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Septic arthritis is a severe and rapidly destructive joint infection, primarily
caused by Staphylococcus aureus. The interplay between bacterial virulence
factors and host immune responses determines disease progression and
clinical outcomes. This review discusses the key bacterial factors that
contribute to septic arthritis, including S. aureus cell wall components,
surface proteins, and secreted toxins. In parallel, host-related factors, such
as aging, immune responses, and genetic predispositions, are examined in
conjunction with the impact of S. aureus infection on bone integrity and
osteoimmunological mechanisms. Finally, this review highlights emerging
therapeutic approaches, including targeted anti-virulence strategies, immune
modulation, and anti-osteoclastogenic interventions, in mitigating joint damage.
Understanding the multifaceted interactions between S. aureus and the host
immune system is crucial for advancing treatment strategies and reducing
morbidity associated with septic arthritis.
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1 Introduction

Septic arthritis, recognized as one of the most aggressive joint diseases, is characterized
by inflammation, rapid cartilage degradation, and bone destruction (Nguyen et al.,
2023; Goldenberg, 1998). Despite prompt therapeutic intervention, approximately 50%
of patients experience progression to irreversible structural joint damage, culminating
in chronic disability characterized by lifelong functional impairment (Mohammad
et al., 2019). Nine percent of patients previously affected by septic arthritis underwent
arthroplasty within 15 years, indicating a risk that is six-fold higher than that of the
general population (Abram et al., 2020). Septic arthritis primarily occurs via hematogenous
dissemination, wherein pathogens enter the systemic blood circulation, colonize the joint
synovial membrane, and ultimately establish infection within the joint cavity. Secondary
routes include direct inoculation through traumatic injuries, iatrogenic procedures (e.g.,
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arthrocentesis), or contiguous extension from adjacent
osteomyelitic foci (Mathews et al., 2010). The infection incites
a dysregulated innate immune cascade marked by massive
neutrophil infiltration, monocyte/macrophage activation, and
excessive release of pro-inflammatory mediators and proteolytic
enzymes (Garcia-Arias et al., 2011; Momodu and Savaliya, 2024).
This inflammatory milieu drives synovial hyperproliferation,
cartilage matrix degradation, and bone resorption, ultimately
leading to irreversible joint destruction if left untreated. Notably,
even following timely antibiotic administration, residual bacterial
components, such as bacterial DNA and lipoproteins (Lpps),
persist as immunostimulatory pathogen-associated molecular
patterns (PAMPs), perpetuating osteolytic lesions via receptor
activator of nuclear factor-κB (NF-κB) ligand (RANKL)-mediated
osteoclastogenesis (Mohammad et al., 2019, 2022; Ali et al., 2015b;
Hu et al., 2025). Recent epidemiological studies estimate septic
arthritis incidence in Western countries at 2–10 cases per 100,000
person-years (Tarkowski, 2006), with a bimodal age distribution
showing elevated susceptibility among neonates/children aged
2–3 years and individuals >80 (Hu et al., 2023). High-risk
cohorts include prosthetic joint recipients, immunocompromised
hosts (e.g., diabetes and HIV), and patients with pre-existing
inflammatory arthropathies [e.g., rheumatoid arthritis (RA)]
(Tarkowski, 2006; Nade, 2003; Colavite and Sartori, 2014; Jin
et al., 2021), with mortality rates exceeding 15% in patients having
multiple comorbidities such as diabetes or chronic kidney disease
(Schindler et al., 2025).

The diagnosis of septic arthritis is often considered
straightforward, with synovial fluid (SF) culture serving as
the gold standard for diagnosis. However, this method has
limitations: only approximately 50% of patients yield a positive
culture result (Alexandersson et al., 2025), and cultures require
time to process. To address this, molecular methods, such as
polymerase chain reaction (PCR) assays, have been investigated
on SF. Although studies indicate that PCR does not improve
diagnostic accuracy over culture for common pathogens such as
Staphylococcus aureus and streptococci, it may offer advantages
in identifying less common pathogens such as Borrelia species
(Mathews and Coakley, 2008).

In addition to microbiological testing, several laboratory
parameters contribute to diagnostic evaluation. Although
blood tests are commonly performed, the most valuable
information comes from SF analysis. Classic diagnostic
cutoffs, established by Ropes and Bauer in the 1950s, remain
widely used: SF white blood cell (WBC) count > 50,000
cells/mm3, serum/SF glucose ratio < 0.5, and polymorphonuclear
percentage (PMN%) > 90 (Ropes and Bauer, 1953). Notably,
the summary likelihood ratio increases progressively with
higher SF WBC counts and PMN% (Margaretten et al., 2007).
However, growing evidence suggests that rigid adherence to
these classic cutoffs may lack sensitivity, particularly in certain
patient populations or clinical scenarios (Streck et al., 2025).
This underscores the need for integrating multiple diagnostic
parameters; importantly, while these classical cutoffs primarily
apply to native joint infections, lower thresholds are used for
periprosthetic joint infection (PJI; Parvizi et al., 2018; Xu et al.,
2019).

Septic arthritis should be treated with prompt antimicrobial
therapy, which should be initiated based on clinical suspicion,
even before SF or blood culture results are available. The
choice of antibiotics is usually empirical, guided by the presence
of risk factors for atypical organisms (Mathews and Coakley,
2008). The recommended duration is typically up to 2 weeks
of intravenous therapy or until clinical improvement is evident,
followed by 4 weeks of oral antibiotics (Coakley et al., 2006).
In addition, expert consensus emphasizes the essential role of
urgent source control, which involves evacuating purulent material
from the joint space. This can be achieved via closed needle
aspiration, arthroscopic lavage, or open debridement (Coakley
et al., 2006). This is not unexpected, as bacterial components
are known to provoke intense proinflammatory responses and
contribute significantly to joint destruction, as discussed in the
later section.

Outcomes of septic arthritis remain concerning. Mortality
is relatively high, ranging from 10 to 30%, and can lead to
an even higher rate in cases of polyarthritis (Weston et al.,
1999; Kaandorp et al., 1997; Jung et al., 2018). Osteomyelitis
develops in approximately 8% of patients (Weston et al., 1999).
Subjectively poor joint outcomes have been reported in 20–30%
of cases (Kaandorp et al., 1997; Ferrand et al., 2016). A recent
nationwide study conducted in the UK, which included all patients
undergoing arthroscopic knee washout over 20 years, revealed a 90-
day mortality rate of 8.94%, with risk of death increasing with age
(odds ratio per 5-year increase: 1.38). Notably, 8.76% of patients
underwent arthroplasty within 15 years, indicating a six-fold higher
risk compared to the general population (Abram et al., 2020).
Interestingly, the risk of arthroplasty was significantly higher in
patients with a history of osteoarthritis or RA than in those without
prior joint disease (Abram et al., 2020).

Septic arthritis arises from a diverse microbial etiology, with S.
aureus emerging as the predominant etiological agent, accounting
for the majority of clinically diagnosed cases (Goldenberg, 1998;
Alexandersson et al., 2025; Jin, 2024). This pathogen exhibits
broad clinical pathogenicity, spanning from localized cutaneous
infections to systemic, life-threatening conditions, including brain
abscess, meningitis, pneumonia, endocarditis, sepsis, bacteremia,
toxin-mediated gastroenteritis, toxic shock syndrome (TSS), and
osteomyelitis (as illustrated in Figure 1).

The virulence of S. aureus is attributed to its ability to evade
host immune responses, produce cytotoxic molecules, and establish
biofilms that contribute to chronic infections (Mohammad et al.,
2022; Na et al., 2020). A retrospective cohort study published in The
Lancet demonstrated that, among 33 analyzed bacterial pathogens,
S. aureus was the sole pathogen responsible for exceeding 1.1
million attributable deaths globally (Collaborators, 2022). The
pathogenesis and clinical expression of S. aureus infections
are modulated by complex host–pathogen interactions involving
microbial virulence factors and host immunological defenses.

This comprehensive review systematically examines key
bacterial mediators implicated in septic arthritis pathogenesis,
encompassing S. aureus structural components (e.g.,
peptidoglycan, teichoic acids, and lipoproteins), secreted exotoxins
(e.g., α-hemolysin and Panton–Valentine leukocidin), and
immunoevasive molecules (e.g., protein A and chemotaxis
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FIGURE 1

Schematic diagram illustrating the clinical spectrum of Staphylococcus aureus and the pathogenesis of septic arthritis. This figure illustrates the
various infections caused by S. aureus, which affect the nervous, respiratory, cardiovascular, musculoskeletal, gastrointestinal, genitourinary, and skin
and soft tissue systems. The left panel highlights diseases such as sepsis, bacteremia, pneumonia, endocarditis, osteomyelitis, and toxic shock
syndrome. The right panel depicts an S. aureus-induced septic arthritis knee joint with greater magnification, illustrating bacterial adhesion, invasion,
biofilm formation, and the resulting joint damage.

inhibitory protein) as described below and illustrated in Figure 2.
Concurrently, host-related variables influencing susceptibility
and disease severity are discussed, including age-associated
immunosenescence, dysregulated cytokine cascades, and
polymorphisms in innate immune receptors, such as Toll-
like receptors (TLRs) and formyl peptide receptors (FPRs).
Pathophysiological consequences of S. aureus infection on
osseous integrity are critically evaluated, with an emphasis on
osteoclast activation, the RANKL/osteoprotegerin (OPG), axis
perturbation, and osteoblast dysfunction as demonstrated below.
Furthermore, emerging translational interventions are highlighted,
including precision anti-virulence therapeutics (e.g., quorum-
sensing inhibitors), immunomodulatory biologics, phage-derived
lysins, and multivalent vaccine candidates targeting adhesins
and toxoids.

2 S. aureus—bacterial factors

The formidable virulence potential of S. aureus stems from its
structurally complex cell wall components, such as peptidoglycan
and lipoteichoic acids, combined with a multifactorial arsenal
of virulence determinants. These include pore-forming exotoxins
(e.g., α-hemolysin and Panton–Valentine leukocidin), immune–
evasion molecules (e.g., protein A and staphylococcal superantigen-
like proteins), and extracellular enzymes (e.g., proteases and
coagulases), which collectively mediate tissue invasion, immune
subversion, and host damage, as described in more detail below and
delineated in Figure 2 and Table 1.

2.1 Cell wall components

2.1.1 Peptidoglycan (PGN)
PGN, a critical structural polymer of the staphylococcal

cell wall, confers mechanical stability and osmotic resistance
through its three-dimensional mesh-like exoskeleton. Composed
of repeating glycan chains of β-(1,4)-linked N-acetylglucosamine
(NAG) and N-acetylmuramic acid (NAM) residues cross-linked by
short peptide bridges, PGN forms a rigid outer layer that maintains
cell shape and integrity (Sutton et al., 2021).

Fragments of PGN can function as PAMPs recognized by
pattern recognition receptors (PRRs), specifically via nucleotide-
binding oligomerization domain-containing protein 2 (NOD2)
in macrophages and dendritic cells. This recognition initiates
pro-inflammatory signaling cascades [e.g., NF-κB and mitogen-
activated protein kinase (MAPK)] that drive antimicrobial peptide
synthesis and inflammasome activation (Reed et al., 2015).

