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Introduction: Soil enzymes are critical to plant growth and soil carbon turnover. 
However, the traditional method of assessing enzyme activity per unit of soil 
may be insufficient; instead, soil-specific enzyme activity per unit of soil organic 
carbon (SOCE) or microbial biomass carbon (MBCE) has been widely used to 
characterize soil carbon accumulation.
Methods: We systematically examined the changes in SOCE and MBCE with 
sand dune fixation (mobile, semi-mobile, semi-fixed, and fixed). We explored 
the implications of this soil-specific enzyme activity for soil microbial necromass 
carbon (NC) and soil organic carbon (SOC) accumulation.
Results: We found that β-1, 4-glucosidase, β-D-cellobiosidase, β-1, 
4-N-acetylglucosaminidase, and L-leucine aminopeptidase in SOCE and MBCE, 
the soil enzyme activity coefficient (SEAC), and the geometric mean of enzyme 
activity (GMEA) were significantly higher in semi-mobile, semi-fixed, and fixed 
dunes than those in mobile dunes. Furthermore, SOCE, MBCE, SEAC, and GMEA 
showed significant relationships with microbial NC and SOC. Specifically, soil-
specific enzyme activity accounted for 32.2 and 24.1% of microbial NC and SOC 
variance, respectively.
Conclusion: Dune fixation significantly increases SOCE and MBCE. More 
importantly, we recommend that changes in SOCE and MBCE should be widely 
used to assess microbial NC and SOC accumulation in degraded sandy land 
ecosystems.
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1 Introduction

Desertification is an important ecological and environmental problem that severely 
restricts human survival and threatens sustainable economic and social development (Kéfi 
et al., 2007; Peters et al., 2012). The Mu Us Sandy Land is an important area for ecological 
restoration (Li et al., 2017). Since the 1950s, the ecosystem in this region has been severely 
degraded because of overgrazing (Miao et al., 2016). Local restoration measures, such as 
fencing, cropland abandonment, and vegetation restoration, have been implemented to restore 
the ecological environment, which has significantly changed the land-use pattern and affected 
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plant growth and material cycling processes in the local ecosystem 
(Guo et al., 2023). Currently, mobile (coverage: <5%), semi-mobile 
(5–20%), semi-fixed (21–50%), and fixed (>50%) dunes with different 
vegetation coverages have formed (Chen et al., 2022).

Currently, further research has focused on soil absolute enzyme 
activity (SAE; Nannipieri et  al., 2012; Zheng et  al., 2025), but in 
natural soil, enzymes coexist with soil microorganisms and carbon 
(Stone et al., 2014; Xu et al., 2020). Therefore, soil enzymes cannot 
be separated from organic matter or microorganism (Liu et al., 2017). 
Based on this relationship, researchers have introduced the concept of 
soil-specific enzyme activity [per unit of soil organic carbon (SOCE) 
or microbial biomass carbon (MBCE)] (Yu et al., 2019). SOCE and 
MBCE reflect the activity based on organic matter and 
microorganisms, which providing clear insights into changes in SOC 
and MBC (Raiesi and Beheshti, 2014).

Some scholars have noted that SOCE and MBCE are regulated by 
land-use change (Xiao et al., 2021). For example, Zhang et al. (2015) 
reported consistent changes in both SOCE and SAE in response to 
different fertilization treatments. Raiesi and Salek-Gilani (2018) found 
that after cropland abandonment, SAE increased, whereas SOCE 
decreased with recovery time. The roles of SOCE and MBCE also 
differ in their responses to environmental changes. For example, 
Raiesi and Beheshti (2014) indicated that MBCE and SOCE respond 
consistently to land-use changes. However, Xu et al. (2020) observed 
that SOCE first increased and then tended to stabilize with recovery 
time, whereas MBCE gradually decreased with longer recovery times. 
Consequently, changes in SOCE and MBCE with restoration 
remain inconclusive.

