up a classifier in which the MCCE images were 
categorized as non-infection, past-infection and current-infection. The 
feature vector dimension generated by the image encoder of MC-CLIP 
was 1*512. Feature extraction was performed on the 30 images selected 
in step one, creating a 30*512-dimensional feature vector. After 
simultaneously processing the 30 images, the MLP output the 
per-patient result of three categorical H. pylori infection classification 
(Figure 1D) (Other details are documented in Supplementary materials).

Diagnostic performance of the senior and 
junior physicians

MCCE data from the internal validation cohort were sent to a 
senior physician (EGD experience>10.000 and MCCE experience 
>2000) and a junior physician (EGD experience 3,000 ~ 5,000 and 
MCCE experience <500) for three-categorical diagnosis of 
H. pylori infection status. Neither of the physicians had taken part 
in the training phase, and they were blinded to both the clinical 
results and the AI diagnosis. Each physician independently made 
their three-categorical diagnosis after reviewing the video and 
images of each MCCE case.

TABLE 1  Baseline characteristics and data distribution.

Characteristics Pre-training Post-training Internal validation External validation p-value

Cases (n) 123,543 864 220 208 –

Image-text pairs 2,427,475 –

Total images 40,695 6,600 6,240 –

Images per case 47.1 ± 12.3 30 (fixed) 30 (fixed) –

Age (years) 53.4 ± 12.2 53.6 ± 11.2 54.8 ± 11.3 0.327(n.s)

Male proportion 54.6% 52.5% 51.7% 0.742(n.s)

H. pylori status

Non-infection (n,%) 384, 44.4% 101, 45.9% 94, 45.2% 0.832(n.s)

Past-infection (n, %) 224, 25.9% 49, 22.3% 51, 24.5%

Current-infection (n, %) 256, 29.6% 70, 31.8% 63, 30.3%

Data source Archive of Ankon Retrospective cohort Retrospective cohort Independent hospitals

n.s, not significant.
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Sample size calculation and statistical 
analysis

The sample size calculation was done using the R package (version 
4.3.2). Based on our pilot data (Xi et al., 2022), the expected prevalence 
of H. pylori infection states was 45% non-infection, 30% current-
infection, and 25% past-infection. To detect a minimum AUC 
difference of 0.10 between categories with 90% power (α = 0.05), 
we required 196 total validation cases.

The statistical analysis compared diagnostic performance metrics 
(sensitivity, specificity, PPV, and NPV) across different groups, with the 
results reported as percentages and 95% confidence intervals (CIs). 
Comparisons of these metrics between the MC-CLIP model and each 
endoscopist were performed using McNemar’s test for paired proportions, 
given that both assessments were made on the same set of patients. In 
addition to p-values, the risk difference (RD) with its 95% confidence 
interval (CI) was calculated to quantify the magnitude of the difference in 
performance metrics between the MC-CLIP model and the endoscopists. 
The RD was derived from the paired 2×2 contingency tables, and its CI 
was calculated using the Wald method.

For baseline characteristics, continuous variables (e.g., age) 
were compared using one-way analysis of variance (ANOVA), and 
categorical variables (e.g., sex distribution, H. pylori status) were 
compared using the Chi-square test. All statistical tests were 
two-tailed, and a p-value of less than 0.05 was considered 
statistically significant.

All statistical analyses, including McNemar’s test and the calculation 
of risk differences (RDs) with confidence intervals, were performed using 
R software (version 4.3.2; R Foundation for Statistical Computing). The 

analysis of paired proportions utilized the stats package (version 4.3.2; for 
McNemar’s test) and the PropCIs package (version 0.3–0; for calculating 
risk differences and confidence intervals from paired data). The confusion 
matrices were generated using Python (version 3.10.12) with the scikit-
learn library (version 1.2.2).