Contradictory evidence exists regarding PGN’s arthritogenic
potential. Early studies reported that intra-articular administration
of purified staphylococcal PGN in murine models induced severe
arthritis marked by robust macrophage/neutrophil infiltration,
synovial hyperplasia, and bone erosion (Liu et al., 2001). In
contrast, our recent findings demonstrate that PGN isolated from
an S. aureus lgt mutant strain (deficient in Lpps biosynthesis)
elicited only transient, mild synovitis without significant joint
destruction (Mohammad et al., 2019). This observed variability
likely reflects strain-specific differences in PGN biochemical
composition and purity, as traditional purification methods may
co-isolate immunostimulatory Lpps, confounding earlier results.
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FIGURE 2

Schematic illustration depicting the structural organization of Staphylococcus aureus and its virulence factors.

2.1.2 Lipoproteins (Lpps)
Staphylococcal Lpps, fundamental to bacterial membrane

architecture, play multifaceted roles in virulence factor expression,
nutrient uptake, antibiotic resistance, and host–pathogen
interplay (Mohammad et al., 2022). These lipid-anchored
proteins function as potent Toll-like receptor 2 (TLR2)
agonists, driving pro-inflammatory cascades in macrophages
and dendritic cells that eventually lead to tissue damage.
Lpps have been systematically characterized by our research
group across multiple murine disease models, including
septic arthritis, sepsis, and cutaneous infection, revealing
context-dependent roles shaped by infection route and
target tissue.

Systemic infection (intravenous administration): Lpps enhance
bacterial metabolic fitness via nutrient scavenging and immune
evasion, acting as critical virulence determinants. TLR2/MyD88-
dependent signaling exacerbates systemic inflammation,
manifesting as accelerated weight loss, impaired bacterial
clearance, and increased mortality in murine models (Mohammad
et al., 2020).

Localized joint infection (intra-articular administration): Lpps
exhibit an immunomodulatory double-edged effect: Purified Lpps
alone induce severe bone erosion, whereas co-injection of purified
Lpps with live S. aureus exhibits adjuvant-like properties, thereby
enhancing bacterial killing and attenuating joint destruction,
highlighting a protective role in septic arthritis (Mohammad et al.,
2019).

Cutaneous infection (subcutaneous administration): Lpps
amplify the local inflammatory response through leukocyte
chemoattractants and myeloperoxidase, correlating with elevated
bacterial persistence. Concurrently, Lpps drive dysregulated
hemostasis, fostering fibrin-rich abscess formation that physically
shields bacteria from leukocyte infiltration (Mohammad et al.,
2021).

2.1.3 Surface proteins
S. aureus employs a diversity of surface proteins covalently

secured to its cell wall via sortase-catalyzed LPXTG motif
anchoring, which contribute to critical pathogenic processes
including host adhesion, immune evasion, and tissue invasion.
These virulence determinants are categorized as Microbial
Surface Components Recognizing Adhesive Matrix Molecules
(MSCRAMMs). These proteins bind to host regulatory
components, effectively hijacking endogenous “off-switches” of
the complement cascade and enabling ligand-specific interactions
with host extracellular matrix components and cellular receptors,
particularly within synovial and chondrocytic niches (Foster, 2005;
Foster et al., 2014; Kim et al., 2017). Key MSCRAMMs implicated
in the pathogenesis of septic arthritis include:

2.1.3.1 Staphylococcal protein A (SpA)
SpA binds the Fcγ domain of immunoglobulins (IgG),

disrupting opsonophagocytosis by masking bacterial surfaces
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TABLE 1 Key virulence molecules expressed by Staphylococcus aureus.

Molecules Functions Arthritogenic roles

Secreted molecules

vWbp, SC Binds fibrinogen, triggering clot formation to shield bacteria. Facilitate joint invasion and exacerbate bone erosion (Na et al., 2020;
Friedrich et al., 2003).

Sak Activates plasminogen → plasmin, degrading fibrin clots to
facilitate hematogenous dissemination.

Attenuates sepsis via plasminogen activation (Kwieciński et al., 2010).

SCIN Inhibits complement activation (Koymans et al., 2017; Rooijakkers
et al., 2006).

Exacerbates disease severity (Sakiniene et al., 1999).

Thermonuclease A Increases the extracellular and intracellular survival of bacteria. Exacerbates septic arthritis (Li et al., 2025).

Cell wall components

Lpps Virulence factor expression, nutrient uptake, antibiotic resistance,
and host–pathogen interplay (Mohammad et al., 2022).

Potent proinflammatory effects in systemic, localized, and cutaneous
infections (Mohammad et al., 2019, 2020, 2021).

PGN Critical bacterial cell wall structural polymer. Limited effect in inducing synovitis (Mohammad et al., 2019).

SpA Binds IgG Fc → blocks phagocytosis and opsonization (Cruz et al.,
2022).

Exacerbating disease severity and outcomes (Palmqvist et al., 2002).

FnBPs Facilitate bacterial adhesion. Limited effect in arthritogenicity (Palmqvist et al., 2005; Speziale and
Pietrocola, 2020).

ClfA and ClfB Promote bacterial adhesion. Involved in osteoclastogenesis and cartilage degradation (Palmqvist
et al., 2005).

Cna Enable bacterial colonization in joint cartilage (Switalski et al., 1993). Exacerbates disease severity and outcomes (Patti et al., 1994).

Surface proteins (e.g.,
FnBPs and ClfA/B)

Contribute to biofilm development and tissue adhesion. Amplify inflammasome activation and drive osteoclastogenesis and
cartilage degradation (Palmqvist et al., 2005).

CPs Contribute to immune evasion and enhance bacterial virulence. Exacerbate arthritic and septic outcomes (Ko et al., 2013; Nilsson et al.,
1997).

Toxins and other molecules

PSMs Contribute to biofilm formation, cell lysis and weaken immune
response (Cheung et al., 2014; Peschel and Otto, 2013).

PSMα aggravates systemic infection, but PSMβ protects against joint
destruction (Hu et al., 2022).

α-Toxin Contributes to cell lysis and tissue damage, and immune suppression
(Weiss et al., 2023).

Exacerbates the frequency and severity of arthritis (Jarneborn et al.,
2020).

Bacterial DNA Induce inflammatory response (Mann et al., 2009; Sharma and
Rajpurohit, 2024; Fournier and Philpott, 2005).

Exacerbates outcomes of arthritis and septic shock (Deng et al., 1999;
Sparwasser et al., 1997).

from antibody-dependent clearance (Cruz et al., 2022). SpA-IgG
immune complexes further trigger TNFR1-dependent apoptosis in
B lymphocytes and cause monocytes to undergo necrosis (Fox et al.,
2021).

In a murine septic arthritis model, wild-type S. aureus
(Newman strain) induced significantly higher synovial tumor
necrosis factor (TNF)-α levels, severe arthritis, and increased
mortality compared to isogenic spa mutants, demonstrating SpA
functions as a critical virulence factor responsible for exacerbating
disease severity and outcomes in septic arthritis (Palmqvist et al.,
2002).

2.1.3.2 Fibronectin-binding proteins (FnBPs)
FnBPs mediate high-affinity binding to fibronectin’s N-terminal

domain via a tandem β-zipper mechanism, facilitating bacterial
attachment to endothelial cells and articular tissues.

While FnBPs exhibit negligible direct arthritogenicity, they
drive interleukin-6 (IL-6)-dominated cytokine storms via integrin
α5β1/fibronectin bridging, thereby inducing weight loss, increased
mortality, and bacteremia in murine sepsis models (Palmqvist et al.,

2005; Speziale and Pietrocola, 2020). This systemic inflammation
may indirectly potentiate joint vulnerability to metastatic infection.

2.1.3.3 Clumping factors (ClfA and ClfB)
ClfA/B bind fibrinogen’s γ-chain via a “dock, lock, and latch”

mechanism mediated by their DEv-IgG-fold domains, promoting
adhesion to fibrin deposits in inflamed synovium (Jin, 2024;
Deivanayagam et al., 2002).

In murine models, ClfA/B synergize with FnBPs to amplify
NLRP3 inflammasome activation in synovial macrophages, driving
IL-1β-mediated osteoclastogenesis and cartilage degradation. Dual
clfA/clfB deletion reduced arthritis incidence by 60% compared to
infections induced by its wild-type counterpart (Palmqvist et al.,
2005). The severity of septic arthritis was markedly reduced in mice
infected with a ClfA mutant but not a ClfB mutant, compared with
mice infected with the wild-type strain. In fact, ClfA vaccination
prevented septic arthritis, suggesting that ClfA is crucial for septic
arthritis development (Josefsson et al., 2001).

Frontiers in Microbiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1687243
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Hu et al. 10.3389/fmicb.2025.1687243

2.1.3.4 Collagen adhesion (Cna)
Cna’s collagen-binding domains (CBDs) bind type I/II collagen

triple helices via a unique “collagen hug” mechanism, enabling S.
aureus colonization of articular cartilage (Switalski et al., 1993).

It has been revealed that the collagen-binding protein (CnBP)
was detectable in 56% of S. aureus isolates associated with
osteomyelitis, underscoring its pathophysiological relevance to
bone and collagen matrix colonization (Ryding et al., 1997).
In murine infection models, animals inoculated with a cnbP-
deficient isogenic mutant exhibited a markedly reduced incidence
of septic arthritis (27% vs. 70%), indicating that CnBP is a critical
determinant of arthritogenic virulence and disease progression
(Patti et al., 1994).

2.1.4 Capsular polysaccharides (CPs)
S. aureus synthesizes several capsular polysaccharides (CPs),

aiding in immune evasion and enhancing virulence, primarily
serotypes 5 (CP5) and 8 (CP8), which dominate clinical isolates
(Ryding et al., 1997; Arbeit et al., 1984).

These exopolysaccharides form an anti-phagocytic shield by
sterically hindering opsonin deposition and masking surface
epitopes from antibody recognition (Ko et al., 2013). CP5, in
particular, exacerbates arthritic and septic outcomes: murine
models infected with CP5-expressing strains exhibit 2-fold higher
mortality and 2.3-fold increased arthritis severity compared to
�cap5 isogenic mutants (Nilsson et al., 1997).

2.2 Secreted molecules

S. aureus deploys a series of secreted molecules to subvert
host defenses, establish infection, and disseminate disease.
These effectors, categorized by functional specialization (Table 1),
include enzymatic toxins, immune modulators, and biofilm-
associated molecules.

2.2.1 von Willebrand factor-binding protein
(vWbp)

vWbp is a hemostatic hijacker that binds von Willebrand
factor (vWF), a glycoprotein critical for platelet adhesion and clot
stabilization. By anchoring to endothelial vWF multimers, vWbp
facilitates S. aureus adhesion to synovial microvasculature, enabling
joint invasion and immune evasion via fibrin-encapsulated
microcolonies (Thomas et al., 2021; Drakeford et al., 2022).