Soil enzymes are sensitive to sand dune fixation (ecological 
restoration) (Cao C. et al., 2024). It is generally accepted that sand 
dune fixation increases plant diversity and vegetation cover (Qiao 
et al., 2012), which in turn produces more litter that returns to the soil, 
thereby increasing soil nutrient content and providing more food 
resources for soil microorganisms. This resource increase boosts 
enzyme secretion by microorganisms (Cheng et al., 2022). Moreover, 
sand dune fixation promotes plant growth and microbial activity, 
thereby promoting interactions among plants, microorganisms, and 
soil development (Cao et al., 2017; Alamusa et al., 2023). In arid and 
semi-arid regions, soil water controls microbial activity (Li et  al., 
2023). By increasing vegetation cover, dune fixation reduces water 
evaporation and enhances soil water availability (Cao M. et al., 2024). 
Increases in soil stability and water content further enhance SAE (Xu 
et al., 2016), but the effect of sand dune fixation on SOCE and MBCE 
remain poorly understood.

Soil microorganisms regulate soil carbon transformation, in the 
form of living organisms and microbial necromass carbon (NC; 
Buckeridge et  al., 2022; Xiang et  al., 2024). Liang et  al. (2019) 
confirmed that microbial NC, as a stable soil carbon component, 
contributes more than 50% of SOC accumulation. This process occurs 
as soil microorganisms continuously grow, metabolize, proliferate, and 
die, leaving behind cell wall residues (Buckeridge et al., 2022). Chitin 
from fungal cell walls and peptidoglycan from bacterial cell walls 
accumulate in soils, which directly contribute to the soil carbon pool 
(Camenzind et al., 2023). Moreover, Xu et al. (2020) showed that soil-
specific enzyme activity may help explain changes in carbon stability. 
However, the relationship between SOCE, MBCE, and microbial NC, 
as well as whether SOCE and MBCE can explain changes in microbial 
NC, requires further exploration.

To explore the correlation between SOCE and MBCE with soil 
microbial NC during dune fixation, we established study sites with 
varying dune coverages: mobile, semi-mobile, semi-fixed, and fixed 
dunes. We aimed to study the effect of dune fixation on SOCE and 
MBCE and its relationship with plant and microbial community 
characteristics. We hypothesized that dune fixation would lead to 
increased SOCE and MBCE. Additionally, we hypothesized that the 
SOCE and MBCE are significantly positively correlated with 
microbial NC.

2 Methods

2.1 Study site

The study site is located in Yanchi County, Ningxia Hui 
Autonomous Region, China (Figure 1). The mean annual precipitation 
and temperature are 250–350 mm and 6.0 °C–8.5 °C, respectively, and 
the elevation is 1,200–1,600 m. The wind is mainly northwesterly, with 
annual average wind speeds of 2.1–3.3 m.s−1, especially from March 
to May. The soil type is typical eolian sand soil, with loose surface 
material, rich sand source material, and strong eolian sand activity. 
The zonal vegetation primarily consists of Agriophyllum squarrosum, 
Artemisia ordosica, Aster altaicus, Artemisia scoparia, and Caragana 
microphylla. In the 1950s, the ecosystem of the region was severely 
degraded owing to overgrazing. Consequently, fencing has been 
implemented to restore these degraded ecosystems, and grassland 
communities at different stages of restoration have been formed.

2.2 Experimental setting and sample 
analysis

Four treatments were established: mobile, semi-mobile, semi-
fixed, and fixed dune groups. Three 5 × 5 m plots were set up for each 
dune type, totaling 12 plots. The slope angle, slope direction, and slope 
position in each treatment plot remained unchanged. In each plot, 
three 1 × 1 m quadrats were set evenly along the diagonal, totaling 36 
quadrats. A vegetation diversity survey was conducted for each sample 
quadrat. The soil depth is 0–20 cm. The visible stones and roots in soil 
samples were removed and sieved using a 2-mm sieve and then 
divided into three parts: one part was used to determine the microbial 
community; the second, to determine the enzyme activity; and the 
third, to determine the microbial NC content.

