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Bacteriophages are viruses that specifically infect bacteria and co-evolve with their
hosts through mutual interactions. They represent one of the most significant drivers
of microbial diversity, influencing its evolution, generation, and maintenance. To
counter bacteriophage infection, bacteria have developed sophisticated immune
systems, including both passive adaptations, such as inhibiting phage adsorption and
preventing DNA entry, and active defense systems such as restriction-modification
systems and CRISPR-Cas systems. The ongoing arms race between bacteriophages
and bacteria has left distinct evolutionary signatures in their genomic sequences.
Advances in large-scale genomic and metagenomic sequencing technologies,
coupled with bioinformatics approaches, have greatly enhanced our understanding
of bacteria-phage interaction mechanisms, driving progress in bacteriophage
biology. This review systematically analyses the diverse immune strategies bacteria
employ against phage infection, elucidates the coordination and interrelationships
among different anti-phage mechanisms, and highlights potential directions for
future research.
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1 Introduction

As viruses that specifically infect and lyse pathogenic bacteria, bacteriophages exhibit high
specificity and offer a promising alternative to combat antibiotic-resistant bacterial infections
(Benler et al., 2018; Cano et al., 2021). However, due to the co-evolutionary arms race between
bacteriophages and their bacterial hosts, phage therapy resistance frequently emerges in
pathogenic bacteria (Bernheim and Sorek, 2020; Diercks et al., 2025; Roch et al., 2025).
Although clinical applications of phage therapy have incorporated strategies such as multi-
phage cocktails to mitigate resistance (Weiner et al., 2025), these approaches remain
insufficient. Therefore, a deeper understanding of the underlying interaction mechanisms
between bacteriophages and their host bacteria is essential. Over long-term co-evolution,
bacteriophages impose strong selective pressures on bacterial populations, driving the
development of complex immune systems that enable bacteria to resist or evade phage
infection (Stern and Sorek, 2011; Arnold et al., 2022). These systems collectively define
bacterial immunity—the ability of bacteria to maintain cellular integrity and ensure survival
under environmental stress through precisely regulated mechanisms (Dy et al., 2014). Upon
infection, bacteriophages progress through their replication cycle through sequential stages
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including adsorption, invasion, uncoating, biosynthesis, lysis, and
release (Olszak et al, 2017; Vendrell-Ferniandez et al., 2025).
Throughout evolutionary history, bacteria have developed distinct
immune strategies targeting each stage of this cycle (Labrie et al.,
2010). Traditionally, the analysis of bacteria-phage interactions has
relied on virus-host culture systems, which are considered the gold
standard for detecting the presence of such interactions (Quince et al.,
2017). However, this method is labor-intensive, low-throughput, and
often limited by the inability to culture many phages and bacterial
strains in vitro. Consequently, a comprehensive understanding of
phage-bacteria interactions using solely experimental approaches
remains challenging. With the rapid development of molecular
technologies, high-throughput metagenomic sequencing has emerged
as a powerful tool (Tas et al., 2021). This technique enables direct
sequencing and analysis of all microorganisms and their genomes
within environmental samples without the need for purification,
isolation, or cultivation (Carter et al., 2023). Compared to traditional
culture-based methods, it offers higher sensitivity and accuracy,
facilitating the rapid identification of novel microbial species and
revealing an unprecedented view of microbial ecosystems (Johansen
et al., 2022; Sun et al., 2023). Therefore, metagenomic sequencing
provides a novel and effective approach for investigating phage-
bacteria interactions.