Results

Recruitment and baseline characteristics of 
the study participants

For the training cohort, a total of 1,012 individuals who underwent 
MCCE examination between December 2021 and October 2023 were 
initially assessed for eligibility. After applying the exclusion criteria—
which included a history of gastrectomy (n = 48), recent use of 
proton-pump inhibitors or antibiotics within 4 weeks prior to the 
examination (n = 67), and poor image quality insufficient for analysis 
(n = 33)—a final total of 864 eligible participants were included in the 
training cohort. Among them, 384 (44.4%) were non-infection, 224 
(25.9%) were past-infection and 256 (29.6%) were current-infection.

For the internal validation cohort, 252 consecutively enrolled 
cases from January 2024 to August 2024 were screened. Among them, 
30 cases were excluded due to recent PPI/antibiotic use (n = 13), 
inadequate image quality (n = 12), or prior gastric surgery (n = 7), 
resulting in 220 eligible individuals. Among them, 101 were 
non-infection, 49 were past-infection, and 70 were current-infection. 
For the external validation cohort, 244 cases from the two participating 
tertiary centers were screened. Exclusions were made for recent 

FIGURE 1

(A) Construction of the CLIP, which includes an image encoder and a text encoder. (B) Fine-tuning of the CLIP, the building of the multilayer 
perceptron (MLP) model. (C) Step 1: Image selection. MC-CLIP automatically selects 30 images from the original MCCE data according to the H. pylori 
template. (D) Step 2: End-to-end diagnosis. The MLP outputs the per-patient result of the H. pylori infection three-categorical classification.
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medication use (n = 15), poor image quality (n = 13), and gastrectomy 
history (n = 8), yielding 208 eligible participants for the final external 
validation cohortcategorized into 94 non-infection cases, 51 past-
infection cases, and 63 current-infection cases (Figure 2).

The average ages of the patients in the training cohort, internal 
validation cohort and external validation cohort were 53.2, 54.6 and 
53.8 years, respectively (Table 1).

MC-CLIP’s internal vs. external validation 
performance

The MC-CLIP model demonstrated robust and consistent 
diagnostic performance across both internal and external validation 
cohorts, (Figure 3), the overall diagnostic accuracy of MC-CLIP was 
89.55% (95% CI: 85.5–93.6%) on the internal validation set (197/220) 
and 85.58% (95% CI: 80.8–90.3%) on the external validation set 
(178/208). The diagnostic accuracy was 91.4% (internal) versus 89.9% 
(external) for non-infection, 90.0% vs. 87.0% for past-infection, and 
96.4% vs. 94.2% for current-infection. The most significant decline 
was in past-infection sensitivity (83.7 to 72.5%). Specificity remained 
stable (91.8% vs. 91.7% for past-infection).

Comparative analysis of diagnostic 
performance between MC-CLIP and 
physicians

Internal validation cohort
The MC-CLIP model achieved an overall diagnostic accuracy of 

91.4% (95% CI: 87.6–94.2%) for non-infection, 90.0% (85.5–93.4%) 
for past-infection, and 96.4% (93.1–98.2%) for current-infection, 
significantly outperforming both senior and junior physicians 
(Table  2). Notably, MC-CLIP demonstrated superior sensitivity 

((83.7% vs. 71.4%; RD: 12.3, 95% CI: 2.1–22.5%; p < 0.05)) and PPV 
(74.5% vs. 59.3 and 44.3%, p < 0.05) for past-Infection and higher 
specificity across all categories (e.g., 98.7% vs.98.0 and 92.0% for 
current-infection).

External validation cohort
MC-CLIP maintained robust performance with accuracies 

of 89.9%.
(85.1–93.4%), 87.0% (81.9–91.0%), and 94.2% (90.1–96.9%) for 

non-,past-, and current-infection, respectively (Table 3). While the 
senior physician showed comparable sensitivity for non-infection 
(91.5% vs. 89.4%, p = 0.541), MC-CLIP exhibited significantly and 
moderately higher sensitivity for current-infection (90.5% vs. 81.0%, 
p = 0.002) and past-infection (72.5% vs. 68.6%, p = 0.493) respectively.