Microbial community and microbial NC were determined by 
the Rhonin Biosciences1 and Baihui Organisms2 companies, 
respectively. Soil enzyme activity of β-1, 4-glucosidase (BG), 
β-D-cellobiosidase (CBH), β-1, 4-N-acetylglucosaminidase (NAG), 
L-leucine aminopeptidase (LAP), and acid phosphatase (AP) were 
determined using 96-microplate enzymic fluorescence assays 
(German et al., 2011). The soil microbial biomass was determined 
by chloroform fumigation methods (Vance et al., 1987). The soil 
pH, organic carbon (SOC), total nitrogen (TN), and total 

1  http://rhonin-bio.com/

2  http://www.baihuitech.cn/
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phosphorus (TP) were determined using the pH meter, Walkley 
and Black, Kjeldahl, and molybdenum blue methods, respectively 
(Bremner, 1982; Nelson and Sommers, 1982). The detailed methods 
of soil microbial community, microbial NC, soil microbial biomass, 
and enzyme activity were described in Zhou et al. (2025).

2.3 Statistical analyses

The Shannon–Weiner diversity, Pielou evenness, and Margalef 
richness indices were selected to characterize plant diversity, which 
were calculated as:

	 ( )= −∑ = Shannon – Weiner diversity index log 1,2,3, ,i iP P i S 	 (1)

	 ( )
Pielou evenness index –

  / log
Shannon

Weiner diversity index S
=

	 (2)

	 =Margalef richness index S	 (3)

where Pi, S, and N are the proportion of species i, number of 
species, and total number of individuals, respectively.

The SOCE and MBCE were calculated as follows (Trasar-Cepeda 
et al., 2008):

	
=

Soil absolute enzyme activitySOCE / MBCE
/SOC MBC 	

(4)

The soil enzyme activity coefficient (SEAC) reflects the relative 
microbial demand for carbon and nitrogen, which were calculated as:

	
=

BG / CBHSEAC of BG and CBH
MBC 	

(5)

	
=

NAG / LAPSEAC of NAG and LAP
MBN 	

(6)

The GMEA was calculated as follows (Hinojosa et al., 2004):

	 = × × × ×5GMEA BG CBH NAG LAP AP 	 (7)

Microbial NC was calculated as follows:

	 = ×45Bacterial NC MurA 	 (8)

	

 = − × × × 
 

2 179.17 9
179.17 251.23
GluN MurAFungal NC

	
(9)

FIGURE 1

The location of the study site.
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	 = +Microbial NC Bacterial NC Fungal NC	 (10)

where, MurA was muramic acid; GluN was glucosamine.
The results of plant diversity and soil physicochemical properties 

in different dunes are shown in Supplementary Tables S1, S2. SOCE, 
MBCE, soil nutrients, and plant and microbial diversity were analyzed 
using a one-way analysis of variance. The Pearson’s correlation was 
used to evaluate the relationships of SOCE and MBCE with microbial 
NC, SOC, soil nutrients, and plant and microbial diversity. Random 
forest analysis was used to assess the relative contributions of SOCE, 
MBCE, soil nutrients, and plant and microbial diversity to microbial 
NC and SOC (randomForest package in R version 4.5.0).

3 Results

3.1 Dynamics of SOCE and MBCE

The semi-fixed and fixed dunes had higher BG/SOC and LAP/
SOC, compared with the semi-mobile and mobile dunes 
(Figures 2a,d). Furthermore, the fixed dunes had higher CBH/SOC, 
and NAG/SOC than the semi-mobile and mobile dunes, and the fixed 
dunes also had higher AP/SOC than other dune types (Figures 2b,c,e).

Additionally, the semi-fixed and fixed dunes had higher BG/MBC 
and LAP/MBC, compared with the semi-mobile and mobile dunes 
(Figures 3a,d). The CBH/MBC and NAG/MBC were lowest in mobile 
dunes, and the semi-fixed and fixed dunes had lower AP/MBC, 
compared with the semi-mobile and mobile dunes (Figures 3b,c,e).

3.2 Dynamics of the SEAC and GMEA

The fixed dunes had higher BG coefficients than other dune types, 
whereas the mobile dunes had lower CBH, NAG, and LAP coefficients 
than other dune types (Figures 4a–d). The GMEA of the fixed dunes 
was approximately twice that of the semi-fixed dunes, four-fold that 
of the semi-mobile, and 20 times that of the mobile dunes (Figure 5a).

