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soil microbial necromass
accumulation during sand dune
fixation
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School of History, Geography and Tourism, Chengdu Normal University, Chengdu, China, ?Institute of
Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources,
Yangling, China, *School of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China

Introduction: Soil enzymes are critical to plant growth and soil carbon turnover.
However, the traditional method of assessing enzyme activity per unit of soil
may be insufficient; instead, soil-specific enzyme activity per unit of soil organic
carbon (SOCE) or microbial biomass carbon (MBCE) has been widely used to
characterize soil carbon accumulation.

Methods: We systematically examined the changes in SOCE and MBCE with
sand dune fixation (mobile, semi-mobile, semi-fixed, and fixed). We explored
the implications of this soil-specific enzyme activity for soil microbial necromass
carbon (NC) and soil organic carbon (SOC) accumulation.

Results: We found that -1, 4-glucosidase, p-D-cellobiosidase, f-1,
4-N-acetylglucosaminidase, and L-leucine aminopeptidase in SOCE and MBCE,
the soil enzyme activity coefficient (SEAC), and the geometric mean of enzyme
activity (GMEA) were significantly higher in semi-mobile, semi-fixed, and fixed
dunes than those in mobile dunes. Furthermore, SOCE, MBCE, SEAC, and GMEA
showed significant relationships with microbial NC and SOC. Specifically, soil-
specific enzyme activity accounted for 32.2 and 24.1% of microbial NC and SOC
variance, respectively.

Conclusion: Dune fixation significantly increases SOCE and MBCE. More
importantly, we recommend that changes in SOCE and MBCE should be widely
used to assess microbial NC and SOC accumulation in degraded sandy land
ecosystems.
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1 Introduction

Desertification is an important ecological and environmental problem that severely
restricts human survival and threatens sustainable economic and social development (Kéfi
et al., 2007; Peters et al., 2012). The Mu Us Sandy Land is an important area for ecological
restoration (Li et al., 2017). Since the 1950s, the ecosystem in this region has been severely
degraded because of overgrazing (Miao et al., 2016). Local restoration measures, such as
fencing, cropland abandonment, and vegetation restoration, have been implemented to restore
the ecological environment, which has significantly changed the land-use pattern and affected
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plant growth and material cycling processes in the local ecosystem
(Guo et al., 2023). Currently, mobile (coverage: <5%), semi-mobile
(5-20%), semi-fixed (21-50%), and fixed (>50%) dunes with different
vegetation coverages have formed (Chen et al., 2022).

Currently, further research has focused on soil absolute enzyme
activity (SAE; Nannipieri et al.,, 2012; Zheng et al., 2025), but in
natural soil, enzymes coexist with soil microorganisms and carbon
(Stone et al., 2014; Xu et al., 2020). Therefore, soil enzymes cannot
be separated from organic matter or microorganism (Liu et al., 2017).
Based on this relationship, researchers have introduced the concept of
soil-specific enzyme activity [per unit of soil organic carbon (SOCE)
or microbial biomass carbon (MBCE)] (Yu et al., 2019). SOCE and
MBCE reflect the activity based on organic matter and
microorganisms, which providing clear insights into changes in SOC
and MBC (Raiesi and Beheshti, 2014).

Some scholars have noted that SOCE and MBCE are regulated by
land-use change (Xiao et al., 2021). For example, Zhang et al. (2015)
reported consistent changes in both SOCE and SAE in response to
different fertilization treatments. Raiesi and Salek-Gilani (2018) found
that after cropland abandonment, SAE increased, whereas SOCE
decreased with recovery time. The roles of SOCE and MBCE also
differ in their responses to environmental changes. For example,
Raiesi and Beheshti (2014) indicated that MBCE and SOCE respond
consistently to land-use changes. However, Xu et al. (2020) observed
that SOCE first increased and then tended to stabilize with recovery
time, whereas MBCE gradually decreased with longer recovery times.
Consequently, changes in SOCE and MBCE with restoration
remain inconclusive.