Age-stratified subgroup analysis
We performed age-stratified subgroup analysis which further 

revealed that the diagnostic performance of MC-CLIP for past-
infection was significantly lower in elderly patients (≥60 years) 
compared to younger individuals (<60 years) in both the internal and 
external validation cohorts (Supplementary Tables 1, 2). Notably, the 
sensitivity for past-infection declined from 91.9 to 58.3% (p < 0.001) 
in the internal cohort and from 80.0 to 53.9% (p = 0.011) in the 
external cohort among the elderly. In contrast, the model maintained 
robust and comparable performance for current and non-infection 
categories across age groups, with no statistically significant decline in 
sensitivity or specificity observed in most comparisons.

Illustrative cases
Figures 4A–C presents representative cases of the three distinct 

H. pylori infection statuses, each demonstrating characteristic KCG 
features. MC-CLIP and the senior physician achieved correct 
diagnoses for all these 3 cases, but the junior physician misdiagnosed 
the past-infection case as current-infection.

FIGURE 2

Flow diagram showing recruitment of study participants.
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Figure  4D shows a challenging past-infection case, in which 
specific finding map-like redness was lacking. MC-CLIP identified 
subtle mucosal morphological changes and correctly classified this 
case as past-infection after integrating features across 30 images, 
whereas both the senior and junior physician, regardless of their level 
of expertise, misdiagnosed it as non-infection due to isolated 
ambiguous findings.

Discussion

AI has been widely used in recent years, and its application in the 
medical field has had numerous positive impacts, including increasing 
diagnostic efficiency, promoting health care homogenization, and 
reducing medical costs (Kual et al., 2020; Ueyama et al., 2021; Seager 
et  al., 2024). Gastrointestinal endoscopy is a key area for the 
application of AI in the medical field. Commercialized AI systems, 
including GI Genius (Medtronic), EndoBRAIN (AI Medical Service) 
and ENDO-AID (Olympus Corporation), that are capable of assisting 
in the detection of colonic polyps are currently available in clinical 
practice (Ueyama et al., 2021; Seager et al., 2024; Lau et al., 2024; Iwaya 
et  al., 2023). However, a well-developed and commercialized AI 
system for the endoscopic three-categorical classification of H. pylori 
infection status has not yet been reported. While existing AI models 
for endoscopic H. pylori detection show promise, two key challenges 
need to be addressed for improvement.

First, in these studies, the accuracy of the AI’s three-categorical 
diagnosis of H. pylori infection status was significantly lower than that 
of binary classification. For gastric cancer screening, accurate 
determination of the past infection status of H. pylori via endoscopy 
is imperative. This type of early-stage gastric cancer can be easily 
overlooked and requires a comprehensive assessment that includes the 
morphology of the background mucosa (atrophy and intestinal 
metaplasia) to assess the risk of gastric cancer (Liu et  al., 2024). 
Furthermore, the endoscopic follow-up strategy for individuals after 
H. pylori eradication is also distinctly different from that for 
individuals in the other two classification categories. Unfortunately, 

the diagnostic sensitivity of past infections in previous studies ranged 
from 40% ~ 65% (Dilaghi et  al., 2022,; Jiang et  al., 2025), which 
significantly crippled the performance of gastric cancer screening in 
real-world practice.

Second, as previously described, traditional CNNs exhibit key.
limitations for H. pylori infection diagnosis: (1) fragmented 

evaluation— analyzing single images in isolation fails to integrate 
cross-regional features essential for accurate staging, as 
pathological signs often span multiple gastric zones; and (2) 
selection subjectivity—dependence on physician image 
preselection introduces interobserver variability, which is 
especially challenging for subtle posteradication changes. These 
constraints hinder reliable three-category classification since 
clinical diagnosis inherently requires synthesizing findings from 
diverse anatomical sites, a capability fundamentally lacking in 
single-image CNN paradigms.

To improve the ability of MCCE to screen for gastric cancer, 
developing an AI-based three categorical classification of H. pylori 
infection status is necessary but difficult. The quantity of gastric 
images captured by MCCE far exceeds that of conventional EGD, 
making the establishment of such an AI classification model much 
more challenging. Large language models have demonstrated 
exceptional performance in the realm of AI-assisted pathological 
diagnosis (Chen et  al., 2024a, 2024b). Thus, we  are exploring the 
application of this cutting-edge technology to construct an three 
categorical H. pylori classification model for MCCE.