3.3 Correlations of soil-specific enzyme 
activity with plant and soil variables

The SOCE was positively correlated with the MBCE and the 
enzyme activity coefficients overall. The SOCE and MBCE were 
positively correlated with the plant diversity indices (i.e., the Shannon–
Weiner diversity, Pielou evenness, and Margalef richness indices), soil 
nutrients (i.e., TN and TP), and soil microbial properties (i.e., MBC, 

FIGURE 2

Mean (±SE) of soil-specific enzyme activity per unit of soil organic carbon. Mean (±) of soil-specific enzyme activity per unit of soil organic carbon in 
(a) β-1, 4-glucosidase (BG/SOC), (b) β-D-cellobiosidase (CBH/SOC), (c) β-1, 4-N-acetylglucosaminidase (NAG/SOC), (d) L-leucine aminopeptidase 
(LAP/SOC), and (e) acid phosphatase (AP/SOC) of different dune types.
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MBN, bacterial diversity, bacterial richness, fungal diversity, and 
fungal richness) (Table 1).

3.4 Correlations of soil-specific enzyme 
activity with microbial NC and SOC

The BG/SOC, CBH/SOC, NAG/SOC, LAP/SOC, BG/MBC, and 
CBH/MBC were linearly related to microbial NC and SOC, whereas 
NAG/MBC was quadratically related to microbial NC and SOC 
(Figures 6a–g). LAP/MBC was linearly related to SOC, whereas LAP/
MBC was quadratically related to microbial NC (Figure 6h). The BG, 
CBH, and NAG coefficients were linearly related to microbial NC and 
SOC, while the LAP coefficient was quadratically related to microbial 
NC and SOC (Figures 7a–d). In addition, GMEA was linearly related 
to microbial NC and SOC (Figure 5b).

The microbial NC was mainly influenced by BG/SOC (6.7%), plant 
evenness (6.7%), bacterial richness (6.5%), GMEA (6.5%), plant richness 
(6.4%), MBC (6.2%), plant diversity (6.2%), soil moisture (6.1%), CBH/
SOC (5.8%), bacterial diversity (5.6%), fungal richness (5.1%), TN (5.0%), 
the LAP coefficient (4.6%), the BG coefficient (4.6%), and LAP/SOC 
(4.0%), which cumulatively explained 86.0% of the variance in microbial 
NC (Figure 8a). The SOC was mainly influenced by fungal richness 
(7.1%), plant richness (5.7%), BG/SOC (5.2%), the LAP coefficient 
(5.1%), GMEA (5.1%), soil moisture (M) (4.8%), bacterial richness 

(4.8%), bacterial diversity (4.7%), fungal diversity (4.6%), LAP/SOC 
(4.5%), LAP/MBC (4.2%), and TN (4.1%), which cumulatively explained 
59.9% of the variance in SOC (Figure 8b).

4 Discussion

4.1 Effect of dune fixation on SOCE

The traditional absolute enzyme activity (SAE) appears to 
be insufficient to characterize the accumulation of SOC (Xu et al., 
2020). Consequently, SOCE has been widely used to characterize soil 
carbon turnover (Zhang et al., 2015; Xiao et al., 2021). As indicated by 
our hypothesis, sand fixation (ecological restoration) promoted an 
overall increase in SOCE (except for AP), indicating an increase in the 
enzyme production capacity of soil microorganisms. Although both 
SOC and soil absolute enzymes had positive effects on dune fixation, 
the percentage change in soil absolute enzymes (except AP) was 
higher than that of SOC, which led to an increase in SOCE.