Soil enzymes are sensitive to sand dune fixation (ecological
restoration) (Cao C. et al., 2024). It is generally accepted that sand
dune fixation increases plant diversity and vegetation cover (Qiao
etal.,, 2012), which in turn produces more litter that returns to the soil,
thereby increasing soil nutrient content and providing more food
resources for soil microorganisms. This resource increase boosts
enzyme secretion by microorganisms (Cheng et al., 2022). Moreover,
sand dune fixation promotes plant growth and microbial activity,
thereby promoting interactions among plants, microorganisms, and
soil development (Cao et al., 2017; Alamusa et al., 2023). In arid and
semi-arid regions, soil water controls microbial activity (Li et al.,
2023). By increasing vegetation cover, dune fixation reduces water
evaporation and enhances soil water availability (Cao M. et al., 2024).
Increases in soil stability and water content further enhance SAE (Xu
et al., 2016), but the effect of sand dune fixation on SOCE and MBCE
remain poorly understood.

Soil microorganisms regulate soil carbon transformation, in the
form of living organisms and microbial necromass carbon (NGC;
Buckeridge et al., 2022; Xiang et al., 2024). Liang et al. (2019)
confirmed that microbial NC, as a stable soil carbon component,
contributes more than 50% of SOC accumulation. This process occurs
as soil microorganisms continuously grow, metabolize, proliferate, and
die, leaving behind cell wall residues (Buckeridge et al., 2022). Chitin
from fungal cell walls and peptidoglycan from bacterial cell walls
accumulate in soils, which directly contribute to the soil carbon pool
(Camenzind et al., 2023). Moreover, Xu et al. (2020) showed that soil-
specific enzyme activity may help explain changes in carbon stability.
However, the relationship between SOCE, MBCE, and microbial NC,
as well as whether SOCE and MBCE can explain changes in microbial
NG, requires further exploration.
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To explore the correlation between SOCE and MBCE with soil
microbial NC during dune fixation, we established study sites with
varying dune coverages: mobile, semi-mobile, semi-fixed, and fixed
dunes. We aimed to study the effect of dune fixation on SOCE and
MBCE and its relationship with plant and microbial community
characteristics. We hypothesized that dune fixation would lead to
increased SOCE and MBCE. Additionally, we hypothesized that the
SOCE and MBCE are significantly positively correlated with
microbial NC.

2 Methods
2.1 Study site

The study site is located in Yanchi County, Ningxia Hui
Autonomous Region, China (Figure 1). The mean annual precipitation
and temperature are 250-350 mm and 6.0 °C-8.5 °C, respectively, and
the elevation is 1,200-1,600 m. The wind is mainly northwesterly, with

annual average wind speeds of 2.1-3.3 m.s™

, especially from March
to May. The soil type is typical eolian sand soil, with loose surface
material, rich sand source material, and strong eolian sand activity.
The zonal vegetation primarily consists of Agriophyllum squarrosum,
Artemisia ordosica, Aster altaicus, Artemisia scoparia, and Caragana
microphylla. In the 1950s, the ecosystem of the region was severely
degraded owing to overgrazing. Consequently, fencing has been
implemented to restore these degraded ecosystems, and grassland

communities at different stages of restoration have been formed.

2.2 Experimental setting and sample
analysis

Four treatments were established: mobile, semi-mobile, semi-
fixed, and fixed dune groups. Three 5 x 5 m plots were set up for each
dune type, totaling 12 plots. The slope angle, slope direction, and slope
position in each treatment plot remained unchanged. In each plot,
three 1 x 1 m quadrats were set evenly along the diagonal, totaling 36
quadrats. A vegetation diversity survey was conducted for each sample
quadrat. The soil depth is 0-20 cm. The visible stones and roots in soil
samples were removed and sieved using a 2-mm sieve and then
divided into three parts: one part was used to determine the microbial
community; the second, to determine the enzyme activity; and the
third, to determine the microbial NC content.

Microbial community and microbial NC were determined by
the Rhonin Biosciences' and Baihui Organisms® companies,
respectively. Soil enzyme activity of -1, 4-glucosidase (BG),
B-D-cellobiosidase (CBH), f-1, 4-N-acetylglucosaminidase (NAG),
L-leucine aminopeptidase (LAP), and acid phosphatase (AP) were
determined using 96-microplate enzymic fluorescence assays
(German et al., 2011). The soil microbial biomass was determined
by chloroform fumigation methods (Vance et al., 1987). The soil
pH, organic carbon (SOC), total nitrogen (TN), and total

1 http://rhonin-bio.com/
2 http://www.baihuitech.cn/
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phosphorus (TP) were determined using the pH meter, Walkley
and Black, Kjeldahl, and molybdenum blue methods, respectively
(Bremner, 1982; Nelson and Sommers, 1982). The detailed methods
of soil microbial community, microbial NC, soil microbial biomass,
and enzyme activity were described in Zhou et al. (2025).