In murine septic arthritis models, �vwb mutants exhibited
three-fold reduced joint bacterial loads compared to wild-type
strains, while vWF-deficient mice infected with the �vwb (vwb-
mutant) strain exhibited more severe bone erosion, underscoring
vWbp’s capacity for joint invasion and the role in joint-specific
pathogenicity (Na et al., 2020). Importantly, no difference in
arthritis severity was found between �vwb mutants and the wild-
type strain in vWF-deficient mice, suggesting the arthritogenic
effect of vWbp might be mediated by vWbp-vWF complex
formation. RA is known to be the major risk factor for septic
arthritis (Favero et al., 2008). In RA, inflammatory cytokines
stimulate endothelial cells to release extra-large and hyperreactive

vWF multimers (Bernardo et al., 2004). We propose that
hyperactive vWbp may exploit these vWF multimers to generate
microthrombus-like niches within the synovial microvasculature,
thereby facilitating joint invasion by S. aureus expressing vWbp
in RA patients. It is known that vWbp can interact with ClfA
on the bacterial surface after secretion, promoting S. aureus
adhesion to vWF and vascular endothelium under shear stress
(Claes et al., 2017). However, whether the arthritogenic properties
of vWbp are mediated through ClfA remains unknown, warranting
further studies.

2.2.2 Staphylocoagulase (SC)
SC and vWbp share 78% sequence homology and both activate

prothrombin to convert fibrinogen to fibrin, fostering abscess
formation (Friedrich et al., 2003). Furthermore, SC-positive S.
aureus strains possess molecular strategies to resist fibrin clot-
mediated clearance, facilitating bacterial aggregation, enhancing
intraclot survival, and sustaining chronic host colonization, thereby
potentiating virulence (Loof et al., 2015).

However, SC’s contribution to septic arthritis is auxiliary: SC
deficient (�coa) strains showed only 28% attenuation in synovitis
severity compared to wild-type, contrasting with �vwb’s 69%
reduction, indicating the role of SC in joint invasion is less
significant compared to vWbp (Na et al., 2020).

2.2.3 Staphylokinase (Sak)
Sak, an agr-regulated fibrinolytic enzyme, activates

plasminogen to generate plasmin, thereby dissolving fibrin
clots and facilitating hematogenous dissemination. Paradoxically,
Sak also challenges innate immunity: Sak-mediated plasmin
proteolysis degrades biofilm matrices, sensitizing S. aureus to
antibiotics and immune defenses (Kwiecinski et al., 2016). Sak-α-
defensin complexes neutralize neutrophil extracellular trap (NET)
bactericidal activity, protecting against α-defensin-mediated killing
(Jin et al., 2004).

Sak expression had no impact on disease development in
the mouse septic arthritis model. However, Sak attenuates sepsis
via plasminogen activation since �sak caused higher mortality
vs. wild-type bacteria (Kwieciński et al., 2010). Contrariwise, in
cutaneous infection, Sak promotes abscess drainage, reducing
lesion size (Kwiecinski et al., 2013).

2.2.4 Staphylococcal complement inhibitor (SCIN)
SCIN blocks complement-mediated opsonophagocytosis by

stabilizing C3 convertase, preventing amplification, and inhibiting
C5a anaphylatoxin generation, reducing neutrophil chemotaxis
(Rooijakkers et al., 2007).

In murine models of S. aureus-induced septic arthritis and
bacteremia, complement depletion (via cobra venom factor)
exacerbated disease severity, due to dysregulated innate immunity
characterized by compromised neutrophil chemotaxis and
transendothelial migration, as well as defective opsonophagocytosis
(Sakiniene et al., 1999). The role of SCIN in the development of
septic arthritis is still unclear.
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2.2.5 Thermonuclease A (NucA)
NucA, a nuclease produced by S. aureus, degrades extracellular

DNA and RNA, which destabilizes biofilms and causes bacterial
dispersal (Bhattacharya et al., 2020). Loss of NucA (�nuc1
mutant) results in stronger biofilm formation, more neutrophil
extracellular trap (NETs) production, and increased bacterial
killing by neutrophils (Berends et al., 2010). NucA helps S.
aureus evade NETs by breaking down their DNA backbone and
generating nucleoside products, inducing apoptosis in immune
cells (Thammavongsa et al., 2013). In infection models, NucA
expression is linked to higher mortality, delayed bacterial clearance,
and resistance to neutrophil killing (Berends et al., 2010).

In a mouse model of septic arthritis, NucA causes severe bone
destruction, rapid weight loss, and high proinflammatory cytokine
levels. These effects might be mediated through its NET-degrading
activity, suppression of neutrophil killing, and cytokine induction
in host cells, making NucA a key driver of S. aureus septic arthritis
(Li et al., 2025).

2.3 Toxins

S. aureus produces a variety of toxins that significantly enhance
its pathogenicity. In addition to those mentioned above, numerous
other toxins contribute to disease progression by damaging host
tissues, disrupting immune responses, and promoting bacterial
dissemination. These toxins can be grouped based on their
functions and targets as follows:

2.3.1 Phenol-soluble modulins (PSMs)
PSMs are a family of small, amphipathic peptides that play

crucial roles in the virulence of S. aureus. PSMα, particularly α3,
is described as highly toxic and contributes to the pathogenicity
of S. aureus by lysing host neutrophils and other immune cells,
leading to the release of enzymes and reactive oxygen species (ROS)
into the surrounding tissue. This process can cause inflammation,
tissue damage, and ultimately result in organ dysfunction while
also weakening the immune response (Cheung et al., 2014). While
PSMα has been considered as a potent cytolysin, all S. aureus
PSMs play a role in biofilm formation (Cheung et al., 2014;
Peschel and Otto, 2013). Especially, the aggregation of PSMα3 into
amyloid fibril fortifies the biofilm structure, enhances its resistance
to mechanical stress and matrix-degrading enzymes (Peschel and
Otto, 2013; Schwartz et al., 2012).

Recent research investigated the roles of PSMα and PSMβ using
a mouse S. aureus septic arthritis model with three isogenic S.
aureus strains: Newman (wild type), �psmα (PSMα-deficient), and
�psmβ (PSMβ-deficient; Hu et al., 2022). This study concludes
that PSMα and PSMβ have distinct roles in septic arthritis: PSMα

aggravates systemic infection but does not significantly impact the
development of septic arthritis. However, �psmβ-infected mice
showed increased bone erosion in septic arthritis, indicating that
PSMβ protects against joint destruction. These findings highlight
the complex interplay between different PSMs in the pathogenesis
of staphylococcal infections and suggest potential therapeutic
targets for managing septic arthritis (Hu et al., 2022).

2.3.2 α-Toxin (alpha-hemolysin)
Among all the hemolysins, α-toxin is the most studied molecule

due to its potent virulence. It is known as a pore-forming toxin,
which creates transmembrane channels in host cell membranes,
including red blood cells, epithelial cells, and immune cells, leading
to cell lysis and tissue damage, as well as immune suppression
(Krones et al., 2021). It has been confirmed to contribute to the
pathogenesis of many different diseases, including septic arthritis
and sepsis.

In a mouse model, infection with an alpha-toxin mutant strain
of S. aureus resulted in a lower frequency and reduced severity
of arthritis (Nilsson et al., 1999). Similarly, a rabbit sepsis model
demonstrated that rabbits infected with the alpha-toxin mutant
strain showed no mortality, whereas half of the control group
succumbed to the infection by day 10 (Crémieux et al., 2014).

2.3.3 Superantigens
S. aureus superantigens have the capability of activating a

significant portion (up to 20%) of host T cells and causing the
release of inflammatory cytokines, leading to the pathogenesis of
life-threatening infections like toxic shock syndrome (TSS), food
poisoning, and septic shock (Noli Truant et al., 2022; Roetzer
et al., 2022). They can be categorized into three types: Toxic shock
syndrome toxin-1 (TSST-1), staphylococcal enterotoxins (SEs), and
staphylococcal enterotoxin-like toxins (SEIs). TSST-1 is critical in
the pathogenesis of toxic shock syndrome (TSS), leading to severe
complications such as multiple organ disorder and shock (Weiss
et al., 2023). One of our previous studies indicated that tofacitinib,
an immunosuppressive medicine for RA, significantly reduced
mortality, accompanied by decreased levels of interferon γ (IFN-
γ) and TNF-α, in mouse models of TSST-1 induced shock, which
highlights the protective effect of tofacitinib in enterotoxin-induced
shock in mice (Jarneborn et al., 2020).

In both rat and mouse models for septic arthritis, superantigens
such as TSST-1 were shown to play a potent role, as TSST-
1-deficient strain-infected mice developed less severe and less
frequent septic arthritis compared to mice infected with the TSST-
1 parental strain (Bremell and Tarkowski, 1995; Abdelnour et al.,
1994a).

The roles of other virulence factors in septic arthritis
are still under investigation, including chemotaxis inhibitory
protein of staphylococci (CHIPS), wall teichoic acids (WTAs),
lipoteichoic acids (LTAs), polysaccharide intercellular adhesin
(PIA), hyaluronidase, lipases, and proteases. Understanding these
virulence factors is crucial for developing new therapeutic strategies
to combat S. aureus infections, particularly in the face of rising
antibiotic resistance.

3 Host factors

Host factors play a very important role in S. aureus septic
arthritis. The susceptibility, progression, and prognosis of the
disease are greatly dependent on the host’s age, immune response,
gender, hormonal changes, genetic susceptibility, and other factors,
as reviewed below.
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3.1 Aging

Aging is an important factor influencing the host’s susceptibility
to septic arthritis and the severity of the disease. Advanced age (over
80 years) was identified as a significant risk factor for septic arthritis
in a prospective cohort study in Amsterdam, which monitored
4,907 patients with rheumatic diseases for 3 years and identified 37
new cases of septic arthritis (Kaandorp et al., 1995). Indeed, our
data suggest that the incidence of septic arthritis is six times higher
in persons over 80 compared to those under 65 (Alexandersson
et al., 2024). The immune system and physiological functions
of the human body undergo significant changes with age. These
changes not only increase the risk of infection in the elderly but
also aggravate the consequences of infection. Thus, it is critical to
understand how aging influences the host immune response and
the progression of the disease.

3.1.1 Immunosenescence
Immunosenescence refers to the gradual decline in immune

function and changes in immune response that occur in the
elderly, encompassing both innate and adaptive immunity. Innate
immunity in the elderly is characterized by a decline in the function
of neutrophils, macrophages, and natural killer (NK) cells, and
these cells play an important role in fighting bacterial infections
(Arlt and Hewison, 2004). Neutrophils exhibit a weakened trend of
chemotaxis and phagocytosis, while macrophages show a reduction
of antigen presentation ability and phagocytosis function (Plowden
et al., 2004; Simmons et al., 2022), facilitating bacterial colonization
and proliferation in the host.