The rise of metagenomic technologies has significantly enhanced
our understanding of microbial diversity and its spatiotemporal
dynamics across various ecosystems—from the deep sea to soil and
even the gastrointestinal tracts of mammals (Shkoporov et al., 2019;
Zheng et al., 2021; Muscatt et al., 2023; He et al., 2024). Within these
ecosystems, bacteriophages and bacteria represent the most abundant
and diverse biological entities. As Dbacteria-specific viruses,
bacteriophages coexist with bacteria through dynamic interactions,
serving as a key evolutionary force that shapes microbial communities
and plays a central role in generating and maintaining of microbial
biodiversity (Koskella and Brockhurst, 2014; Laanto et al., 2017).
Beyond advancing our understanding of microbial ecology and
evolution, studying phage-bacteria interactions also provides insights
into the role of bacteriophages in bacterial virulence evolution and
their potential clinical applications (Levin and Bull, 2004; Scanlan and
Buckling, 2012). During their coevolution, bacterial traits such as
growth, metabolic activity, pathogenicity, antibiotic resistance, and
interspecies competition may all be influenced by bacteriophage
infection (Wein and Sorek, 2022). Conversely, bacteriophages rely on
bacterial hosts for reproduction and replication, continuously
undergoing mutation and recombination to adapt to diverse host
environments (Miura and Tomizawa, 1970; Rohwer, 2003). As a
result, the characteristics of their interactions are preserved within the
genomes of both bacteriophages and bacteria (Amitai and Sorek,
2016). Currently, researchers have developed numerous accurate,
robust, and scalable algorithms aimed at predicting bacteriophage-
bacteria interactions (Hannigan et al., 2018). These algorithms enable
the systematic identification of novel and efficient bacterial immune
systems from large-scale sequencing data by leveraging coevolutionary
features between bacteriophages and bacteria. This approach
enhances our understanding of bacterial immune defense
mechanisms against bacteriophages, as well as the counter-
mechanisms employed by bacteriophages to evade bacterial immune
defenses, thereby facilitating comprehensive and systematic studies of
their interactions.
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2 Bacteriophages specifically regulate
bacterial hosts

Bacteriophages are ubiquitous in natural environments and can
be detected wherever bacterial hosts are present, making them a
major force in shaping microbial community composition (Naureen
et al,, 2020). They exhibit remarkable diversity and can be classified
based on various characteristics. Their genetic material may consist
of RNA or DNA, which can be either double-stranded or single-
stranded (Khan Mirzaei et al., 2021). Morphologically, their tails can
be long and contractile or short (Dion et al., 2020). To date, double-
stranded DNA bacteriophages have been the most extensively
studied, with tailed bacteriophages accounting for over 90% of all
described phages (Earnshaw and Casjens, 1980). This bias may stem
from the historical reliance on isolation and culture techniques for
phage identification. Recently developed metagenomic sequencing
methods that do not require isolation or culture have uncovered
of non-tailed double-stranded DNA
bacteriophages and distinct subfamilies of single-stranded DNA

numerous lineages
bacteriophages (Waller et al, 2014). These discoveries have
significantly expanded our understanding of phage diversity, thereby
enhancing our comprehension of the interaction dynamics between
bacteriophages and bacteria.

Bacteriophages can also be categorized according to their life
cycles, which include chronic, lytic, and lysogenic types (Erez et al.,
2017) (Figure 1). Bacteriophages specifically attach to receptors on the
bacterial surface and inject their genetic material into the host cell
(Sanchez-Torres et al., 2024). They then utilize host-derived enzymes
to replicate their genetic material and produce progeny phages. In the
chronic life cycle, progeny phages continuously assemble and are
released without causing host cell lysis. In the Iytic cycle, after injecting
nucleic acids into the host cell, the bacteriophage rapidly synthesizes
early proteins that degrade the host’s genetic material and hijack cellular
processes. It then uses the host’s cellular machinery to synthesize the
remaining structural proteins required for assembling new phage
particles, and the newly replicated genetic material is packaged into the
virion (Wang et al., 2024). Throughout the lytic process, bacteriophage-
encoded enzymes progressively degrade the host cell, ultimately leading
to its lysis and the release of progeny phages into the environment. In
the lysogenic cycle, the bacteriophage integrates its genetic material into
the host genome via a phage-encoded integrase, rather than killing the
host. The integrated phage genome is then passively replicated along
with the host genome (Howard-Varona et al., 2017).