The MC-CLIP we developed achieved technical breakthroughs in 
both the training and validation phases. In the training phase, the 
pretrained model was built on a dataset comprising hundreds of 
thousands of MCCE cases with greater than 2 million pairs of vision-
language alignment, demonstrating significantly improved training 
efficiency compared with previous CNN models. In the validation 
phase, MC-CLIP was able to autonomously identify images from a 
large volume of one individual’s MCCE data according to a previously 
built H. pylori template and output the per-patient result in an 
end-to-end manner, a diagnostic workflow without the need for 
physician-led image preselection.

FIGURE 3

Confusion matrices of diagnostic performance. (A) Internal validation cohort. (B) External validation cohort.
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The results of this study showed that our MC-CLIP method 
achieved highly accurate three-categorical diagnosis of H. pylori 
infection status. The overall accuracies of the internal and external 
validation cohorts were 89.6 and 85.6%, respectively. The difference 
was more remarkable regarding the diagnostic performance in 
patients with past -infection; the sensitivity of MC-CLIP in the 
internal and external validation cohorts was 83.7 and 72.5%, 
whereas that of a senior physician was much lower at 71.4 and 
68.6%, respectively.

According to the KCG, both current-infection and non-infection 
patients present with numerous characteristic endoscopic findings, 
but past-infection patients lack specific endoscopic findings other 

than map like redness (Xi et al., 2022; Yoshii et al., 2020). Thus, the 
absence of map-like redness in past-infection individuals poses a 
significant diagnostic dilemma (Xi et al., 2022; Yoshii et al., 2020). For 
example, as shown in Figure 4D, the mucosal surface of the gastric 
body in a previously infected stomach only exhibits subtle changes, 
whereas the morphology and surface mucosal characteristics of the 
antrum strongly suggest an uninfected state. Even senior physicians 
may diagnose this case as non-infection. Unlike the previous CNN 
models (Shichijo et al., 2017; Nakashima et al., 2020; Seo et al., 2023; 
Li et al., 2025; Shichijo et al., 2019), which diagnose single images 
before aggregating results for a per-patient diagnosis, MC-CLIP 
directly delivers a per-patient diagnosis through joint analysis of 30 

TABLE 2  Comparative diagnostic analysis of MC-CLIP and physicians for H. pylori’s three-categorical classification using the internal validation data.

Diagnostic 
metric

MC-CLIP Senior physician Junior physician MC-CLIP vs. 
Senior physician

MC-CLIP vs. 
Junior physician

RD (95% CI); 
P-value

RD (95% CI); 
p-value

Non-infection

Sensitivity (95% CI) 91.1% (84.3–95.0) 86.1% (78.3–91.6) 77.2% (68.1–84.4) 5.0% (−2.4, 12.4); 0.187 

(n.s.)

13.9% (5.3, 22.5); 0.002 (*)

Specificity (95% CI) 91.6% (85.1–95.4) 89.9% (83.3–94.2) 86.7% (79.3–91.6) 1.7% (−3.8, 7.2); 0.541 

(n.s.)

4.9% (0.1 to 9.7); 0.047 (*)

PPV (95% CI) 90.2% (83.1–94.5) 87.9% (80.0–93.0) 83.0% (74.3–89.3) 2.3% (−4.2, 8.8); 0.493 

(n.s.)

7.2% (−0.1, 14.5); 0.053 

(n.s.)

NPV (95% CI) 92.4% (86.0–96.0) 88.4% (81.5–93.1) 81.7% (74.2–87.5) 4.0% (−1.2, 9.2); 0.132 

(n.s.)

10.7% (4.3, 17.1); 0.001 (*)

Accuracy (95% CI) 91.4% (87.6–94.2) 88.2% (83.3–92.0) 82.3% (76.7–86.9) 3.2% (−0.6, 7.0); 0.098 

(n.s.)

