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The human microbiome is increasingly recognized as a key mediator of health
and disease, yet translating microbial associations into actionable interventions
remains challenging. This review synthesizes advances in machine learning (ML)
and causal inference applied to human microbiome research, emphasizing policy-
relevant applications. Explainable ML approaches, have identified microbial drivers,
guiding targeted strategies. Econometric tools, including instrumental variables,
difference-in-differences, and panel data models, provide robust frameworks
for validating causal relationships, while hybrid methods like Double Machine
Learning (Double ML) and Deep Instrumental Variables (Deep |V) address high-
dimensional and non-linear effects, enabling precise evaluation of microbiome-
mediated interventions. Policy translation is further enhanced by federated learning,
standardized analytical pipelines, and model visualization frameworks, which
collectively improve reproducibility, scalability, and data privacy compliance. By
integrating predictive power with causal rigor, microbiome research can move
beyond observational associations to generate interventions that are biologically
grounded, clinically actionable, and policy-ready. This roadmap provides a blueprint
for translating mechanistic microbial insights into real-world health solutions,
emphasizing interdisciplinary collaboration, standardized reporting, and evidence-
based policymaking.
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1 Introduction

Over the past two decades, our understanding of the human
microbiome has undergone a profound transformation. Once
considered a biological curiosity, the trillions of microorganisms
inhabiting the human body are now recognized as active
participants in health, disease, and therapeutic response.
Microbiome research has evolved from descriptive catalogs of
microbial diversity toward sophisticated analyses designed to
predict, explain, and ultimately manipulate microbial dynamics for
clinical and public health benefit. This evolution has been propelled
by advances in high-throughput sequencing, computational
biology, and, increasingly, machine learning (ML). However,
despite the power of ML to detect complex microbiome-health
associations, a crucial limitation remains: correlation does not
imply causation. Without rigorous causal inference, predictive
models may fail to generalize, interventions may miss their
intended targets, and policy decisions may rest on uncertain
foundations. This limitation is not only of academic concern,
industry and policy stakeholders have already recognized the
strategic value of translating microbiome insights into
actionable programs.

This composite Figure 1 summarizes the current state and
projected growth of the human microbiome market based on multiple
research sources. Panel A shows the estimated market size in 2023
across four major firms, highlighting differences in scope and
segmentation. Panel B presents the regional market share in 2022,
with North America dominating due to regulatory leadership and
investment. Panel C illustrates projected market growth from 2022 to
2032, based on Acumen’s forecast. Key drivers of market expansion
include the rising prevalence of chronic diseases requiring
microbiome-based therapies, advances in metagenomics, and
increasing investments in therapeutic development.

1.1 Microbiome and health

The human microbiome has emerged as a critical determinant
of health and disease. Foundational studies have demonstrated its
involvement in conditions ranging from colorectal adenoma
(Goedert et al., 2015) to cirrhosis progression (Bajaj et al., 2020).
Advances in high-throughput sequencing and ML have further
revealed predictive potential across diverse contexts, including
stratifying rheumatoid arthritis treatment responses (Gupta et al.,
2021), identifying high-risk myeloma signatures (Feinman et al.,
2023), and detecting gastric cancer trends (Zhang et al., 2025).
Interpretable ML models have also been successfully applied to
classify diabetes subtypes (Gou et al., 2020) and identify obesity-
associated microbial markers (Zeng et al., 2019).

Despite these advances, predictive performance does not
always translate into actionable insight. For example, short-chain
fatty acids (SCFAs) in fecal samples often fail to reliably predict
tumor development (Sze et al., 2019). Viral sequence analyses
remain challenging due to gaps in reference databases and
assembly biases (Kieft et al., 2020; Ren et al., 2017). Integrative
studies combining ocular microbiome and metabolomic data
further highlight the complexity of cross-domain microbiome
research (Gao et al,, 2025).
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1.2 The causality gap

Correlational microbiome studies remain vulnerable to
confounding and bias. For instance, tuberculosis medications can
distort predictions of inflammatory states (Wipperman et al., 2021),
batch effects in oral microbiome datasets introduce noise (Rupf et al.,
2018), and sputum extraction methods can bias microbial profiles
(Oriano et al., 2019). In non-alcoholic fatty liver disease (NAFLD),
metabolome-microbiome associations often lack clear directionality
(Schwenger et al., 2024), while antimicrobial use can artificially skew
microbial ratios (Hao et al., 2015). Similarly, obesity-associated
cytokines can obscure links to osteoarthritis (Kurz et al., 2025), and
dysbiosis in polycystic ovary syndrome (PCOS) independent of Body
Mass Index BMI underscores the heterogeneity of microbiome-
disease interactions (Mammadova et al., 2020).