Although well-established laboratory models accurately describe
phage replication in these three infection cycles, increasing evidence
suggests that these models may not fully capture the complexity of
bacteria-phage interactions in natural settings (Alvarez-Espejo et al.,
2024). Some studies propose that phage infection strategies may
be environmentally responsive rather than fixed, transitioning from
productive infections that generate new phage particles to persistent,
non-productive infections that do not produce new phages but still
propagate the phage genome within the bacterial population
(Gaborieau et al., 2024). Lysogenic and lytic phages are not uniformly
distributed across ecosystems, and this distribution may be influenced
by host density. Under conditions where hosts can proliferate and
reach high densities, lytic replication is typically favored. In contrast,
when host abundance is low, lysogenic replication tends to dominate
(Hobbs and Abedon, 2016).
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FIGURE 1

replication and virion assembly, and release mechanism.
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Life history of phage and the way that the phage acts on the host bacteria. Bacteriophage life cycles: lysogenic, chronic, and lytic. The lysogenic cycle
is characterized by viral genome integration and dormancy, with no virion production. The chronic cycle enables continuous release of new phages
without immediate host cell lysis. The lytic cycle results in host cell lysis and the release of progeny phages. Each cycle includes key stages: viral entry,

Phages interact with bacterial hosts through multiple mechanisms
and exert significant influences on them. The most prevalent
mechanism involves regulating the composition and abundance of
host bacteria, thereby affecting the diversity of bacterial communities
(Federici et al., 2021; Sun et al., 2024a). The impact of lytic phages on
bacterial cell density and community diversity may be partially
attributed to cell lysis, which exerts both direct effects on bacterial
populations and indirect effects on competition among bacterial
strains and species (Morella et al., 2018). Phages not only alter the
composition of bacterial populations but also serve as a crucial driving
force for bacterial evolution. This evolutionary pressure arises from
the intense selective forces exerted by phages through their predatory
behavior and their ability to integrate into the bacterial genome as
prophages via mechanisms such as lysogeny, transduction, and host
gene disruption (Chee et al., 2023). The regulatory role of phage
communities on their bacterial hosts can occur through multiple
pathways, including distinct replication cycles (lysogenic or lytic), the
carriage of unique genetic elements that enhance host adaptability
(e.g., virulence factors or antibiotic resistance genes), and the
modulation of host mutation rates (Taylor et al., 2019; Pfeifer et al.,
2022). Collectively, these mechanisms can significantly influence
bacterial diversity and metabolic capabilities. Phages can protect their
bacterial hosts from other predatory phages by integrating prophage
elements. A prophage is a latent viral genome that either attaches to
or integrates into the bacterial chromosome and replicates alongside
the host genome (Canchaya et al., 2003). Prophages are prevalent in
bacterial genomes, with estimates suggesting that up to 20% of
bacterial genomes harbor detectable lysogenic phages. Consequently,
lysogeny may play a substantial role in shaping the adaptation and
evolution of microbial communities (Casjens, 2003).

Lysogenic phages can directly influence host evolution by
integrating into the bacterial genome. Some integrate at specific loci
with minimal disruption and may even confer immunity against
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superinfection by other phages. The protective mechanisms encoded
by such prophages appear to be widespread in nature (Touchon et al.,
2016). Previous studies have identified bacterial immune mechanisms,
such as the CRISPR-Cas system, which captures exogenous genetic
sequences (Seed et al,, 2013), and the abortive infection (Abi) system,
which induces host cell death to limit phage propagation (Lopatina
etal, 2020), as strategies to reduce phage invasion. However, recent
evidence suggests that prophage-mediated protection against
heterologous phages may be more prevalent than homologous
immune mechanisms (Dedrick et al., 2017). Bacteria and their
associated phages co-evolve, benefiting from the viral genes embedded
within their genomes. This co-evolutionary process enhances bacterial
adaptability to changing environments and has significant ecological
implications for microbial communities.