In adaptive immunity, the population and function of T cells
and B cells are affected. Due to aging, the thymus of the elderly
gradually degenerates, resulting in a decrease in the production
of new T cells, affecting the diversity and function of existing
T cells (Srinivasan et al., 2023; Snijckers and Foks, 2024). In
addition, the production of B cells and the ability to produce
antibodies have also been weakened, which causes an insufficient
immune response to new infections in the elderly population
(Snijckers and Foks, 2024). Therefore, these alterations contribute
to immunosenescence, making the aged immune system more
susceptible and resulting in a lower clearance efficiency when
dealing with pathogens, such as S. aureus.

In a mouse bacteremia model, we found that advanced age
increased mortality, altered splenomegaly, and was associated with
impaired cytokine responses and dysfunctional myeloid cell activity
despite elevated circulating neutrophils and monocytes (Hu et al.,
2023; Nacionales et al., 2014). However, the frequency and severity
of septic arthritis did not differ with age, despite prior evidence
of compromised immunoglobulin responses in older mice after S.
aureus infection (Gupta et al., 2023).

3.1.2 Changes of microenvironment in the joint
The joints themselves also undergo a significant intrinsic

decline with age. These changes include the wear and tear of
cartilage, the increased inflammatory response of the synovium,
and the changes in the composition of the synovial fluid (Loeser,
2010). These degenerative changes not only make the elderly more

susceptible to chronic joint diseases such as osteoarthritis but also
provide favorable conditions for the occurrence of septic arthritis.

The level of immunomodulatory factors in joint synovial fluid
changes with age, impacting the local anti-infection ability (Muire
et al., 2020; Lencel and Magne, 2011). Aging-related reductions in
key components, such as hyaluronic acid and lubricating proteins,
in synovial fluid compromise the lubricating and cushioning
functions of the joints, potentially diminishing their barrier
function against invasive bacteria (Temple-Wong et al., 2016). In
addition, in elderly individuals, reduced blood flow in synovial
tissues and impaired efficiency of immune cell migration to sites
of infection create conducive conditions for S. aureus colonization
and proliferation within the joints (Sacitharan, 2019).

3.1.3 Chronic diseases
A variety of chronic diseases, like cardiovascular diseases,

diabetes, and chronic kidney diseases, are often accompanied
by the elderly, which further increases the risk of infection.
For example, diabetes significantly increases the susceptibility to
bacterial infections due to factors like hyperglycemia-induced
immune dysfunction, impaired cytokine production, and altered
Sabers two-component system (a regulatory system in S. aureus
that controls the expression of various virulence factors; Genito
et al., 2023; Wang et al., 2023; Zhou et al., 2024). Patients with
cardiovascular disease and chronic kidney disease have reduced
anti-infection ability due to disorders of blood circulation and
metabolic function, as reviewed in Marassi and Fadini (2023)
and Zoccali et al. (2023). In addition, the existence of a variety
of chronic diseases is often accompanied by long-term use of
immunosuppressants, steroids, and other drugs, which can also
inhibit the immune system and increase the risk of infection
(Zoccali et al., 2023).

3.2 S. aureus-caused immune response in
infection

Immune response plays a key role in the pathogenesis of S.
aureus septic arthritis. The host’s innate and adaptive immune
systems work together to detect and eliminate bacterial infections.
However, with the help of its multiple virulence factors, S. aureus is
able to evade the immune system’s attack in various ways, resulting
in increased bacterial survival in the host. This section will provide
a detailed discussion of how the immune system responds to S.
aureus infection, including the immune cells and mechanisms
involved, with a focus on neutrophils, monocytes, lymphocytes, and
TLR2 (Figure 3).

3.2.1 Innate immunity
The innate immune system, which is characterized by

its rapid response rather than specificity, serves as the first
line of defense when the host vs. pathogen invasion occurs.
It identifies PAMPs and damage-associated molecular patterns
(DAMPs) to activate a series of immune responses. The innate
immune system plays a vital role in septic arthritis caused
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FIGURE 3

The immune mechanisms activated during Staphylococcus aureus septic arthritis, focusing on the interactions between various immune cells and
their roles at the site of infection. At the site of infection, S. aureus initiates an immune response characterized by the recruitment and activation of
macrophages and neutrophils. Upon encountering S. aureus, macrophages undergo activation and polarization into distinct phenotypes: M1
Macrophages: Characterized by the expression of markers including MHC-II, TLR4, TLR2, CD80, and inducible nitric oxide synthase (iNOS), M1
macrophages mediate pro-inflammatory responses by secreting cytokines such as TNF-α, thereby facilitating immune cell recruitment and
enhancing phagocytosis of S. aureus. M2 Macrophages: In contrast, M2 macrophages are involved in anti-inflammatory responses and tissue repair,
identified by the expression of markers such as CD206, CD163, CD209, FIZZ1, and Ym1/2. M2 macrophages contribute to the resolution of
inflammation and the repair of damaged tissues. Osteoclasts: reabsorb calcium and cause bone erosion. Neutrophils are recruited to the site of
infection through a multi-step process involving rolling, adhesion, activation, and transmigration across the endothelial barrier. Upon activation,
neutrophils engage in phagocytosis (engulfment and degradation of S. aureus). Reactive oxygen species (ROS) production [within phagosomes,
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase facilitates the generation of ROS, leading to bactericidal activity]. Neutrophil
extracellular traps (NETs) are released by activated neutrophils and are composed of decondensed chromatin and antimicrobial proteins to trap and
neutralize extracellular S. aureus. Antigen presentation and adaptive immune response: Macrophages and other antigen-presenting cells (APCs)
process and present S. aureus antigens to T cells, initiating the adaptive immune response and assisting in the activation of B cells. Upon activation, B
cells produce specific antibodies against S. aureus, which facilitates bacterial clearance and contributes to immunological memory.

by S. aureus: the complement system, a cascade of plasma
proteins, is a crucial effector mechanism for opsonizing pathogens,
recruiting immune cells, and directly lysing target cells; innate
immune cells, such as neutrophils, monocytes/macrophages
and NK cells, limit the bacterial proliferation and spread
by phagocytosis, killing and releasing different cytokines. In
addition, the innate immune system also recognizes the specific
components of S. aureus through PRRs, such as TLRs, which
activate the downstream signaling pathways and trigger an
inflammatory response.

3.2.1.1 Neutrophils
Neutrophils are the most abundant white cells in humans

(about 50%−70%) and mice (about 10%−25%) peripheral blood
(Hidalgo et al., 2019). Working alongside other resident immune
cells, they contribute to the first line of innate immunity to
combat S. aureus infections. Through chemotaxis, neutrophils
swiftly migrate to the site of infection and eliminate pathogens
using various mechanisms.

Chemotaxis: Neutrophils can quickly migrate to the infected
site by bacterial stimulation and by the compounds S. aureus
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produce or secrete (such as PSMs; and N-formyl-Met-Ile-Phe-
Leu, fMIFL) and chemokines secreted by host cells [such
as interleukin-8 (IL-8)].

Phagocytosis: Neutrophils can engulf and kill the bacteria
through phagocytosis. After S. aureus has been encountered and
engulfed, the phagosome of neutrophils fuses with the lysosome
to form a phagolysosome, which degrades the bacteria through
the acidic environment and the action of lysosomal enzymes. This
fusion is also important for the oxidative burst, which allows the
assembly of the NADPH oxidase complex and the production of
ROS both inside the phagolysosome and outside of the cell.

Oxidative burst: Neutrophils produce ROS through the
NADPH oxidase system, such as superoxide (O−

2 ) and hydrogen
peroxide (H2O2), which have a strong bactericidal effect. However,
S. aureus employs a complicated defense to resist oxidative killing.
The bacterium first converts superoxide anions into the less toxic
H2O2 through the action of superoxide dismutase (SodA and
SodM). The resulting H2O2 is then rapidly neutralized into water
and oxygen by the crucial enzyme catalase (KatA). Beyond these
enzymatic defenses, S. aureus utilizes additional strategies, such
as the production of carotenoid pigments that quench ROS, and
the deployment of repair systems to fix oxidative damage. The
collective function of these mechanisms allows S. aureus to survive
within the neutrophil phagosome. For a comprehensive overview,
see (Mandell, 1975; Spaan et al., 2013).

A recent study showed that while PSMα3 strongly activates
neutrophil NADPH oxidase via FPR2, PSMβ1 acts as a dual
FPR1/FPR2 agonist that partially inhibits PSMα3-induced oxygen
radical production, suggesting a protective role against PSMα

toxicity (Hu et al., 2022).
NETs: Neutrophils can release extracellular reticule-like

structures, which are composed of DNA and antibacterial proteins,
which can capture and kill bacteria (Meier et al., 2024). NETs can
not only directly kill S. aureus, but also limit the spread of bacteria
at the infected site (Brinkmann et al., 2004). However, as mentioned
in Section 2.2.5, S. aureus counteracts this defense by secreting
potent nucleases (most notably Nuc) that efficiently degrade the
DNA backbone of NETs, allowing it to escape the trap and continue
disseminating (Spaan et al., 2013; Flannagan et al., 2015).

3.2.1.2 Monocytes/macrophages
Monocytes, constituting only 5%−10% of the total white cell

population in both humans and mice (Seidler et al., 2010), play a
considerable role in S. aureus-induced septic arthritis. Monocytes
circulate in the blood as precursor cells; they can differentiate into
macrophages or dendritic cells (DCs) upon recruitment to the
site of infection, where they help regulate inflammatory responses.
Activated macrophages are not only an outstanding phagocyte but
also potent secretors of cytokines and chemokines (Meierovics and
Cowley, 2016).

Tissue-resident macrophages are specialized subsets located in
specific organs, such as osteoclasts in bone, alveolar macrophages
in the lung, microglia in the brain, Langerhans cells in the skin, and
Kupffer cells in the liver (Zhao et al., 2024). These cells play highly
diverse functions in their tissue localization.

Phagocytosis: Macrophages are capable of recognizing and
engulfing S. aureus. Following phagocytosis, bacteria are degraded
through acidic environments and lysosomal enzymes. Moreover,

macrophages can eliminate intercellular pathogens via autophagy,
a process involving recruitment of the autophagy protein LC3 to
phagosomes, which is induced by signaling through receptors like
TLRs and FcγRs (Huang et al., 2009).

Antigen-presentation: In addition to phagocytosis and bacterial
killing, macrophages serve as antigen-presenting cells (APCs),
processing and presenting bacterial antigens to T cells and
activating adaptive immune responses (Banchereau and Steinman,
1998). This process is essential for clearing persistent infections and
establishing immune memory.

Inflammation regulation: Macrophages secrete a variety of
cytokines, such as TNF-α, IL-6, IL-10, and IL-12, modulating
inflammatory response and recruiting additional immune cells (Jin
et al., 2021). However, excessive inflammatory response may lead
to tissue damage. Macrophages are pathogenic in inducing bone
damage in septic arthritis in a murine model, indicating that their
activity must be finely regulated (Hu et al., 2025).