There are three possible mechanisms for this: (1) Dune fixation 
increases plant diversity (Supplementary Table S2) and plant 
biomass (Qiao et al., 2012), which increases the production of dead 
leaves that enter the soil and provide energy and food for 
microorganisms (Cheng et al., 2022), thereby increasing SAE in the 
soil (Supplementary Table S2). (2) Differences in vegetation types 

FIGURE 3

Mean (±SE) of soil-specific enzyme activity per unit of microbial biomass carbon. Mean (±) of soil-specific enzyme activity per unit of microbial 
biomass carbon in (a) β-1, 4-glucosidase (BG/MBC), (b) β-D-cellobiosidase (CBH/MBC), (c) β-1, 4-N-acetylglucosaminidase (NAG/MBC), (d) L-leucine 
aminopeptidase (LAP/MBC), and (e) acid phosphatase (AP/MBC) of different dune types.
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FIGURE 4

Mean (±SE) of soil enzyme activity coefficient. Mean (±) of soil enzyme activity coefficient in (a) β-1, 4-glucosidase (BG), (b) β-D-cellobiosidase (CBH), 
(c) β-1, 4-N-acetylglucosaminidase (NAG), and (d) L-leucine aminopeptidase (LAP) of different dune types.

FIGURE 5

Mean (± SE) of (a) geometric mean of enzyme activity (GMEA) and (b) relationship of GMEA with soil microbial necromass carbon (NC) and soil organic 
carbon (SOC).
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caused by dune fixation significantly affect the connections between 
plant rhizospheres, thereby improving the soil porosity, soil bulk 
density, and aggregates (Alamusa et al., 2023). Furthermore, the 
increase in plant diversity and coverage leads to the secretion of 
large amounts of organic matter from the root system, which 
improves the soil physical structure (Jones et al., 2004; Liu et al., 
2005; Liu et al., 2009; Cao et al., 2017) and increases the microbial 
activity (Supplementary Table S2), enzyme secretion, and SOCE 
(Xu et al., 2020). (3) The plant cover acts as a shade for the soil 
surface and effectively reduces the impact of rain and wind erosion, 
thereby protecting the environmental conditions of the soil (Cao 
M. et al., 2024; Xu et al., 2024), and providing a stable environment 
for the secretion of soil enzymes, leading to a higher SOCE. In 
addition, we were surprised to find that the SOCE of phosphatase 
enzymes was different from that of carbon and nitrogen enzymes, 
showing that AP/SOC in semi-fixed dunes was lower than that in 
mobile and semi-mobile dunes. This may be  attributed to the 
efficiency of the phosphatases released by microorganisms 
decreasing during the late recovery period (Li et al., 2018), whereas 
SOC continued to increase (Xu et al., 2021), thereby reducing the 
AP/SOC. Overall, this study provides direct evidence that SOCE is 

sensitive to dune fixation and shows potential as a sensitive index 
for characterizing SOC accumulation.

4.2 Effect of dune fixation on MBCE, SEAC, 
and GMEA

The percentage increase in MBC during dune fixation was 
smaller than that of enzyme activity (Supplementary Table S1), 
which, in turn, led to an increase in MBCE (except for AP), 
confirming our hypothesis. The MBCE characterizes the 
metabolic activity and catalytic efficiency of enzymes produced 
by microbial communities (Waldrop et al., 2000). The changes in 
MBCE were consistent with the changes in soil nutrient content 
(Supplementary Table S2), indicating that, with the accumulation 
of soil nutrients, the metabolic activity and enzyme production 
ability of soil microorganisms gradually increased. During dune 
fixation, changes in plant diversity and biomass, accompanied by 
changes in soil physical and chemical properties, are important 
causes of changes in soil enzyme activity (Cheng et  al., 2022; 
Naeimi et al., 2023). The increase in plant productivity produces 

TABLE 1  Pearson’s correlation of soil extracellular enzyme activity coefficient with plant and soil variables.

Variables BG/
SOC

CBH/
SOC

NAG/
SOC

LAP/
SOC

BG/
MBC

CBH/
MBC

LAP/
MBC

BG 
coe

CBH 
coe

NAG 
coe

LAP 
coe

GMEA

CBH/SOC 0.82**

NAG/SOC 0.90** 0.78**

LAP/SOC 0.71** 0.64* 0.64*

BG/MBC 0.88** 0.68* 0.76** 0.72**

CBH/MBC 0.78** 0.60*

NAG/MBC 0.60* 0.59*

LAP/MBC 0.93** 0.67*

AP/MBC −0.60* −0.63*

BG coe 0.88** 0.68* 0.76** 0.72** 0.99** 0.60* 0.67*

CBH coe 0.78** 0.60* 0.99** 0.60*

NAG coe 0.82* 0.59* 0.67* 0.72** 0.76** 0.66* 0.74** 0.76** 0.66*

LAP coe 0.89** 0.97** 0.69*

GMEA 0.95** 0.89** 0.91** 0.75** 0.83** 0.83** 0.67*

Plant D 0.86** 0.82** 0.79** 0.77** 0.88** 0.68* 0.66* 0.88** 0.68* 0.83** 0.60* 0.93**