2.3 Statistical analyses
The Shannon-Weiner diversity, Pielou evenness, and Margalef

richness indices were selected to characterize plant diversity, which
were calculated as:

Shannon - Weiner diversity index =—X P, log P; (i =1,2,3,++,5) (1)

Pielou evenness index = Shannon -

Weiner diversity index/log(S) )

3)

Margalef richness index =S

where Pi, S, and N are the proportion of species i, number of
species, and total number of individuals, respectively.
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The SOCE and MBCE were calculated as follows (Trasar-Cepeda
et al., 2008):

Soil absolute enzyme activity
SOC/MBC

SOCE/MBCE = (4)

The soil enzyme activity coefficient (SEAC) reflects the relative
microbial demand for carbon and nitrogen, which were calculated as:

SEAC of BGand CBH = 20/ <BH (5)
MBC
AG/LAP
SEAC of NAGand LAP = % 6)
MBN
The GMEA was calculated as follows (Hinojosa et al., 2004):
GMEA =3/BGxCBH x NAGx LAP x AP 7)
Microbial NC was calculated as follows:
Bacterial NC = MurA x 45 (8)
N  MurA
Fungal NC=| PN _ Murd ), 170.17x9 )
179.17 251.23
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Microbial NC = Bacterial NC + Fungal NC (10)

where, MurA was muramic acid; GluN was glucosamine.

The results of plant diversity and soil physicochemical properties
in different dunes are shown in Supplementary Tables S1, S2. SOCE,
MBCE, soil nutrients, and plant and microbial diversity were analyzed
using a one-way analysis of variance. The Pearson’s correlation was
used to evaluate the relationships of SOCE and MBCE with microbial
NG, SOC, soil nutrients, and plant and microbial diversity. Random
forest analysis was used to assess the relative contributions of SOCE,
MBCE, soil nutrients, and plant and microbial diversity to microbial
NC and SOC (randomForest package in R version 4.5.0).

3 Results
3.1 Dynamics of SOCE and MBCE

The semi-fixed and fixed dunes had higher BG/SOC and LAP/
SOC, compared with the semi-mobile and mobile dunes
(Figures 2a,d). Furthermore, the fixed dunes had higher CBH/SOC,
and NAG/SOC than the semi-mobile and mobile dunes, and the fixed
dunes also had higher AP/SOC than other dune types (Figures 2b,c,e).

10.3389/fmicb.2025.1687297

Additionally, the semi-fixed and fixed dunes had higher BG/MBC
and LAP/MBC, compared with the semi-mobile and mobile dunes
(Figures 3a,d). The CBH/MBC and NAG/MBC were lowest in mobile
dunes, and the semi-fixed and fixed dunes had lower AP/MBC,
compared with the semi-mobile and mobile dunes (Figures 3b,c,e).

3.2 Dynamics of the SEAC and GMEA

The fixed dunes had higher BG coefficients than other dune types,
whereas the mobile dunes had lower CBH, NAG, and LAP coefficients
than other dune types (Figures 4a—d). The GMEA of the fixed dunes
was approximately twice that of the semi-fixed dunes, four-fold that
of the semi-mobile, and 20 times that of the mobile dunes (Figure 5a).

3.3 Correlations of soil-specific enzyme
activity with plant and soil variables

The SOCE was positively correlated with the MBCE and the
enzyme activity coefficients overall. The SOCE and MBCE were
positively correlated with the plant diversity indices (i.e., the Shannon-
Weiner diversity, Pielou evenness, and Margalef richness indices), soil
nutrients (i.e, TN and TP), and soil microbial properties (i.e., MBC,
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aminopeptidase (LAP/MBC), and (e) acid phosphatase (AP/MBC) of different dune types.

MBN, bacterial diversity, bacterial richness, fungal diversity, and
fungal richness) (Table 1).

3.4 Correlations of soil-specific enzyme
activity with microbial NC and SOC

The BG/SOC, CBH/SOC, NAG/SOC, LAP/SOC, BG/MBC, and
CBH/MBC were linearly related to microbial NC and SOC, whereas
NAG/MBC was quadratically related to microbial NC and SOC
(Figures 6a-g). LAP/MBC was linearly related to SOC, whereas LAP/
MBC was quadratically related to microbial NC (Figure 6h). The BG,
CBH, and NAG coeflicients were linearly related to microbial NC and
SOC, while the LAP coefficient was quadratically related to microbial
NC and SOC (Figures 7a-d). In addition, GMEA was linearly related
to microbial NC and SOC (Figure 5b).