Macrophages can polarize into distinct functional types in
response to microenvironmental cues. Classically activated (M1)
macrophages exhibit potent bactericidal and inflammatory effects,
while alternatively activated (M2) macrophages are involved in
tissue repair and the resolution of inflammation. The balance
between M1 and M2 polarization in response to S. aureus
infection significantly impacts infection outcomes by modulating
immune responses and inflammatory processes (Nguyen et al.,
2023; Mohammad et al., 2019, 2022; Hu et al., 2025; Kopparapu
et al., 2021; Schultz et al., 2022).

As mentioned earlier, neutrophils are known to be protective
during infections, and their depletion leads to worsened outcomes.
In contrast. Macrophage depletion attenuates joint swelling and
bone damage. Our previous work demonstrated that monocyte
depletion in a mouse model of septic arthritis significantly
reduced bone resorption induced by S. aureus lipoproteins (Schultz
et al., 2022). Supporting a protective role for neutrophils and a
pathogenic role for monocytes in septic arthritis.

Another study using a Pseudomonas aeruginosa-induced
septic arthritis mouse model reported similar findings:
neutrophils confer a protective role in septic arthritis, whereas
monocytes/macrophages are essential for preventing mortality
(Jin et al., 2019). These results underscore the dual role of
monocytes in both controlling and contributing to the pathology
of septic arthritis.

3.2.1.3 Complement system
The host complement system plays a crucial role in the

recognition, opsonization, and elimination of invading microbes.
This function is carried out by a complex and tightly regulated
network of serum proteins and cell surface receptors that act as
substrates, enzymes, and modulators within a series of extracellular
proteolytic cascades (Walport, 2001a,b).

Complement activation occurs through three well-defined
pathways: the classical, lectin, and alternative pathways. All three
cascades converge at the central cleavage of C3, producing the
active fragments C3a and C3b. The covalent attachment of
C3b to foreign surfaces, such as bacterial membranes, promotes
opsonization and subsequent phagocytosis by neutrophils and
macrophages. Furthermore, C3b amplifies complement activation
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by forming surface-bound C3 convertases and assembling C5
convertases (Walport, 2001a,b).

Cleavage of C5 initiates formation of the membrane
attack complex (MAC), which induces cell lysis. Meanwhile,
the anaphylatoxins C3a and C5a are released, triggering
potent chemotactic and pro-inflammatory responses that
recruit and activate additional phagocytes, thereby enhancing
bacterial clearance.

S. aureus infections activate all three complement pathways.
The classical pathway is typically initiated by antibody-antigen
complexes formed between S. aureus and host immunoglobulins.
However, SpA, which exhibits high affinity for the FC region of
IgG, inhibits IgG hexamerization and subsequent C1q recruitment,
thereby blocking complement activation on the S. aureus surface
(Cruz et al., 2021). The lectin pathway is activated by mannose-
binding lectin (MBL) binding to S. aureus surface components,
such as wall teichoic acid (Park et al., 2010; Gerlach et al., 2018).
The alternative pathway is activated on the bacterial surface and is
sustained through an amplification loop involving factor B, factor
D, and properdin (Harboe and Mollnes, 2008).

The importance of complement in septic arthritis has been
demonstrated in multiple experimental models. Complement
depletion using cobra venom factor in murine septic arthritis
resulted in significantly more severe clinical arthritis and bone
destruction (Sakiniene et al., 1999). Pathway-specific studies further
reveal distinct roles: in cecal ligation and puncture–induced
sepsis, factor D-deficient mice (impaired in alternative pathway
activation) retained adequate bacterial clearance, whereas C1q-
deficient mice (lacking classical pathway activation) demonstrated
compromised bacterial clearance (Dahlke et al., 2011). Similarly,
the lectin pathway has been shown to be essential for antimicrobial
defense in this model (Windbichler et al., 2004). In a murine
model of S. aureus septic arthritis, C3-deficient mice develop
more severe disease with higher bacterial burdens in the kidneys,
whereas factor B-deficient mice do not exhibit this phenotype
(Na et al., 2016). These findings demonstrate the essential role of
central complement activation, while suggesting a more limited
contribution of the alternative pathway in host defense against
septic arthritis and related infections.

3.2.2 Adaptive immunity
The adaptive immune system serves as the second line of

defense. It is characterized by high specificity and strong memory,
providing long-lasting protection through the production of
antibodies and effector T cells after the first exposure to pathogens.
In septic arthritis caused by S. aureus, the role of the adaptive
immune system is crucial. S. aureus can not only trigger a strong
initial immune response, but also evade immune surveillance
through a variety of mechanisms, leading to reinfections (Kwon
et al., 2022; Corrado et al., 2016).

3.2.2.1 T cells
CD4+ T helper cells (Th cells) regulate the function of other

immune cells by secreting cytokines. They play an important role
in S. aureus infection, especially the Th1 and Th17 cell subgroups,
as reviewed in Dong (2021). Th1 cells promote the activation
and bactericidal effect of macrophages by secreting IFN-γ, while

Th17 cells promote the collection and activation of neutrophils by
secreting interleukin-17 (IL-17; McGeachy et al., 2019).

Regulatory T cells (Tregs) are primarily CD4+ and play
a crucial role in maintaining immune tolerance during S.
aureus infection, thereby preventing excessive inflammation and
tissue damage. However, their impact on pathogen clearance
requires careful consideration for effective management of chronic
infections and reinfections (Sakaguchi et al., 2009; Belkaid and
Rouse, 2005).

CD8+ cytotoxic T cells, although essential for combating
intracellular pathogen infection, have not been demonstrated to
serve a significant role in S. aureus infections. CD8+ T cells
typically kill infected cells and limit bacterial spread by releasing
perforin and granzymes. For a comprehensive overview, see Harty
et al. (2000). In addition, CD8+ T cells can secrete a variety of
cytokines, such as IFN-γ, TNF-α, IL-2, to regulate the balance of
the immune response (Gerlach et al., 2013).

Various in vivo studies related to S. aureus-induced septic
arthritis have demonstrated that T cells serve different roles
depending on the T cell subtype involved, the modulation of T cell
activity, or the effects of subjecting mice to certain purified S. aureus
components upon induction of septic arthritis. Interestingly,
depletion of CD4+ T cells diminished the arthritogenic outcome,
hence indicating that CD4+T cells provoke septic arthritis severity,
whereas depletion of CD8+ T cells displayed a tangible effect on
the severity of the disease (Abdelnour et al., 1994b). Conversely, a
previous study demonstrated that inhibition of the T cell activity
via the immunosuppressive agent, CTLA4-Ig, promotes the disease
progression (Ali et al., 2015a). However, the role of T cells in our
mouse model, while challenged with purified S. aureus Lpp intra-
articularly into the knee joint, was found to be of less importance,
as double depletion of CD4+ and CD8+ T cells, or CTLA4-
Ig therapy, displayed similar effects as their respective controls
(Mohammad et al., 2019).

3.2.2.2 B cells and antibodies
B cells produce antibodies that target specific surface antigens

on pathogens and differentiate into plasma cells, a process that
can be further enhanced by T helper cells. These antibodies
can neutralize bacterial toxins, prevent bacteria from adhering
and invading host cells, and remove bacteria by activating the
complement system and promoting phagocytosis.

B cells play a crucial role in the immune response against S.
aureus infection by producing specific antibodies, primarily IgM,
IgG, and IgA. IgM is the first antibody produced in response
to infection, offering an initial defense (Gupta et al., 2023). IgG
provides systemic protection throughout the serum, while IgA is
crucial for local immunity on the surface of the mucosa (Abbas
et al., 2020). After the initial infection, some B cells differentiate
into memory B cells, when encountering the same pathogen
again, they can quickly proliferate and produce a large number
of high-affinity antibodies, providing a faster and more effective
immune response (Abbas et al., 2020). However, S. aureus has a
variety of strategies to avoid antibody-mediated immunity, such
as binding to the antibody Fc segments via SpA and S. aureus
binder of immunoglobulin (Sbi) to prevent the neutralization
and phagocytosis function of antibodies, as well as producing
extracellular polysaccharides and biofilms to protect itself from
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the attack of antibodies and the complement system (Foster, 2005;
Otto, 2013; Zecconi and Scali, 2013).

B cells are considered less potent in involving the pathogenesis
of S. aureus septic arthritis. Previous studies have shown that
the depletion of B cells in mouse models did not contribute
to the development of arthritis, mortality, or bacterial clearance
(Gjertsson et al., 2000). However, these experimental findings
derive exclusively from juvenile, immunocompetent murine
models raised under specific pathogen-free (SPF) conditions. These
animals exhibit antigen-inexperienced B cell compartments due to
the absence of prior S. aureus exposure, which likely underlies the
observed attenuation of B cell-mediated protective efficacy. Future
studies should define B cell functionality in antigen-primed models
featuring controlled pathogen reexposure or adoptive transfer of
immune memory.

3.2.3 Receptors
Receptors trigger a series of immune responses and signaling

pathways by recognizing PAMPs and DAMPs. In addition to
the widely studied TLRs (Figure 4), other receptors, such as FPR
and the receptor for Advanced Glycation Endproducts (RAGE),
involved in S. aureus infection have also been gradually revealed.
FPR is an important receptor for the recognition of bacterial
formyl peptides and participates in the chemotaxis and activation
of neutrophils, while RAGE plays a significant role in inflammatory
responses and tissue damage (Mohammad et al., 2016). In this
section, the specific functions of TLR2 and FPR receptors will be
discussed in depth in regard to S. aureus septic arthritis and their
latest research progress, elucidating their key roles in pathogen
recognition and host defense.

3.2.3.1 TLRs
TLRs were the first PRRs identified in mammals, as more than

10 TLRs have been discovered so far, most of them being capable
of recognizing different PAMPs (El-Zayat et al., 2019). Particularly,
TLR2 has an essential role in detecting diverse PAMPs from
bacteria, particularly lipid-based bacterial cell wall components
like lipoproteins. Upon detection, TLR2 activates a series of
downstream signaling pathways that elicit the host’s immune
response (Takeuchi and Akira, 2010).

TLR2 is a transmembrane protein; the extracellular region
of TLR2 contains multiple leucine-rich repeats (LRRs) that are
responsible for recognizing PAMPs. The intracellular region
of TLR2 contains a TIR (Toll-IL-1 receptor) domain that is
responsible for interacting with downstream signaling molecules
(O’Neill et al., 2013). TLR2 usually forms heterodimers with TLR1
or TLR6 to enhance its ability to recognize different PAMPs. For
example, TLR2/TLR1 heterodimers primarily recognize triacylated
lipoproteins, while TLR2/TLR6 heterodimers recognize diacylated
lipoproteins (O’Neill et al., 2013).

After binding to its ligands, TLR2 gets activated and recruits
myeloid differentiation factor 88 (MyD88) and TIR domain-
containing moderate protein (TIRAP) through the intracellular
TIR domain, initiating downstream signaling pathways (Kawai and
Akira, 2010). These signaling pathways include NF-κB and MAPK
pathways, which ultimately lead to the production and release of

inflammatory mediators such as TNF-α, interleukin-12 (IL-12),
and interleukin-6 (IL-6; Akira, 2009).