Plant R 0.69* 0.79** 0.70* 0.75** 0.82** 0.83** 0.72** 0.82** 0.83** 0.93** 0.64* 0.80**

Plant E 0.80** 0.85** 0.79** 0.82** 0.84** 0.75** 0.72** 0.84** 0.75** 0.88** 0.65* 0.91**

Soil M 0.88** 0.84** 0.89** 0.79** 0.85** 0.58* 0.62* 0.85** 0.58* 0.75** 0.96**

pH −0.59* −0.67* −0.60* −0.62* −0.60* −0.62* −0.63* −0.68*

TN 0.75** 0.81** 0.71** 0.82** 0.84** 0.79** 0.77** 0.84** 0.79** 0.91** 0.71** 0.82**

TP 0.66* 0.69* 0.76** 0.69* 0.79** 0.75**

MBC 0.91** 0.86** 0.87** 0.69* 0.71** 0.71** 0.58* 0.98**

MBN 0.93** 0.81** 0.93** 0.73** 0.73** 0.94**

Bacteria R 0.92** 0.85** 0.89** 0.61* 0.71** 0.71** 0.94**

Bacteria D 0.92** 0.84** 0.87** 0.80** 0.81** 0.59* 0.81** 0.62* 0.94**

Fungi R 0.84** 0.77** 0.77** 0.81** 0.80** 0.65* 0.80** 0.90**

Fungi D 0.67* 0.84** 0.66* 0.0.74** 0.66* 0.71** 0.77**

**p < 0.01, *p < 0.05.
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FIGURE 6

Relationships of soil-specific enzyme activity per unit of (a–d) soil organic carbon and (e–h) microbial biomass carbon with soil microbial necromass 
carbon (NC) and SOC.
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FIGURE 7

Relationships of soil enzyme activity coefficient with (a–d) soil microbial necromass carbon (NC) and soil organic carbon (SOC).

FIGURE 8

Main predictor importance (% of increase of MSE) of soil-specific enzyme activity and soil variables on (a) soil microbial necromass carbon and (b) soil 
organic carbon by random forest modeling analysis. **p < 0.01, *p < 0.05.
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more litter, which is conducive to the improvement of soil 
nutrient accumulation (Taylor et al., 2024; Yang et al., 2024). Soils 
with adequate nutrients tend to have higher soil microbial 
diversity and activity, which in turn enhances enzyme secretion 
(Moharana et al., 2024; Zhang et al., 2024), thereby increasing the 
MBCE (Raiesi and Beheshti, 2015). This conclusion was 
confirmed by the positive correlations between MBCE and plant 
diversity, soil nutrient content, and microbial diversity (Table 1). 
However, other studies have indicated that ecological restoration 
reduces MBCE (Raiesi and Salek-Gilani, 2018; Xu et al., 2020). 
The reason for these differences may be related to differences in 
the ecological community types. The research of Raiesi and 
Salek-Gilani (2018) and Xu et al. (2020) investigated an area with 
relatively abundant rainfall and found that the growth and 
reproduction of plants and microorganisms were less affected by 
water (Ghorbani et  al., 2023). By contrast, this study was 
conducted in an extremely arid environment (with an average 
annual rainfall of 250–350 mm), and the reproduction of 
microorganisms was limited by water, resulting in a more 
significant impact of ecological restoration on microorganisms 
(Chang et al., 2024; Zhao et al., 2024). This study indicated that 
dune fixation significantly increased the metabolic activity of soil 
microorganisms and increased the production of phosphatase 
enzymes; MBCE was a sensitive index reflecting the interaction 
between soil enzyme activity and microorganisms.