9.1% (4.4 to 13.8); <0.001 

(*)

Past-infection

Sensitivity (95% CI) 83.7% (71.5–91.3) 71.4% (57.9–82.0) 52.5% (41.5–68.0) 12.3% (0.7 to 23.9); 0.038 

(*)

31.2% (18.2 to 44.2); <0.001 

(*)

Specificity (95% CI) 91.8% (86.8–95.1) 86.0% (80.0–90.6) 81.3% (73.4–85.6) 5.8% (0.0, 11.6); 0.049 (*) 10.5% (5.2, 15.8); <0.001 

(*)

PPV (95% CI) 74.5% (62.3–83.8) 59.3% (46.7–70.7) 44.3% (32.4–56.9) 15.2% (1.7, 28.7); 0.028 (*) 30.2% (17.5, 42.9); <0.001 

(*)

NPV (95% CI) 95.2% (90.8–97.5) 91.3% (86.0–94.8) 86.2% (79.9, 90.8) 3.9% (−0.4, 8.2); 0.072 

(n.s.)

9.0% (3.6, 14.4); 0.001 (*)

Accuracy (95% CI) 90.0% (85.5–93.4) 82.7% (77.1–87.3) 74.5% (68.4–80.0) 7.3% (1.6, 13.0); 0.012 (*) 15.5% (9.5, 21.5); <0.001 

(*)

Current-infection

Sensitivity (95% CI) 91.4% (82.6–96.0) 84.3% (73.6–91.2) 74.3% (63.2–83.1) 7.1% (−1.7, 15.9); 0.112 

(n.s.)

17.1% (8.7, 25.5); <0.001 

(*)

Specificity (95% CI) 98.7% (95.2–99.7) 98.0% (94.3–99.3) 92.0% (86.6–95.4) 0.7% (−0.7, 2.1); 0.317 

(n.s.)

6.7% (3.4, 10.0); <0.001 (*)

PPV (95% CI) 97.0% (89.5–99.2) 95.2% (86.5–98.5) 81.2% (70.5–88.8) 1.8% (−2.6, 6.2); 0.423 

(n.s.)

15.8% (6.2, 25.4); 0.002 (*)

NPV (95% CI) 96.1% (91.8–98.2) 93.0% (87.9–96.2) 88.5% (82.5–92.7) 3.1% (−1.2, 7.4); 0.156 

(n.s.)

7.6% (2.6, 12.6); 0.003 (*)

Accuracy (95% CI) 96.4% (93.1–98.2) 93.6% (89.6–96.3) 86.4% (81.2, 90.4) 2.8% (−0.4, 6.0); 0.089 

(n.s.)

10.0% (5.4, 14.6) < 0.001 

(*)

CI, Confidence Interval; MC-CLIP, Magnetically Controlled Capsule Endoscopy Contrastive Language-Image Pre-Training; NPV, Negative Predictive Value; PPV, Positive Predictive Value; 
RD, Risk difference; n.s, not significant. Asterisks (*) indicate significant differences (p < 0.05).
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selected images, leading to improved diagnostic sensitivity of past 
infection, which exceeds that of the senior physician in our study and 
the CNN models in previous studies.

This study has several strengths. First, this multiple-center study is 
meticulously designed, the sample size well calculated, with an ample 
volume of data in the training set, and the validation set encompasses 
both internal and external validation subsets. The diagnostic outcomes 
of MC-CLIP were compared with those of physicians at different levels 
of expertise using the internal and external validation set data. Second, 
this is the first vision–language foundation model (CLIP) for MCCE-
based three-categorical H. pylori infection classification. Physicians 
and AI engineers have engaged in deep collaboration, overcoming key 

limitations of CNN-based approaches and achieving end-to-end 
automation with 89.6% overall accuracy. Third, our previous work (Xi 
et al., 2022), in which the applicability of the KCG for MCCE was 
assessed, laid a solid foundation for the training of the H. pylori 
infection classification model in this study.