Phages drive the evolution of bacterial host populations through
horizontal gene transfer. As vectors of horizontal gene transfer, phages
mediate gene exchange via generalized and specialized transduction.
Upon acquiring horizontally transferred genes, individual bacteria
and entire bacterial communities undergo phenotypic changes that
influence the evolution of bacterial genomes (Wielgoss et al., 2016).
Transduction is increasingly recognized as a key driver of bacterial
adaptation to environmental changes. Moreover, the identification of
antibiotic resistance genes within isolated phage genomes and virome
datasets indicates that phages can act reservoirs for antibiotic
resistance genes and facilitate their transfer between bacterial species
(Calero-Céceres et al., 2019). However, this perspective remains
controversial, as bacterial contamination of viral samples or the use of
low similarity thresholds in predicting antibiotic resistance genes may
lead to an overestimation of the abundance of such genes in virome
datasets. Nonetheless, several studies have demonstrated that toxin-
encoding phages from pathogenic bacteria can convert
non-pathogenic bacterial strains into virulent ones through

transduction and lysogenization. Phages play a significant role in
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promoting bacterial evolution by influencing mutation rates. Under
selective pressure from lytic phages, bacterial clones with higher
mutation rates are more likely to survive. Recent studies have indicated
that in more ecologically complex environments, the presence of
multiple phages can further accelerate bacterial evolution and enhance
the selection of hypermutator strains (Betts et al., 2018).

3 The interaction between phages and
bacteria

The metaphor “run as hard as you can to stay in the same place”
was famously used by the evolutionary biologist Leigh van Valen to
propose the “Red Queen Hypothesis,” an influential evolutionary
theory suggesting that species must continuously adapt and evolve to
survive and pass on their genetic material to future generations
(Zliobaite et al., 2017; Aubier et al., 2020). In natural ecosystems, the
interaction between bacteriophages and bacteria exemplifies such a
tightly coupled co-evolutionary relationship (Chibani-Chennoufi
et al., 2004). Changes in one partner often drive corresponding
changes or even extinction in the other. Therefore, mutual adaptation
and co-evolution are essential for survival (Barbosa et al., 2013).
Bacteriophages have developed multiple survival strategies and
transmission mechanisms, exploiting prokaryotic hosts for replication.
By infecting bacteria, they influence bacterial competition, maintain
microbial diversity, and mediate horizontal gene transfer (Tokuda and
Shintani, 2024). Evidence from recent studies indicates that microbial
populations are highly dynamic and rapidly evolving. For instance, a
longitudinal study of the human gut virome over two and a half years
revealed a high turnover rate of bacteriophage lineages, particularly
among lytic phages (Shkoporov et al., 2019).

To defend against bacteriophage infection, bacteria have evolved
multiple immune systems that resist phage invasion at various stages
of the phage life cycle (Hall et al., 2011). Predictably, bacteriophages
have also evolved countermeasures to overcome these defenses. This
dynamic, combined with the vast diversity of phages, drives the
evolution of bacterial immune mechanisms (Gao and Feng, 2023).
Consequently, bacteria and bacteriophages have evolved into more
resistant (i.e., capable of resisting a broader range of phage genotypes)
and more infectious (i.e., capable of infecting a wider array of
bacterial genotypes) forms, respectively. This evolutionary pattern is
commonly referred to as an “arms race” (Hampton et al., 2020). The
ongoing interaction between bacteriophages and bacteria involves
continuous development and refinement of defense and counter-
defense systems. This long-term co-evolutionary struggle contributes
to the complexity of their interactions.