The microbial NC was mainly influenced by BG/SOC (6.7%), plant
evenness (6.7%), bacterial richness (6.5%), GMEA (6.5%), plant richness
(6.4%), MBC (6.2%), plant diversity (6.2%), soil moisture (6.1%), CBH/
SOC (5.8%), bacterial diversity (5.6%), fungal richness (5.1%), TN (5.0%),
the LAP coefficient (4.6%), the BG coefficient (4.6%), and LAP/SOC
(4.0%), which cumulatively explained 86.0% of the variance in microbial
NC (Figure 8a). The SOC was mainly influenced by fungal richness
(7.1%), plant richness (5.7%), BG/SOC (5.2%), the LAP coefficient
(5.1%), GMEA (5.1%), soil moisture (M) (4.8%), bacterial richness
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(4.8%), bacterial diversity (4.7%), fungal diversity (4.6%), LAP/SOC
(4.5%), LAP/MBC (4.2%), and TN (4.1%), which cumulatively explained
59.9% of the variance in SOC (Figure 8b).

4 Discussion

4.1 Effect of dune fixation on SOCE

The traditional absolute enzyme activity (SAE) appears to
be insufficient to characterize the accumulation of SOC (Xu et al,,
2020). Consequently, SOCE has been widely used to characterize soil
carbon turnover (Zhang et al., 2015; Xiao et al., 2021). As indicated by
our hypothesis, sand fixation (ecological restoration) promoted an
overall increase in SOCE (except for AP), indicating an increase in the
enzyme production capacity of soil microorganisms. Although both
SOC and soil absolute enzymes had positive effects on dune fixation,
the percentage change in soil absolute enzymes (except AP) was
higher than that of SOC, which led to an increase in SOCE.

There are three possible mechanisms for this: (1) Dune fixation
increases plant diversity (Supplementary Table S2) and plant
biomass (Qiao et al., 2012), which increases the production of dead
leaves that enter the soil and provide energy and food for
microorganisms (Cheng et al., 2022), thereby increasing SAE in the
soil (Supplementary Table 52). (2) Differences in vegetation types

frontiersin.org
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TABLE 1 Pearson'’s correlation of soil extracellular enzyme activity coefficient with plant and soil variables.

Variables BG/ CBH/ NAG/ LAP/ BG/ CBH/ LAP/ BG CBH NAG LAP GMEA
Nele SOC Nele SOC MBC MBC MBC coe coe coe coe

CBH/SOC 0.82%%

NAG/SOC 0.90% 0.78%*

LAP/SOC 0.71%% 0.64% 0.64*

BG/MBC 0.88% 0.68% 076 0.727%

CBH/MBC 0.78%* 0.60%*

NAG/MBC 0.60% 0.59%

LAP/MBC 0.93%* 0.67*

AP/MBC —0.60* —0.63*

BG coe 0.8 0.68* 0.76%* 0.72%% 0.99%# 0.60* 0.67*

CBH coe 0.78%% 0.60 0.99% 0.60*

NAG coe 0.82+ 0.59% 0.67% 0.72%% 0.76%* 0.66* 0.74% 0.76% 0.66*

LAP coe 0.89%* 0.97%% 0.69%

GMEA 0.95% 0.89%* 0.91%* 0.75%* 0.83%* 0.83% 0.67*

Plant D 0.86%* 0.827%* 0.79%* 0.77%%* 0.88%* 0.68* 0.66* 0.88%%* 0.68* 0.83%%* 0.60%* 0.93%%

Plant R 0.69% 0.79%% 0.70% 0.75%* 0,82 0.83% 0.72%% 0.82% 0.83% 0.93%* 0.64* 0.80%

Plant E 0.80%* 0.85%* 0.79%%* 0.827%%* 0.84%%* 0.75%% 0.727%% 0.84%%* 0.75%%* 0.88%%* 0.65% 0.91%%

Soil M 0.8 0,847 0.89% 0.79%* 0.85% 0.58°% 0.62* 0.85%* 0.58% 0.75%% 0.96%*

pH —0.59* —0.67* —0.60* —0.62%* —0.60* —0.62% —0.63* —0.68*

™ 0.75% 0.81%% 0.71%% 0,827 0,847 0.79%* 0.77%% 0.84% 0.79%* 0.91%* 0.71%% 0.827%