This study does have several limitations. First, the moderate 
decline in diagnostic accuracy observed in the external validation 
cohort reflects the heterogeneity inherent in real-world clinical 
practice and underscores the necessity of external validation for 
assessing model generalizability. Second, subsequent age-stratified 
analysis revealed significantly reduced sensitivity for diagnosing 
past-infection among elderly patients (≥60 years). This decline is 

TABLE 3  Comparative diagnostic analysis of MC-CLIP and physicians for H. pylori’s three-categorical classification using the external validation data.

Diagnostic 
metric

MC-CLIP Senior Physician Junior Physician MC-CLIP vs. 
Senior physician

MC-CLIP vs. 
Junior physician

RD (95% CI); 
P-value

RD (95% CI); 
p-value

Non-infection

Sensitivity (95% CI) 89.4% (81.5–94.3) 91.5% (84.4–95.6) 78.7% (69.4–86.1) −2.1% (−8.9, 4.7); 0.541 

(n.s.)

10.7% (2.4, 19.0); 0.012 (*)

Specificity (95% CI) 90.4% (83.6–94.7) 91.2% (84.9–95.1) 83.3% (75.1–89.5) −0.8% (−6.5, 4.9); 0.783 

(n.s.)

7.1%, (0.4, 13.8); 0.038 (*)

PPV (95% CI) 88.4% (80.4–93.6) 89.6% (82.3–94.3) 79.6% (70.5–86.6) −1.2% (−8.1, 5.7); 0.732 

(n.s.)

8.8% (0.1, 17.5); 0.047 (*)

NPV (95% CI) 91.2% (84.6–95.2) 92.9% (86.9–96.3) 82.6% (74.3–88.8) −1.7% (−6.6, 3.2); 0.493 

(n.s.)

8.6% (2.3, 14.9); 0.008 (*)

Accuracy (95% CI) 89.9% (85.1–93.4) 91.3% (86.8–94.5) 81.2% (75.4–86.1) −1.4% (−6.3, 3.5); 0.572 

(n.s.)

8.7% (4.1, 13.3) < 0.001 (*)

Past-infection

Sensitivity (95% CI) 72.5% (59.1–83.0) 68.6% (55.6–79.5) 54.9% (42.7–66.6) 3.9% (−7.2, 15.0); 0.493 

(n.s.)

17.6% (3.1, 32.1); 0.018 (*)

Specificity (95% CI) 91.7% (86.2–95.3) 89.2% (83.3–93.3) 85.4% (78.8–90.3) 2.5% (−4.6, 9.6); 0.493 

(n.s.)

6.3% (0.0, 12.6); 0.049 (*)

PPV (95% CI) 74.0% (61.4–83.7) 67.3% (54.8–77.8) 54.9% (42.7–66.6) 6.7% (−5.7, 19.1); 0.287 

(n.s.)

19.1% (4.3, 33.9); 0.012 (*)

NPV (95% CI) 91.1% (85.5–94.8) 89.7% (83.9–93.7) 85.4% (78.8–90.3) 1.4% (−3.1, 5.9); 0.541 

(n.s.)

5.7% (0.6, 10.8); 0.028 (*)

Accuracy (95% CI) 87.0% (81.9–91.0) 84.1% (78.6–88.6) 77.9% (71.7–83.2) 2.9% (−1.4, 7.2); 0.187 

(n.s.)

9.1% (3.4, 14.8); 0.002 (*)

Current-infection

Sensitivity (95% CI) 90.5% (80.4–96.4) 81.0% (69.6–88.9) 73.0% (61.4–82.3) 9.5% (3.6, 15.4); 0.002 (*) 17.5% (8.9, 26.1); <0.001 

(*)

Specificity (95% CI) 95.9% (91.2–98.3) 95.2% (90.3–97.7) 87.6% (81.1–92.2) 0.7% (−2.3, 3.7); 0.655 

(n.s.)

8.3% (3.2, 13.4); 0.002 (*)

PPV (95% CI) 90.5% (80.4–96.4) 87.9% (77.5–93.9) 71.9% (60.7–81.0) 2.6% (−5.8, 11.0); 0.541 

(n.s.)