For a bacteriophage to successfully infect a bacterial cell, it must
first bind to receptor proteins on the bacterial surface to complete
adsorption, followed by disruption of the bacterial membrane to inject
its genome. To prevent phage adsorption, bacteria may modify or mask
their surface receptors. For example, a mutation in the ompU receptor
of Vibrio cholerae confers resistance to bacteriophage ICP213 (Seed
etal, 2014). Another defense mechanism involves blocking the entry
of phage nucleic acids into the bacterial cell. For instance, the Imm and
Sp proteins of T4 bacteriophage inhibit translocation of phage nucleic
acids across the membrane (Dy et al., 2014). Despite such modifications
or mutations in bacterial surface receptors, some bacteriophages can
still successfully inject their genetic material. Therefore, bacteria have
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evolved additional innate immune systems to detect and degrade
invading phage nucleic acids. The restriction-modification (RM)
system is one of the most well-characterized innate immune
mechanisms against phages. It typically consists of methyltransferases
and restriction endonucleases. Methyltransferases recognize specific
DNA sequences and methylate them, while restriction endonucleases
cleave unmethylated DNA at these sites (Dupuis et al., 2013). Bacteria
employ RM systems to degrade the nucleic acids of invading
bacteriophages, serving as a primary defense mechanism. In
countermeasure, bacteriophages have evolved multiple strategies to
evade this host-mediated degradation. Some phages minimize the
number of restriction sites within their genomes or position these sites
too far apart to be effectively recognized by the host’s restriction
endonucleases. Others ensure protection of their newly synthesized
DNA through methylation, either by hijacking the host’s modification
machinery or via self-encoded methyltransferases. Additionally,
certain bacteriophages produce hydrolases that specifically target and
degrade essential cofactors of restriction enzymes, thereby irreversibly
inhibiting their enzymatic activity. These adaptive mechanisms
collectively enhance phage survival in RM-protected bacterial hosts
(Vasu and Nagaraja, 2013; Labrie et al., 2010).

In addition, bacteria have evolved the adaptive immune system
known as the CRISPR-Cas system to resist bacteriophage invasion
(Nussenzweig and Marraffini, 2020). CRISPR-Cas immunity is present
in approximately 40% of sequenced bacterial genomes and mediates
resistance to bacteriophages through three distinct stages: adaptation,
expression, and interference. To date, two major classes, six types, and
over 30 subtypes of CRISPR-Cas systems have been identified. The
first class comprises types L, III, and IV, which are characterized by
multi-subunit effector complexes. The second class includes types II,
V, and VI, which are defined by single-subunit effector proteins
(Koonin and Makarova, 2019). Bacteriophages, in turn, have evolved
mechanisms to counteract bacterial adaptive immunity. Anti-CRISPR
(Acr) proteins have been identified in some phages, which inhibit the
activity of CRISPR-Cas systems—represent one of the most extensive
families of natural protein inhibitors characterized to date, with over
90 families employing diverse molecular mechanisms (Wiegand et al.,
2020; Davidson et al., 2020; Bondy-Denomy et al., 2018). For example,
the anti-CRISPR protein AcrIF25 inhibits the type I-F CRISPR-Cas
system by actively disassembling the fully formed effector complex.
AcrIF25 specifically targets the core CRISPR RNA-binding
components of the complex, which consist of six Cas7 subunits, and
sequentially strips them from the RNA scaffold. Structural and
biochemical evidence reveals that AcrIF25 removes Cas7 subunits in
a stepwise manner, initiating from one end of the complex, without
requiring external energy input or enzymatic activity (Trost et al.,
2024). If phages successfully bypass the RM and CRISPR-Cas defense
systems, bacteria may activate an Abi system as a final defense strategy.
This system triggers cell arrest or programmed cell death, thereby
halting the phage replication cycle, limiting its spread, and protecting
the broader bacterial population (Garb et al., 2022).