TP 0.66* 0.69% 0.76%* 0.69% 0.79%%* 0.75%%

MBC 0.91% 0.86%* 0.87%% 0.69% 0.71%% 0.71%% 0.58% 0.98%*

MBN 0.93%* 0.81%% 0.93%* 0.73%* 0.73%% 0.94%%

Bacteria R 0.92%% 0.85%* 0.89% 0.61% 0.71%% 0.71%% 0947

Bacteria D 0,92 0.84%% 0.87%% 0.80%* 0.81%* 0.59% 0.81%% 0.62* 0.94%%

Fungi R 0.84%% 0.77%% 0.77%% 0.81%% 0.80% 0.65% 0.80% 0.90°*

Fungi D 0.67% 0.84%* 0.66* 0.0.74%% 0.66% 0.71%% 0.77%%

##p <0.01, *p < 0.05.

caused by dune fixation significantly affect the connections between
plant rhizospheres, thereby improving the soil porosity, soil bulk
density, and aggregates (Alamusa et al., 2023). Furthermore, the
increase in plant diversity and coverage leads to the secretion of
large amounts of organic matter from the root system, which
improves the soil physical structure (Jones et al., 2004; Liu et al.,
2005; Liu et al., 2009; Cao et al., 2017) and increases the microbial
activity (Supplementary Table S2), enzyme secretion, and SOCE
(Xu et al,, 2020). (3) The plant cover acts as a shade for the soil
surface and effectively reduces the impact of rain and wind erosion,
thereby protecting the environmental conditions of the soil (Cao
M. et al.,, 2024; Xu et al., 2024), and providing a stable environment
for the secretion of soil enzymes, leading to a higher SOCE. In
addition, we were surprised to find that the SOCE of phosphatase
enzymes was different from that of carbon and nitrogen enzymes,
showing that AP/SOC in semi-fixed dunes was lower than that in
mobile and semi-mobile dunes. This may be attributed to the
efficiency of the phosphatases released by microorganisms
decreasing during the late recovery period (Li et al., 2018), whereas
SOC continued to increase (Xu et al., 2021), thereby reducing the
AP/SOC. Overall, this study provides direct evidence that SOCE is
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sensitive to dune fixation and shows potential as a sensitive index
for characterizing SOC accumulation.

4.2 Effect of dune fixation on MBCE, SEAC,
and GMEA

The percentage increase in MBC during dune fixation was
smaller than that of enzyme activity (Supplementary Table S1),
which, in turn, led to an increase in MBCE (except for AP),
confirming our hypothesis. The MBCE characterizes the
metabolic activity and catalytic efficiency of enzymes produced
by microbial communities (Waldrop et al., 2000). The changes in
MBCE were consistent with the changes in soil nutrient content
(Supplementary Table 52), indicating that, with the accumulation
of soil nutrients, the metabolic activity and enzyme production
ability of soil microorganisms gradually increased. During dune
fixation, changes in plant diversity and biomass, accompanied by
changes in soil physical and chemical properties, are important
causes of changes in soil enzyme activity (Cheng et al., 2022;
Naeimi et al., 2023). The increase in plant productivity produces
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more litter, which is conducive to the improvement of soil
nutrient accumulation (Taylor et al., 2024; Yang et al., 2024). Soils
with adequate nutrients tend to have higher soil microbial
diversity and activity, which in turn enhances enzyme secretion
(Moharana et al., 2024; Zhang et al., 2024), thereby increasing the
MBCE (Raiesi and Beheshti, 2015). This conclusion was
confirmed by the positive correlations between MBCE and plant
diversity, soil nutrient content, and microbial diversity (Table 1).
However, other studies have indicated that ecological restoration
reduces MBCE (Raiesi and Salek-Gilani, 2018; Xu et al., 2020).
The reason for these differences may be related to differences in
the ecological community types. The research of Raiesi and
Salek-Gilani (2018) and Xu et al. (2020) investigated an area with
relatively abundant rainfall and found that the growth and
reproduction of plants and microorganisms were less affected by
water (Ghorbani et al., 2023). By contrast, this study was
conducted in an extremely arid environment (with an average
annual rainfall of 250-350 mm), and the reproduction of
microorganisms was limited by water, resulting in a more
significant impact of ecological restoration on microorganisms
(Chang et al., 2024; Zhao et al., 2024). This study indicated that
dune fixation significantly increased the metabolic activity of soil
microorganisms and increased the production of phosphatase
enzymes; MBCE was a sensitive index reflecting the interaction
between soil enzyme activity and microorganisms.