In septic arthritis, TLR2 was found to play a pro-inflammatory
and catabolic role mediated by the NF-κB pathway (Papathanasiou
et al., 2011). Mice lacking TLR2 showed reduced frequency and
less severe arthritis compared to controls in an antibiotic-killed S.
aureus-induced arthritis model (Ali et al., 2015b). Another study
demonstrated that the regulation of IgG relied on TLR2, but not
IgM, in the humoral immune response to infection (Gupta et al.,
2023). In addition, TLR2-mediated signaling pathways also play
an important role in promoting the chemotaxis and activation
of neutrophils and monocytes/macrophages (Kurt-Jones et al.,
2002). Both TLR2 deficiency and aging were found to compromise
immune response. In vitro, the absence of TLR2 and advanced age
led to reduced cytokine and chemokine production by peritoneal
macrophages and splenocytes. In vivo, the disease severity mainly
depended on the presence of TLR2. Both young mice and old
mice lacking TLR2 experienced more significant weight loss, in
contrast to their WT counterparts. Notably, aged TLR2-deficient
mice exhibited the most severe weight loss and harbored the
highest bacterial load in the kidney among all groups (Hu et al.,
2023). This paradox, wherein TLR2 deficiency protects against
joint-specific inflammation but exacerbates systemic bacterial
dissemination, highlights the complex dual role of TLR2 and
presents a significant challenge for therapeutic targeting. It suggests
that global inhibition of TLR2, while potentially beneficial for
controlling local inflammatory damage, might be harmful by
compromising systemic host defense during bacteremia.

In clinical studies, polymorphisms of TLR2 are closely related
to the susceptibility and severity of various infectious diseases.
Certain mutations in the TLR2 gene may increase the host’s
susceptibility to S. aureus infections, which provides a potential
target for personalized treatment (Schroder and Schumann, 2005).
In addition, immunomodulators and anti-inflammatory drugs
targeting the TLR2 signaling pathway are also being studied,
showing a promising role in the treatment of S. aureus infection
and related diseases (Caplan and Maguire-Zeiss, 2018). Future
therapeutic strategies should therefore be carefully considered,
potentially favoring localized modulation (e.g., intra-articular
application) over systemic inhibition to avoid adverse outcomes.

3.2.3.2 FPRs
Formyl Peptide Receptors (FPRs) belong to the G protein-

coupling receptors (GPCRs) family, which are mainly responsible
for recognizing and responding to formyl peptides and other
related molecules produced by bacteria. Three human FPRs
are found on the surface of various cells. Both monocytes
and neutrophils express FPR1 and FPR2, whereas FPR3 is
expressed in monocytes but absent in neutrophils. FPR1 and
FPR2 share 69% amino acid sequence identity and signal
through similar pathways (Weiss and Kretschmer, 2018). In
S. aureus infection, FPR1 and FPR2 are the two prominent
FPR members, which are known to enhance the host’s innate
immunity for eliminating pathogens, by mediating chemotaxis
and activation of neutrophils and other immune cells (Figure 5;
Sundqvist et al., 2019; Lebtig et al., 2023).

The mouse FPR gene family comprises eight identified
members, while most of them are expressed in neutrophils,
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FIGURE 4

Signaling functions of Toll-like receptors. The signaling pathways activated by Toll-like receptors (TLRs) upon recognition of pathogen-associated
molecular patterns (PAMPs) from Gram-positive and Gram-negative bacteria. TLRs are critical components of the innate immune system,
recognizing distinct microbial components and initiating downstream signaling that leads to immune responses. Bacterial DNA from Gram-positive
bacteria is recognized by TLR9. Lipoproteins (Lpps) are the predominant agonists of TLR2. Upon Lpp recognition, TLR2 forms heterodimers with TLR1
or TLR6, depending on the lipid portion structure of the Lpp. Lipopolysaccharide (LPS) from Gram-negative bacteria is recognized by TLR4, bacterial
DNA by TLR9, and flagellin by TLR5. MyD88-dependent pathway: Most TLRs, including TLR1, TLR2, TLR4, TLR5, TLR7, and TLR9, signal through the
adaptor protein MyD88, leading to the activation of NF-κB. This transcription factor regulates the expression of pro-inflammatory cytokines (e.g.,
TNF-α, IL-1, IL-6), chemokines, adhesion molecules, and costimulatory molecules, resulting in acute inflammation and the stimulation of adaptive
immunity. TRIF-dependent pathway: TLR3 and TLR4 can signal through the adaptor protein TRIF, leading to the activation of interferon regulatory
factors (IRFs), which promote the expression of type I interferons (IFN-α/β). This pathway establishes an antiviral state within the host cells.

research has mainly focused on mFpr1 and mFpr2. These genes are
extensively expressed in mouse phagocytic leukocytes and exhibit a
high degree of homology to their human analogs (He and Ye, 2017).

FPR1 was originally discovered due to its high affinity for
bacterial formyl peptides such as N-formyl-Met-Leu-Phe (fMLF).
FPR1 is mainly expressed on the surface of innate immune
cells such as neutrophils and monocytes (Le et al., 2002). When
FPR1 recognizes and binds formyl peptides such as fMLF, it
initiates a series of downstream signaling pathways, including
the phosphatidylinositol-3-kinase (PI3K) pathway and the MAPK

pathway, which leads to intracellular calcium mobilization and
protein kinase C (PKC) activation (Snapkov et al., 2016; Gemperle
et al., 2012). These changes ultimately result in chemotaxis,
degranulation, and ROS production from neutrophils, which
enhance their ability to eliminate pathogens (Gemperle et al., 2012;
Dahlgren and Karlsson, 1999).

FPR2, initially considered to be a close relative of FPR1, has
been found to not only recognize fMLF (low affinity), but also
distinguish a variety of endogenous and exogenous ligands, such
as lipoxin A4 and serum amyloid A (SAA; Bena et al., 2012; Tylek
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FIGURE 5

Activation and consequences of formyl-peptide receptor (FPR) in
bacterial infections. FPR1 is primarily activated by formylated
peptides from bacteria and mitochondria, while FPR2 responds to
specific endogenous and pathogen-derived ligands. Upon
activation, FPRs facilitate the conversion of guanosine diphosphate
(GDP) to guanosine triphosphate (GTP), leading to the dissociation
of heterotrimeric G proteins into α and βγ subunits. The βγ subunit
activates phospholipase Cβ (PLCβ), resulting in the release of
calcium from intracellular stores and subsequent activation of
protein kinases C (PKCs). Additionally, the βγ subunit triggers
phosphoinositide-3-kinase γ (PI3Kγ), further promoting PKC and
protein kinase B (Akt) activation. The α subunit, on the other hand,
activates Ras superfamily GTPases, contributing to the activation of
the MAPK pathways, p38, and extracellular-regulated protein kinase
1/2 (ERK1/2). These signaling cascades ultimately lead to various
cellular responses, including phagocytosis, degranulation,
chemotaxis, superoxide anion production, and transcriptional
activation. DAG, diacylglycerol; MEKK, MAP kinase kinase; RAF,
rapidly accelerated fibrosarcoma; PIP, phosphatidylinositol
4,5-bisphosphate; IP3, inositol 1,4,5-trisphosphate.

et al., 2021). The ligand diversity of FPR2 gives it a wider range
of functions, including the dual regulation of anti-inflammatory
and pro-inflammatory effects (He and Ye, 2017; Ye et al., 2009).
In neutrophils and macrophages, FPR2 regulates the chemotaxis
and cell activation through signaling pathways similar to FPR1,
but its response to anti-inflammatory signaling molecules plays a
unique role in regulating the inflammatory response, which may
open the door for developing new therapeutic approaches (Dufton
and Perretti, 2010; Hardesty et al., 2023).

FPR1 and FPR2 not only play a role in initiating and
maintaining the inflammatory response, but also participate
in the immune regulation processes. Especially by combining
anti-inflammatory molecules, such as lipoxin A4, excessive

inflammatory reactions can be inhibited, thereby preventing tissue
damage (Migeotte et al., 2006). In S. aureus-induced infections, the
activation of FPR1 and FPR2 increases the migration of neutrophils
to infection sites and enhances bacterial phagocytosis. Specifically,
PSMs released by S. aureus activate these receptors, resulting in
enhanced phagocytosis and bacterial killing by neutrophils (Weiß
et al., 2020). Indeed, as shown before (Hu et al., 2022), neutrophils
are activated by PSMα via FPR2, whereas PSMβ, a conditional
weak agonist, can activate TNF-α-primed neutrophils through
both FPR1 and FPR2. This indicates the significant role these two
receptors play in recognizing and eliminating pathogens.

3.3 Sex and hormonal changes

Sex and hormonal changes are considered as one of
the important factors in the host’s susceptibility and disease
progression. sex differences and sex hormone levels have a
significant impact on the regulation of immune responses, thereby
affecting the severity and outcomes of S. aureus infections.

The incidence and mortality rate of males in a variety of
infectious diseases are usually higher than those of females (Dhakal
et al., 2022). This may be related to some characteristics of the
male immune system. For example, healthy males usually show
higher levels of inflammatory cytokines, such as TNF-α and IL-6,
as reviewed in Klein and Flanagan (2016). Although these cytokines
help to quickly eliminate pathogens, they may also trigger excessive
inflammatory responses and lead to tissue damage (Chen et al.,
2018; Moller and Villiger, 2006).

In contrast, females tend to have a stronger immune response
to infections. This is closely related to the immunomodulatory
effects of estrogen. Estrogen can enhance the function of B cells and
T cells, improve antibody production and cell-mediated immune
responses, as well as upregulation autoantibodies (Verthelyi, 2001).
However, an excessive immune response may also increase the risk
of autoimmune diseases in females (Verthelyi, 2001; Bouman et al.,
2005). For example, RA and systemic lupus erythematosus (SLE),
the diseases that are much more prevalent in females, are in turn
known risk factors for septic arthritis.

Several studies have indicated that the immunomodulatory
effects of sex hormones and gender-based differences in X
chromosome gene expression might significantly impact treatment
outcomes in various diseases (Dias et al., 2022; Grimaldi et al., 2005;
Prajapati et al., 2022). Multiple nationwide and hospital-based
epidemiological studies have reported a higher prevalence of sepsis
in men compared to women (Lakbar et al., 2023). However, clinical
study findings have been inconsistent. For example, women with
septic arthritis tend to be older and have more pre-existing joint
conditions than men, though there were no major differences in
clinical presentation, treatment, or outcomes (Nissim et al., 2021).
Another retrospective study, including 1,348 patients, showed that
no significant difference was found between male and female
patients with sepsis (Eachempati et al., 1999). In a murine model of
S. aureus bacteremia, sex had no major impact on mortality, kidney
abscesses, or bacterial loads (Hu et al., 2023; Gupta et al., 2023).
These discrepancies in study results may be due to variations in sex
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steroid levels among patients rather than the specific types of sex
hormones alone.