Opverall, the interaction between bacteria and bacteriophages lies at
the heart of microbial community ecology and evolution. This
interaction is a complex and dynamic process, characterized by a
continuous evolutionary arms race. The immune defense of bacteria
against bacteriophages involves a coordinated interplay of multiple
mechanisms. Bacteria initially employ passive immunity to inhibit
phage and block the

adsorption entry of Dbacteriophage
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DNA. Subsequently, active immune systems—such as the RM and  including the removal of adapter sequences, low-quality reads, and
CRISPR-Cas systems—interfere with phage DNA replication and gene  contaminating genomic sequences derived from host organisms such
expression. In addition, Abi represents a higher-order altruistic defense ~ as animals or bacteria; @ De novo assembly of viral metagenomic
strategy, in which infected bacterial cells undergo programmed self-  sequences; ® Assessment of assembly quality using metrics such as
destruction prior to the completion of the phage replication cycle,  contig length, coverage depth, and completeness; @ Identification of
thereby preventing viral spread and safeguarding the survival of  virus-like sequences, followed by taxonomic classification and
neighboring cells within the population (Figure 2). On the other hand, ~ functional annotation; ® Phylogenetic analysis and host bacterial
bacteriophages have developed corresponding strategies to overcome  prediction (Figure 3).
bacterial defenses (Yirmiya et al., 2024). Typically, bacteriophages The discovery of anti-CRISPR proteins originated from
exhibit a higher mutation rate than their bacterial hosts, granting them  comparative genomic analysis of bacteriophages exhibiting sensitivity
asignificant evolutionary advantage (Pereira-Gomezand Sanjudn, 2015).  versus resistance to the type I-F CRISPR-Cas system. Genomic
similarity facilitates the identification of key genetic differences
underlying distinct phenotypes, enabling targeted candidate gene

4 The sequence compos ition discovery. This strategy was subsequently applied to archaeal systems,
Cc haracteristics of P ha ge- bacterial leading to the identification of the first archaeal Acr protein (He et al.,
interactions 2018). In that study, a deletion mutant of the lytic archaeal virus SIRV2

was isolated and its genome sequence was compared with those of
The advancement of high-throughput metagenomic sequencing  wild-type SIRV2 and the closely related, CRISPR-resistant virus
technology has enabled the direct identification of bacteriophagesand ~ SIRV3. Through this comparative approach, the pool of potential Acr
their hosts from environmental samples without the need for  candidates was narrowed to three genes. Each gene was individually
cultivation, offering a powerful tool for comprehensive studies of  tested for anti-CRISPR activity, ultimately revealing AcrID1 as a
phage-bacteria interactions (Zhang et al., 2006; Reyes et al., 2010). The  functional inhibitor conferring CRISPR resistance.
analytical workflow of viral metagenomics comprises the following This systematic pipeline enables comprehensive characterization
key steps: @ Quality control and preprocessing of raw sequencing data,  of viral communities and their functional potential in complex
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FIGURE 2

Bacterial defense mechanisms against phage infection. (a) The inhibition of phage adsorption. (b) The degradation of phage DNA mediated by
restriction enzymes at specific recognition sites. (c) CRISPR-Cas9-mediated interference, in which crRNA guides the Cas9 nuclease to target and
cleave complementary phage DNA. (d) The abortive infection systems, including AbiZ system, RexAB system, ThsAB system and CBASS system,
collectively induce cell cycle arrest and programmed cell death.
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The bioinformatic pipelines of viral metagenomics
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FIGURE 3