The soil enzyme activity coefficient and GMEA are common
indices for integrating soil enzyme data and information and are also
important indicators of soil quality (Hinojosa et al., 2004). Dune
fixation significantly increased the soil enzyme activity coefficient and
GMEA. The increase in the GMEA was mainly due to an increase in
enzyme activity associated with increased dune fixation. As explained
earlier, dune fixation increases plant diversity and productivity (Qiao
etal,, 2012), leading to increased litter production and root turnover,
which, in turn, leads to increased soil organic carbon and nutrient
content (Cao M. et al., 2024). The increase in the organic substrates
available to microorganisms enhances the activity of soil
microorganisms and accelerates the secretion of enzymes (Cao et al.,
2017; Naeimi et al., 2023). Therefore, overall, dune fixation accelerated
the production of soil enzymes in this arid ecosystem.

4.3 Relationships of soil-specific enzyme
activity with microbial NC and SOC

Absolute soil enzymes can explain the accumulation of microbial
NC and SOC (Bai et al., 2024; Raza et al., 2024). However, the precise
relationships of soil-specific enzyme activity with microbial NC and
SOC are still not fully understood. Our study found a significant
correlation between SOCE, MBCE, the enzyme activity coefficient,
and GMEA with microbial NC and SOC. Additionally, dune fixation
NC and SOC
(Supplementary Table S2), indicating that higher soil-specific enzyme

promoted the accumulation of microbial
activity supports this process.

Although earlier studies have identified microbial traits as major
drivers of microbial NC accumulation (Han et al., 2024), our study
indicated that soil-specific enzyme activity accounted for up to 32.2%
of the variations in microbial NC, compared to 6.7% for BG/SOC. The
contributions of plant diversity and microbial communities were 19.3
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and 23.4%, respectively. For SOC, soil-specific enzyme activity, plant
diversity, and microbial community composition accounted for 24.1,
5.7, and 21.2%, respectively. These observations suggest that soil-
specific enzymatic activity is crucial for accumulating both microbial
NC and SOC. We highlight two key mechanisms behind these results.
First, an increase in soil-specific enzyme activity can modulate the
hydrothermal conditions and physical structure of the soil (Bharti
et al., 2024), which affects the accumulation process of soil carbon.
Second, vegetation input directly influences the dynamic changes in
SOC (Zhou et al., 2019). However, both the quantity and quality of
plant litter affect how microorganisms use substrates (Shigyo et al.,
2024), thus influencing SOC distribution (Wiesmeier et al., 2019).
Higher soil-specific enzyme activity supports plant growth and
promotes the accumulation of both aboveground and subsurface
biomass (Yu et al., 2019), leading to more plant litter and further
promoting the accumulation of microbial NC and SOC (Xiao et al.,
2021). In addition, soil-specific enzyme activity enhances the carbon
use efficiency of soil microorganisms through both direct effects
(enhanced microbial activity) and indirect effects (affecting root
growth and its secretions) (Liu et al., 2017). Therefore, in arid regions,
dune fixation produces higher aboveground biomass and litter input,
collectively promoting soil microbial NC and SOC accumulation
through increased root growth and more active microbial processes.

5 Conclusion

Our study confirmed that dune fixation increased the soil-
specific enzyme activity (including SOCE and MBCE), the
enzyme activity coefficient, and GMEA; among them, the GMEA
of the fixed dunes was approximately twice that of the semi-fixed
dunes, four-fold that of the semi-mobile, and 20 times that of the
mobile dunes. This was mainly attributed to the increase in plant
diversity, plant biomass, soil moisture, and soil nutrients.
Moreover, SOCE and MBCE were significantly correlated with
microbial NC and SOC. Although soil microbial communities
and plant diversity largely influenced microbial NC and SOC,
soil-specific enzyme activity explained even more variation,
accounting for 32.2% of microbial NC and 24.1% of
SOC. Therefore, this study provides strong evidence that SOCE
and MBCE are sensitive indicators in responses to dune
restoration, making them useful for explaining changes in
microbial NC and SOC during ecological restoration.
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