3.4 Genetic susceptibilities

Septic arthritis caused by S. aureus exhibits significant variation
among individuals in susceptibility and disease progression. These
differences are not only influenced by environmental factors
and immune status but are also closely related to the genetic
background of the host. In recent years, genetic studies have
revealed the role of multiple genes involved in immune system
function and inflammatory response in septic arthritis.

Through genome-wide association analysis (GWAS) and
candidate gene studies, several studies have revealed the
relationship between key genes and polymorphisms associated
with S. aureus infections. For example, a GWAS study found
that TLRs (especially TLR2) and NOD2 gene polymorphisms are
associated with high S. aureus infection susceptibility (Kanneganti
et al., 2007; Stappers et al., 2014; Lorenz et al., 2000). A study
involving 155 patients with infections and 262 healthy controls
demonstrated that variants in TLR2 (rs5743708) and TLR4
(rs4986790) are linked to an increased susceptibility to severe
infections. Specifically, the TLR2 polymorphism was associated
with a 3.16-fold higher risk of recurrent infections (Teräsjärvi
et al., 2024). Another study identified a novel polymorphism in
the TLR2 gene (Arg753Gln) that may increase susceptibility to
staphylococcal infections and septic shock (Lorenz et al., 2000). In
addition, specific polymorphisms in the IL-1β and TNF-α genes
have been shown to correlate with disease severity and prognosis
(El-Tahan et al., 2016; Dinarello, 2011).

Interestingly, the expression level of the S100a8/a9 gene may
predict S. aureus-induced septic arthritis in a mouse model
(Deshmukh et al., 2023), indicating the possibility of using it as a
potential biomarker to forecast the evolution of disease and seek
more effective therapeutic strategies.

3.5 Osteoimmunology and bone damage in
septic arthritis

As mentioned above, the bone destruction seen in septic
arthritis is permanent. Bone undergoes continuous remodeling
throughout life, involving a delicate balance between resorption
and formation, primarily driven by two distinct cell types.
Osteoclasts are responsible for breaking down and resorbing
bone calcium, while osteoblasts contribute to bone formation by
depositing calcium.

In the pathological process of septic arthritis, bone tissue plays
an active role in the immune response rather than being merely
a passive victim. The immune response in the skeletal system
involves complex interactions between immune cells and bone
cells, and the concept of “osteoimmunology” was initially pointed
out to describe the interface between them in 2000 (Arron and
Choi, 2000).

In a mouse model of S. aureus osteomyelitis, immune cells are
mobilized and attracted to the infection site by elevated levels of

potent neutrophil-attracting chemokines produced by osteoblasts
in the bone tissue. These chemokines, including CXCL1, CXCL2,
CXCL3, CXCL5, CCL3, and CCL7, promote osteoclastogenesis
and leukocyte recruitment, driving the inflammatory response to
bacterial invasion (Sipprell et al., 2023). It has been shown that
bone marrow macrophages and osteoclasts play crucial roles in
the inflammatory response by releasing inflammatory factors and
mediators, which initiate osteoclastogenesis, recruit leukocytes, and
result in bone remodeling (Torres et al., 2023).

A series of cytokines and chemokines tightly regulate bone
remodeling. For instance, the RANKL, also known as OPGL or
TRANCE, was identified in 1999 and is expressed on the surface
of different cells, especially on osteoblasts and activated T cells
(Wong et al., 1999). RANKL, in conjunction with macrophage-
colony stimulating factor (M-CSF), plays a key role in regulating
osteoclastogenesis (Kwan Tat et al., 2004). M-CSF binds to its
receptor, c-Fms, which triggers the differentiation of hematopoietic
stem cells (HSCs) into the monocyte/macrophage lineage and
promotes the survival and proliferation of preosteoclast (Fuller
et al., 1993; Xaus et al., 2001). Subsequently, RANKL interacts with
its receptor activator of NF-κB (RANK) on osteoclast precursors
facilitating their differentiation, fusion, and maturation into active
osteoclasts (Chandrabalan et al., 2024; Honma et al., 2021). The
bone osteoclastogenesis is illustrated in Figure 6.

Osteoclast activity is modulated by several factors, including
the increased expression of RANKL, which is influenced by pro-
inflammatory cytokines such as TNF-α, IL-1, and IL-6. Osteoclast
precursors release these cytokines and can also be stimulated by
LPS, further promoting osteoclastogenesis and bone resorption
(Kwan Tat et al., 2004; Chaiwut and Kasinrerk, 2022). In
conditions like septic arthritis, where S. aureus infection triggers
intense inflammation, there is a significant increase in osteoclast
production and activation, leading to excessive bone resorption
and loss of bone mass in the affected joints. Lpps-induced bone
resorption has been shown in a mouse model of S. aureus local knee
infection from our previous studies (Hu et al., 2025; Schultz et al.,
2022).

In contrast, OPG, serving as an antagonist of RANKL, inhibits
its interaction with RANK by competitively binding to RANKL,
thereby blocking the production of osteoclasts (Kondegowda
et al., 2023). In addition, denosumab, an osteoporosis medication
approved by the U.S Food and Drug Administration (FDA) and
the European Medicines Agency (EMA), is a human monoclonal
antibody that targets RANKL, inhibiting RANKL/RANK
interaction and consequently disrupting osteoclast formation.
In the inflammatory milieu, such as that induced by S. aureus,
the expression of RANKL is increased, while the expression of
OPG is reduced, thus promoting bone resorption (Kong et al.,
1999). This reduction of OPG promotes osteoclastogenesis and
bone destruction in response to S. aureus infections. Indeed,
it has been shown that blocking RANKL efficiently prevents
systemic bone resorption in a mouse model of S. aureus septic
arthritis (Verdrengh et al., 2010). Remarkably, combination
therapy resulted in the lowest bone erosion scores among all
groups, which were significantly lower than in mice treated with
cloxacillin alone. Furthermore, bone erosion was prevented in
the combination group, compared to 20% in the group receiving
antibiotics alone.
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FIGURE 6

Schematic illustration of bone osteoclastogenesis. Monocytes from capillaries differentiate into osteoclast precursors in response to macrophage
colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL). These precursors express receptors such as
c-fms for M-CSF and RANK for RANKL. When these receptors bind to their respective ligands, produced by osteoblasts, they trigger intracellular
signaling cascades that promote the fusion of these precursors into mature, multinucleated osteoclasts, which are capable of bone resorption.

3.6 Bone tissue changes in septic arthritis

Various conditions and diseases can lead to joint disorders.
Degenerative joint diseases like osteoarthritis (OA) and
inflammatory conditions such as RA exhibit distinct patterns
of joint destruction. OA is characterized by new bone formation
at its late stage, while RA involves bone resorption (Terashima
et al., 2024; Li et al., 2023). In S. aureus septic arthritis, bone tissue
undergoes significant pathological changes, which include not
only bone destruction, but also remodeling of bone structure and
alterations in bone density.

Various factors, including aging, health conditions, nutritional
status, and inflammatory responses, influence changes in the bone
microenvironment. These factors are crucial for maintaining the
balance between osteoclasts and osteoblasts, which is essential for
healthy bone homeostasis (Choi et al., 2024; Mi et al., 2024).
In inflammatory conditions, the imbalance between osteoclasts
and osteoblasts potentially leads to osteoporosis and structural
alterations in bone composition. Prolonged joint inflammation can
result in trabecular thinning, reduced cortical bone thickness, and
a significant decrease in bone strength (Schett and David, 2010).

A significant decrease in systemic bone mineral density (BMD)
has been reported in patients with RA (Lodder et al., 2004;
Sivaprasad et al., 2023). This is due to a chronic inflammatory
response, mainly characterized by elevated proinflammatory
cytokines, which lead to increased bone resorption and decreased
bone formation. The decrease in bone density not only increases
the risk of fractures but also further exacerbates joint dysfunction.
Additionally, studies on mouse models induced by S. aureus and
Lpp have further supported these findings, showing a loss of BMD
in local knee joints (Schultz et al., 2022; Fatima et al., 2017).
Furthermore, the roles of aging and TLR2 in the outcome of
BMD levels were also explored. This study also indicated that
compared to those TLR2-deficient mice, young mice with the

expression of TLR2 showed a BMD reduction after S. aureus
infection, underscoring the impact of decreased bone density on
joint integrity and overall musculoskeletal health (Schultz et al.,
2024).

4 Therapeutic Implications

The management of septic arthritis has seen limited
advancements over the past two to three decades, relying on
a combination of antibiotics, and surgical interventions such as
joint drainage or debridement. Despite these standard approaches,
the prognosis remains suboptimal, with a markedly elevated long-
term risk of subsequent prosthetic surgery (Abram et al., 2020). It
is therefore essential to better characterize patient profiles, evaluate
the impact of bacterial antimicrobial resistance on therapeutic
efficacy, and consider the necessity of joint reoperations and
the frequency of debridement within current treatments (Hodea
et al., 2024). Moreover, enhancing early detection, ensuring
timely intervention, adopting multidisciplinary approaches, and
implementing antimicrobial therapies are pivotal to developing
improved therapeutic strategies (Deshmukh et al., 2023; Berinson
et al., 2023; Kim et al., 2023).

Transcriptome sequencing analysis highlights the potential
of S100a8/a9 gene expression as a biomarker for predicting
septic arthritis development in mice with S. aureus bacteremia,
aiding in the development of more efficient treatment strategies
(Deshmukh et al., 2023). Molecular diagnostic tools like the
BioFire joint infection assay (BJA), a PCR-based rapid diagnostic
technique approved by the FDA, have shown high sensitivity and
specificity in identifying bacterial pathogens, enabling faster species
identification and optimization of antibiotic therapy, particularly
in cases involving difficult-to-culture bacteria or prior antibiotic
treatment (Berinson et al., 2023). Especially, the infection of MRSA
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strains in native joint septic arthritis poses a higher risk of treatment
failure, emphasizing the need for vigilant monitoring and targeted
interventions (Kim et al., 2023).

Understanding the intricate interplay between bacterial and
host factors is essential for developing innovative therapeutic
approaches for septic arthritis. This complex interaction
not only influences the disease’s progression and severity
but also offers specific targets for therapeutic intervention.
Therefore, effective treatment approaches must address both
bacterial and host factors at multiple levels to mitigate the
disease’s impact.

4.1 Targeting virulence factors treatment

The pathogenicity of S. aureus is largely driven by its
diverse array of virulence factors, including adhesion molecules,
extracellular enzymes, and toxins. Targeting these components
represents promising therapeutic approaches for septic arthritis.
Vaccination strategies targeting specific virulence factors have
shown efficacy across multiple preclinical models, including mice,
rabbits, and non-human primates. Although studies focusing
on septic arthritis remain limited, both active and passive
immunizations against ClfA have been shown to protect against
septic arthritis and reduce sepsis-induced mortality (Josefsson et al.,
2001). Similarly, vaccination with a recombinant fragment of the S.
aureus collagen adhesin effectively prevents lethal sepsis (Nilsson
et al., 1998).