The bioinformatic pipelines of viral metagenomics. (1) Quality control of raw sequencing data; (2) De novo assembly of viral metagenomic sequences;
(3) Assessment of genome completeness; (4) Identification of viral contigs through feature extraction, viral gene prediction, and clustering; and (5)
Annotation and analysis, encompassing host prediction, taxonomic classification, functional annotation, and phylogenetic analysis. Arrows indicate the

directional progression between stages.
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environments. However, as metagenomic data are culture-
independent, they lack the capacity to directly observe phage-host
interactions. Fortunately, during the co-evolutionary process between
bacteriophages and bacteria, various genomic signals have been left
behind that can be used to infer potential host-phage relationships
(Versoza and Pfeifer, 2022). Currently, several bioinformatics tools
have been developed to predict the likely host range of bacteriophages
on a large scale by analyzing shared genomic features resulting from
co-evolution (Ahlgren et al, 2017). Although these methods are
inherently predictive, they serve as valuable tools for identifying the
most promising candidates for experimental validation (Galiez et al.,
2017). These candidates can then be used to investigate phage-host
recognition, adsorption, infection dynamics, interaction patterns, and
lysis efficiency.

Abundance patterns of bacteriophages and bacteria reflect their
ecological relationships. The genomes of bacteriophages and their
bacterial hosts exhibit temporal and spatial correlations, which apply
not only to lysogenic phages integrated into the host genome but also
to lytic phages that depend on their hosts for replication (Lu et al.,
2021). Bacteriophages can only proliferate in environments where
their bacterial hosts are present. Metagenomic data provide snapshots
of microbial communities at specific times and locations, enabling the
simultaneous identification of co-occurring bacteriophages and their
hosts (Mojica et al., 2005). This allows for the establishment of
genomic linkages between phages and their hosts. However, the
abundance distribution of bacteriophages and their hosts is influenced
by multiple factors, including the scale of phage outbreaks, whether
the phage is lytic or lysogenic, the presence of host antiviral defense
systems, the host range of the phage, and environmental stability (Sun
2024b).
metagenomes are sometimes sequenced separately and subjected to

et al, Furthermore, bacteriophage and microbial
amplification steps to increase yield, which may distort the observed
abundance and affect the accuracy of predicted phage-
host associations.

Sequence similarity searches are the most direct method for
identifying genetic homology and predicting associations between
bacteriophages and their bacterial hosts based on genomic sequences
(Roslund et al., 2020). These homologous sequences may reflect the
acquisition of bacterial DNA by phages during previous infection events.
For example, the CRISPR-Cas system can capture exogenous DNA and
integrate it into its own spacer arrays (Brouns et al., 2008). Notably, both

Iytic and lysogenic bacteriophages can acquire and incorporate host
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genetic material, with selectively advantageous genes being preserved in
phage genomes through natural selection (Anantharaman et al., 2016).
Gene families that are prone to horizontal gene transfer may be more
frequently exchanged between phages and hosts.

In bacteria and archaea, translation selection favors optimal
codons for efficient gene expression. Since viral replication relies on
the host’s translational machinery, bacteriophages that utilize host-like
codons or tRNA isozymes can enhance the efficiency of phage gene
translation, which benefits viral replication. Some phages also encode
tRNA genes to modify the codon usage bias of their hosts (Robertson
et al, 2021; Burman et al., 2024). Additionally, the oligonucleotide
frequency patterns used by phages may be shaped by evolutionary
pressures to avoid host restriction enzyme recognition sites. Therefore,
phages and their bacterial hosts can be linked through similarities in
oligonucleotide frequency profiles. The oligonucleotide Hidden
Markov Model (HMM) score derived from bacteriophage and
bacterial genomes is used to infer potential interactions between
bacteriophages and their bacterial hosts. This metric reflects the
similarity in oligonucleotide frequency patterns between the host
bacterium and the bacteriophage’s nucleic acid sequence. Specifically,
this similarity is defined as the maximum likelihood value obtained
from HMMs trained on both phage and bacterial genomic sequences.
A higher likelihood value indicates greater similarity in oligonucleotide
composition, thereby suggesting a higher probability of a biological
interaction between the bacteriophage and its bacterial host.