The soil enzyme activity coefficient and GMEA are common 
indices for integrating soil enzyme data and information and are also 
important indicators of soil quality (Hinojosa et  al., 2004). Dune 
fixation significantly increased the soil enzyme activity coefficient and 
GMEA. The increase in the GMEA was mainly due to an increase in 
enzyme activity associated with increased dune fixation. As explained 
earlier, dune fixation increases plant diversity and productivity (Qiao 
et al., 2012), leading to increased litter production and root turnover, 
which, in turn, leads to increased soil organic carbon and nutrient 
content (Cao M. et al., 2024). The increase in the organic substrates 
available to microorganisms enhances the activity of soil 
microorganisms and accelerates the secretion of enzymes (Cao et al., 
2017; Naeimi et al., 2023). Therefore, overall, dune fixation accelerated 
the production of soil enzymes in this arid ecosystem.

4.3 Relationships of soil-specific enzyme 
activity with microbial NC and SOC

Absolute soil enzymes can explain the accumulation of microbial 
NC and SOC (Bai et al., 2024; Raza et al., 2024). However, the precise 
relationships of soil-specific enzyme activity with microbial NC and 
SOC are still not fully understood. Our study found a significant 
correlation between SOCE, MBCE, the enzyme activity coefficient, 
and GMEA with microbial NC and SOC. Additionally, dune fixation 
promoted the accumulation of microbial NC and SOC 
(Supplementary Table S2), indicating that higher soil-specific enzyme 
activity supports this process.

Although earlier studies have identified microbial traits as major 
drivers of microbial NC accumulation (Han et al., 2024), our study 
indicated that soil-specific enzyme activity accounted for up to 32.2% 
of the variations in microbial NC, compared to 6.7% for BG/SOC. The 
contributions of plant diversity and microbial communities were 19.3 

and 23.4%, respectively. For SOC, soil-specific enzyme activity, plant 
diversity, and microbial community composition accounted for 24.1, 
5.7, and 21.2%, respectively. These observations suggest that soil-
specific enzymatic activity is crucial for accumulating both microbial 
NC and SOC. We highlight two key mechanisms behind these results. 
First, an increase in soil-specific enzyme activity can modulate the 
hydrothermal conditions and physical structure of the soil (Bharti 
et al., 2024), which affects the accumulation process of soil carbon. 
Second, vegetation input directly influences the dynamic changes in 
SOC (Zhou et al., 2019). However, both the quantity and quality of 
plant litter affect how microorganisms use substrates (Shigyo et al., 
2024), thus influencing SOC distribution (Wiesmeier et al., 2019). 
Higher soil-specific enzyme activity supports plant growth and 
promotes the accumulation of both aboveground and subsurface 
biomass (Yu et al., 2019), leading to more plant litter and further 
promoting the accumulation of microbial NC and SOC (Xiao et al., 
2021). In addition, soil-specific enzyme activity enhances the carbon 
use efficiency of soil microorganisms through both direct effects 
(enhanced microbial activity) and indirect effects (affecting root 
growth and its secretions) (Liu et al., 2017). Therefore, in arid regions, 
dune fixation produces higher aboveground biomass and litter input, 
collectively promoting soil microbial NC and SOC accumulation 
through increased root growth and more active microbial processes.

5 Conclusion

Our study confirmed that dune fixation increased the soil-
specific enzyme activity (including SOCE and MBCE), the 
enzyme activity coefficient, and GMEA; among them, the GMEA 
of the fixed dunes was approximately twice that of the semi-fixed 
dunes, four-fold that of the semi-mobile, and 20 times that of the 
mobile dunes. This was mainly attributed to the increase in plant 
diversity, plant biomass, soil moisture, and soil nutrients. 
Moreover, SOCE and MBCE were significantly correlated with 
microbial NC and SOC. Although soil microbial communities 
and plant diversity largely influenced microbial NC and SOC, 
soil-specific enzyme activity explained even more variation, 
accounting for 32.2% of microbial NC and 24.1% of 
SOC. Therefore, this study provides strong evidence that SOCE 
and MBCE are sensitive indicators in responses to dune 
restoration, making them useful for explaining changes in 
microbial NC and SOC during ecological restoration.
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