Despite these promising findings, all human clinical trials
of S. aureus vaccines have thus failed to prevent invasive
infections (Proctor, 2012; Miller et al., 2020). One explanation
for this discrepancy is that, unlike animal models, which are
often immunologically naïve, humans are frequently colonized
by S. aureus from early life. This prior exposure may induce
an anti-inflammatory response mediated by IL-10, which alters
the sialylation of anti-S. aureus antibodies and diminishes their
protective efficacy (Tsai et al., 2024). Consequently, the non-
protective immune imprint generated by prior S. aureus exposure
may be recalled upon vaccination, such as with the iron-
scavenging protein (IsdB), leading to competition between non-
protective humoral responses and newly induced protective
antibody responses, thereby compromising vaccine effectiveness
(Tsai et al., 2022; Caldera et al., 2024). Future efforts are therefore
directed toward developing multi-antigen vaccines, disrupting
IL-10-mediated immunosuppression, and shifting focus from
cell-wall antigens to key toxins (Tsai et al., 2024; Caldera et al.,
2024).

In septic arthritis, the surface adhesion molecules ClfA and
vWbp of S. aureus facilitate the bacterium’s adherence to the
synovial membrane and cartilage surfaces of the joints, thereby
promoting colonization and infection. Targeting these interactions
with small-molecule inhibitors, which disrupt the binding between
bacterial adhesins and host extracellular matrix components,
represents a promising strategy for inhibiting intra-articular
colonization and mitigating infection severity (Na et al., 2020;
Claes et al., 2017). In addition, certain S. aureus toxins, including
α-toxin and PSMs, contribute to joint tissue destruction and
trigger inflammatory responses. Inhibitors targeting α-toxin have

demonstrated protection against tissue damage in murine models
of septic arthritis (Nilsson et al., 1999; Wright and Nair, 2010;
Gemmell et al., 1997).

Studies further indicate that biofilm formation represents a key
mechanism enabling S. aureus persistence within joints, enhancing
resistance to both host immunity and antibiotic therapy. Drugs
that disrupt biofilm integrity or inhibit its formation may improve
antibiotic efficacy and reduce rates of recurrence (Otto, 2013;
Kwiecinski et al., 2019).

4.2 Enhancing host immune responses

The host immune response plays a crucial role in controlling
S. aureus infection; however, an excessive inflammatory reaction
can lead to joint damage. Thus, enhancing joint-specific immune
responses while avoiding excessive inflammation is another
promising therapeutic strategy for septic arthritis.

TLRs, particularly TLR2, are essential for recognizing S. aureus
via Lpps and initiating downstream immune signaling. Modulating
TLR2 activity offers a means to attenuate inflammation-induced
tissue damage while preserving antimicrobial immunity (Takeuchi
and Akira, 2010). For instance, certain TLR2 agonists or inhibitors
have demonstrated the potential to modulate inflammatory
responses through STAT3/SOCS3 signaling in a murine model of
septic arthritis (Ghosh and Bishayi, 2024).

Additionally, studies indicate that targeted modulation of intra-
articular cytokine networks, such as inhibition of pro-inflammatory
cytokines (TNF-α, IL-1β, etc.; Ghosh and Bishayi, 2024; van
den Berg, 2001) and metalloproteinases (Gjertsson et al., 2005),
significantly mitigates inflammation-driven bone destruction.
Research studies on other cytokines, including IL-4 (Hultgren
et al., 1998), IL-10 (Gjertsson et al., 2002; Puliti et al., 2002), IL-
15 (Henningsson et al., 2012), and IL-33 (Staurengo-Ferrari et al.,
2018), have also yielded promising immunomodulatory effects.
Specific interventions in bone-remodeling pathways, such as using
OPG to counteract the RANKL/RANK axis and inhibit osteoclast
activation, have achieved significant success in preventing bone
resorption (Verdrengh et al., 2010). More recently, anti-RANKL
treatment has been shown to markedly reduce bone erosion
in a mouse model of septic arthritis (Hu et al., 2025). Such
immunomodulatory approaches, when combined with antibiotics,
may improve infection control and preserve joint integrity.
Nevertheless, randomized clinical trials are warranted to evaluate
their efficacy in preventing long-term complications, including the
need for prosthetic joint replacement.

4.3 Challenges and strategies for antibiotic
therapy in septic arthritis

Antibiotic therapy remains the cornerstone of treatment for
septic arthritis. However, the increasing resistance to antibiotics
brings great challenges to traditional antibiotic therapy. While
the prevalence of healthcare-associated (HA) MRSA has declined
in some settings, community-associated (CA) MRSA clones
have become increasingly predominant in both community and
healthcare environments (Brahami et al., 2025). Furthermore, the
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FIGURE 7

Summary of key findings in this article. This figure illustrates the complex interplay between bacterial virulence factors, host immune responses, and
therapeutic interventions in the context of Staphylococcus aureus-induced septic arthritis. Bacterial virulence factors: S. aureus secretes various
virulence factors, including phenol-soluble modulins (PSMα and PSMβ), which play crucial roles in disease progression. PSMα weakens innate
immunity, causing higher weight loss and increased bacterial load (colony-forming units, CFUs) in the kidneys. Conversely, PSMβ is associated with
protection against septic arthritis by neutralizing PSMα-induced immune responses. Host factors and immune responses: Host factors such as aging
and Toll-like receptor 2 (TLR2) deficiency exacerbate the severity of bacteremia. These factors lead to increased mortality, splenomegaly, and
enhanced susceptibility to S. aureus infection. Bone Erosion in Septic Arthritis: The figure emphasizes the osteoclastogenesis process within the joint
environment, highlighting the role of the RANK/RANKL signaling pathway. After dissemination from the bloodstream, S. aureus attracts monocytes to
migrate into the inflamed synovial tissue. RANKL (Receptor Activator of Nuclear Factor Kappa-B Ligand), produced by osteoblasts and synovial
fibroblasts, drives the differentiation of osteoclast precursors into mature osteoclasts, leading to focal bone erosion seen in septic arthritis.
Therapeutic interventions: The application of anti-RANKL treatment is shown to inhibit osteoclastogenesis, thereby preventing bone erosion in septic
arthritis. The figure illustrates how targeted therapies can mitigate bone damage, emphasizing the importance of RANKL as a therapeutic target in
preventing the long-term consequences of septic arthritis.

expansion of methicillin-susceptible S. aureus (MSSA) lineages,
particularly those with enhanced virulence or toxin production,
further complicates the treatment landscape and requires
ongoing surveillance (Asantewaa et al., 2025). Additionally, a
previous study has shown that even antibiotic-killed S. aureus
can continue to provoke destructive arthritis in a mouse
model (Ali et al., 2015b), stressing the need for innovative
therapeutic strategies.

Therefore, new antibiotic strategies and combination therapies
are being explored. First, the use of multiple antibiotic therapies has

shown effectiveness in cobating drug-resistant strains. For example,
linezolid in combination with other antibiotics can increase the
therapeutic effect against MRSA infection, as reviewed in Chen
et al. (2020). Also, studies indicate that combining antibiotics
with antibiofilm agents can more effectively penetrate and remove
bacterial biofilms within joints (Jacqueline and Caillon, 2014).

However, the challenges of antibiotic therapy extend beyond
drug resistance. Issues like drug permeability and toxicity in
joint tissues also need to be addressed. To increase the effective
concentration of the drug in the articular space while reducing
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systemic toxicity, local drug delivery systems like hydrogels,
nanoparticles, and microspheres have been investigated to deliver
the drug directly to the site of infection (Ghazagh and Frounchi,
2024; Ahmad et al., 2024; Hsu et al., 2018). These novel delivery
systems can create a reservoir of drugs in the joint cavity, allowing
antibiotics to be maintained locally at higher concentrations,
thereby improving treatment efficacy.

Moreover, novel therapeutic approaches are also being
explored. One such approach is the use of antimicrobial
peptides (AMPs). These mostly cationic peptides are known
for their rapid bactericidal action and effectiveness against
a wide range of drug-resistant pathogens. AMPs represent a
promising class of antibacterial agents with potent antimicrobial
activity against various pathogenic microorganisms. However,
their efficacy is challenged by bacterial resistance mechanisms,
particularly those of S. aureus, which can actively reduce its
net negative surface charge through MprF-mediated lysinylation
of phosphatidylglycerol and DltABCD-dependent alanylation of
teichoic acids, thereby repelling cationic AMPs. Strategies to
overcome this, such as developing AMP analogs resistant to charge
repulsion or combining AMPs with resistance pathway inhibitors,
are under investigation (Ernst and Peschel, 2011; Weidenmaier
et al., 2005). Notably, AMPs have demonstrated synergistic effects
with conventional antibiotics (Reffuveille et al., 2014; Lewies et al.,
2019), supporting their potential as adjunct therapy for septic
arthritis and other bacterial infections.

Another promising avenue involves the use of lytic
bacteriophages, commonly known as phage therapy, to target
and kill pathogenic bacteria. Phage therapy has been tested against
bone and joint infections, including rabbit S. aureus osteomyelitis
and rat S. aureus prosthetic implant infections (Morris et al., 2019;
Kishor et al., 2016). However, studies specifically focused on the
use of phages to treat acute septic arthritis are still lacking.

5 Concluding remarks

The role of different virulence factors of S. aureus significantly
impacts the host’s immune response, influencing the severity of
infections such as septic arthritis and bacteremia. This impact
is particularly influenced by factors such as aging and TLR2, as
demonstrated by the findings in this review.

Animal models have identified pivotal virulence determinants:
surface adhesins (vWbp, ClfA, SpA) mediate joint invasion
by anchoring to host matrices, while Lpps trigger destructive
inflammation. The studies further reveal that PSMs exhibit
divergent roles: PSMα exacerbates systemic infection
by suppressing neutrophil NADPH oxidase activity and
impeding bacterial clearance, whereas PSMβ attenuates joint
inflammation through immune modulation, protecting against
tissue damage.

Host immunity critically shapes outcomes. Neutrophils and
complement (notably C3) constitute essential bloodborne
defenses that prevent joint invasion. Monocytes and
macrophages paradoxically drive bone erosion despite their
bactericidal functions, while adaptive immunity (B/T cells) plays
incompletely defined roles in animal models. Cytokine networks
significantly influence disease progression, with aging and TLR2

hyperactivation amplifying RANKL-mediated osteoclastogenesis
and bone destruction.

Innovative therapeutic strategies emerge from these insights.
While anti-virulence vaccines targeting key factors (e.g., vWbp,
ClfA, SpA) hold promise, none of these currently exist, particularly
those targeting single virulence factors (Caldera et al., 2024;
McNeely et al., 2014; Schaffer and Lee, 2009). Importantly,
adjuvant osteoprotection approaches, combining antibiotics with
anti-RANKL biologics to suppress osteoclast-mediated bone
resorption, have demonstrated superior efficacy compared to
antibiotic treatment alone in mouse models. Together, these
strategies may offer hope for preventing joint destruction and
functional impairment.

The complexity of S. aureus infections demands context-
specific solutions. As illustrated in Figure 7, future success
will depend on stratified approaches that target both
pathogen virulence and host vulnerability, with particular
focus on aging populations, to alleviate the global burden of
septic arthritis.
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