The co-evolutionary process at both molecular and ecological
levels has shaped the genomes of bacteriophages and bacteria. The
initial interaction between phages and their hosts involves the binding
of phage particles to specific receptor molecules on the surface of
bacterial cells (Bin Jang et al., 2019). After injecting their genomes into
host cells, phages must hijack host metabolism to support efficient
phage production. To achieve this, phages have evolved specific
proteins that interact with host proteins to inhibit, activate, or redirect
their functions, thereby manipulating host cellular machinery to
produce new phage progeny (Jin et al., 2025). Using metagenomics,
researchers discover that CRISPR systems are widely encoded in
diverse bacteriophages, where they function as highly divergent and
hypercompact antiviral defense mechanisms. Bacteriophage-encoded
CRISPR systems span all six known CRISPR-Cas types, although some
lack essential components—indicating potential alternative functional
roles or reliance on host-encoded factors for activity. Notably, among
the most evolutionarily divergent enzymes identified, CasA recognizes
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double-stranded DNA through a uniquely structured CRISPR
RNA. Cryo-electron microscopy analysis of the CashA—-RNA-DNA
complex reveals a compact bilobed architecture, which demonstrates
robust genome-editing activity in both plant and human cells
(Al-Shayeb et al., 2022). However, approximately 70% of currently
sequenced phage genes encode proteins with unknown functions, and
only a limited number of phages have been systematically studied for
their molecular interactions with host proteins. Therefore, identifying
and characterizing the protein—protein or domain-domain interactions
that involved in phage-host interactions remains a significant challenge.
Although numerous computational methods have been developed
to predict phage-host interactions, their predictive accuracy remains
limited, particularly when relying on a single type of phage-bacteria
interaction signal, leading to a significant performance bottleneck.
Meanwhile, the exponential growth in virus discovery through
viromic studies has created an urgent demand for a comprehensive
and user-friendly tool capable of integrating diverse interaction signals
for accurate host prediction. However, current tools are constrained
by their focus on specific interaction features and dependence on only
one type of signal. Moreover, no publicly available web server or
standalone software has yet been developed to integrate all known
types of phage-bacteria interaction evidence for systematic and
holistic prediction of phage-host associations. Therefore, the
development of a unified framework that effectively combines multiple
biological signals to achieve highly accurate and comprehensive
predictions remains an outstanding challenge in the field.

5 Conclusions and prospects

Through long-term evolutionary struggle against bacteriophages,
bacteria have developed complex immune systems that collectively
enhance their survival. The advancement of large-scale genomic and
metagenomic sequencing technologies has greatly advanced the
understanding of bacteria-phage interaction mechanisms using
bioinformatics approaches. By integrating bioinformatics with
molecular biology, microbiology, and complementary experimental
approaches, researchers have identified a range of novel bacterial
defense systems against bacteriophages, significantly advancing our
understanding of phage-bacteria interactions. Despite these advances,
several challenges remain in the study, particularly regarding the
necessity of coupling meta-omics with experimental validation. These
challenges represent important directions for future research:

1 Although host prediction is inherently a critical component of
any virome analysis pipeline and has been the focus of extensive
research and tool development over the past decade,
computationally linking uncultured viruses to their bacterial
hosts remains a significant challenge.

2 Although significant progress has been made in characterizing
individual immune mechanisms, our understanding of how
these mechanisms interact and coordinate remains limited. It
is still unclear whether a single mechanism acts independently
or whether multiple mechanisms operate sequentially or in
parallel during phage infection.

3 The high diversity of bacteriophages increases the complexity of
studying bacterial immunity. Further research is needed to
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explore how the same bacterial species selects among different
immune mechanisms when facing the same or different phages,
as well as the variability in immune response sensitivity.

4 With the increasing availability of large-scale datasets, there is
a growing need to apply artificial intelligence (AI) methods to
uncover potential associations in bacteria-phage interactions
and improve the accuracy of predictive algorithms. The
application of Al tools such as AlphaFold to predict novel
functions of phage proteins has led to the discovery of a
previously unknown mechanism of phage immune evasion.
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