18.6% (6.5, 30.7), 0.003 (*)

NPV (95% CI) 95.9% (91.2–98.3) 92.0% (86.5–95.5) 88.2% (81.8–92.7) 3.9% (−0.6, 8.4); 0.089 

(n.s.)

7.7% (1.7, 13.7); 0.012 (*)

Accuracy (95% CI) 94.2% (90.1–96.9) 90.9% (86.5–95.5) 83.2% (77.5–87.8) 3.3% (−0.6, 7.2); 0.098 

(n.s.)

11.0% (5.7, 16.3); <0.001 

(*)

CI, Confidence Interval; MC-CLIP, Magnetically Controlled Capsule Endoscopy Contrastive Language-Image Pre-Training; NPV, Negative Predictive Value; PPV, Positive Predictive Value; 
RD, Risk difference; n.s, not significant. Asterisks (*) indicate significant differences (p < 0.05).
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likely attributable to age-related mucosal changes—such as 
physiological atrophy, intestinal metaplasia, and medication-
induced alterations—which may obscure subtle post-eradication 
features and complicate accurate classification. Unfortunately, the 
limited number of past-infection cases in the elderly subgroup 
precluded more definitive conclusions, highlighting the need for 
future studies with larger geriatric cohorts to improve model 
performance in this population.

Furthermore, as the study participants were exclusively recruited 
from northern urban Chinese populations, the generalizability of 
MC-CLIP to other ethnicities, geographical regions, and 
socioeconomic backgrounds remains uncertain and warrants further 
investigation in diverse demographic settings. Lastly, the spontaneous 
eradication of H. pylori occurs in a certain proportion of the general 
population, albeit at a very low rate (<1%) (Correa and Houghton, 
2007). However, the clinical diagnostic gold standard we employed 
might have potentially misclassified the true infection status of a few 
study participants. The potential for misclassification is a limitation of 
our study and of real-world clinical practice. Future studies with 
prospective, longitudinal designs and more definitive diagnostic tests 
could further refine the ground truth.

The MC-CLIP model holds promise for integration into clinical 
workflows, such as serving as a pre-screening triage tool to 
prioritize MCCE cases for physician review or as a decision-support 
system providing real-time annotations during endoscopy 
interpretation. This could enhance efficiency and reduce the missed 
diagnosis of subtle morphological changes of past-infection. 
However, several challenges must be addressed prior to widespread 
adoption, including the need for regulatory approval, seamless 
integration with existing hospital information systems, and 
overcoming the “black-box” nature of deep learning models 
through explainable AI (XAI) techniques to build clinical trust. 
Furthermore, ensuring data privacy and security through robust, 
compliant deployment architectures is paramount.

In the future, we believe that large language models (LLMs) 
will continue to push the boundaries of AI applications in the 
medical field (Iwaya et al., 2023; Liu et al., 2024; Leung et al., 
2021; Chen et al., 2024a, 2024b). The integration of endoscopic 
images and multimodal clinical records using LLMs holds 
promise for the development of superior gastric cancer risk 
assessment tools, thereby fundamentally reshaping current 
screening practices.

FIGURE 4

Illustrative cases of H. pylori three-categorical classification and a challenging past-infection diagnosis. (A) A non-infection case, the gastric body and 
antrum mucosa was smooth, RAC was clearly observed. (B) A past-infection case, map-like redness was observed in gastric body and antrum, the 
close view of gastric body showed blurred RAC with mild mucosal swelling. (C) A current-infection case, mucosal swelling, spotty redness and diffusive 
redness was observed throughout the gastric body instead of RAC, and erosions was observed in the antrum. (D) Distant gastric body image appeared 
to be normal mucosa, with both physician agreeing on non-infection. Close view of gastric body revealed vague RAC, a diagnostic dilemma between 
non-infection and past-infection. Antrum appeared normal. MC-CLIP’s collective review of 30 images achieved accurate per-patient diagnosis as past-
infection, in contrast to physicians’ erroneous diagnosis of non-infection.
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In conclusion, MC-CLIP demonstrated excellent diagnostic 
performance, particularly for past-infections, highlighting its 
strong potential for application in MCCE-based gastric 
cancer screening.
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