Machine learning-enhanced causal frameworks are increasingly
being applied to address these limitations more effectively than
traditional statistical methods. Double Machine Learning (Double
ML) has been employed to control for high-dimensional confounders
in microbiome disease associations (Chen et al., 2024), while causal
forests have been used to quantify heterogeneous treatment effects in
nutritional studies (Ben-Yacov et al., 2023). Nevertheless, challenges
remain; for example, microbiome-based predictions for Long COVID
have struggled to achieve robust performance (Calvani et al., 2024),
highlighting the need for more sophisticated ML-driven mediation
analyses and integration of domain knowledge. These observations
emphasize that predictive accuracy alone is insufficient when the
ultimate goal is intervention or policy change. Without establishing
causality, strategies may be ineffective or even harmful.

1.3 Contributions of this review

This review aims to bridge the gap between predictive ML and
actionable causal insights in microbiome research. We systematically
map the integration of advanced causal inference techniques with
econometric tools, focusing on methods such as Double ML for
evaluating microbiome-mediated treatment effects (Wu et al., 2022)
and high-dimensional mediation analysis for exploring microbial
community dynamics (Chen et al., 2024). Econometric frameworks,
including directed acyclic graphs (DAGs) for causal mapping in
Alzheimer’s disease microbiome interactions (Qiu et al., 2024) and
deep restricted Boltzmann machines (RBMs) for microbial network
inference (Sokolovska et al., 2020), are highlighted for their potential
to formalize causal assumptions and reduce bias.

We further examine emerging computational platforms, such as
Microbiome Causal Machine Learning MiCML, that operationalize
causal ML for clinical decision-making (Koh et al., 2025). Translational
applications are reviewed, including hyperuricemia diagnostic
flowcharts (Miyajima et al., 2024), model cards for hepatitis B virus
(HBV)-related hepatocellular carcinoma (Hu B. et al., 2024), and
malnutrition intervention frameworks (Portlock et al., 2025). These
approaches are then linked to policy-relevant contexts, such as
cardiovascular disease risk prediction (Warmbrunn et al., 2024),
COVID-19 microbiome-informed guidelines (Bucci et al., 2023), and
immunotoxicity trial design (Liu et al., 2024).

The human microbiome plays a critical role in health and disease,
yet translating complex microbial data into actionable interventions
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FIGURE 1

Global human microbiome market landscape (2022-2023): size, regional distribution, and key drivers. The figure integrates key drivers, market size (A),
regional distribution (B), and projected growth of the human microbiome market (C). Market drivers include the rising prevalence of chronic diseases
requiring microbiome-based therapies, advances in metagenomics and causal ML techniques, and increased investments in therapeutic and diagnostic
development. Comparative analyses from multiple research sources (GV, M&M, AM, TM, 2025 reports) estimate the 2023 market size between USD
1.12-1.45 billion. Data from Acumen Research and Consulting show that in 2022, North America (49%) led the regional market, followed by Europe
(26%) and Asia-Pacific (14%), with projected global expansion from USD 154.8 million in 2022 to USD 2193.9 million by 2032.
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remains challenging. Current studies often rely on correlational
analyses or single-method approaches, limiting causal understanding
and policy applicability. To address this gap, we present the first
systematic review integrating causal machine learning approaches
with econometric methodologies in microbiome science. We aim to
provide a rigorous, policy-relevant framework that translates
microbiome discoveries into robust, intervention-ready evidence for
researchers, clinicians, data scientists, and policymakers seeking
targeted, equitable, and evidence-based applications.

2 Materials and methods

This systematic review was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020 guidelines (Page et al., 2021), with the objective of
examining how causal inference methods and machine learning
techniques have been jointly applied in human microbiome research
with clinical or policy relevance. The search strategy targeted peer-
reviewed studies published between January 2015 and May 2025,
reflecting the recent surge in computational approaches capable of
integrating high-dimensional microbiome data with rigorous causal
identification frameworks (Ruggiero et al., 2021; Sohrabi et al., 2021).
searched: PubMed and
Dimensions.ai; the choice of both databases is intensively proven in

Two electronic databases were

research, and they are widely used (Falagas et al., 2008; Lee et al., 2023;
Mouratidis, 2019; Ossom Williamson and Minter, 2019; Pan et al.,
2018). Boolean queries were constructed to capture literature at the
intersection of microbiome science, causal inference, and machine
learning. The microbiome component included terms such as
“microbiome;” “gut microbiota,” “gastrointestinal microbiome;” and
“16S rRNA” Causal inference terms encompassed “instrumental
variable,” “Mendelian randomization,” “difference-in-differences,” and
“causal machine learning,” while the machine learning component

» «

included “machine learning,” “random forest,” “deep learning,” “double
ML, “causal forest, and “Bayesian additive regression trees” To
exclude animal-only or in vitro studies, the filter NOT “animal” [tiab]
was applied. The final search strings were adapted to the syntax and
indexing systems of each database.

The initial search identified 571 records, including 70 from
PubMed and 501 from Dimensions.ai. All records were exported in
MEDLINE (.nbib) format to preserve structured metadata, including
MeSH terms, author affiliations, and structured abstracts. Duplicates
were removed using Rayyan.ai’s automated detection tool, followed by
manual verification of ambiguous matches, resulting in 477 unique
records for title and abstract screening.

Screening was performed in two stages. First, titles and abstracts
were reviewed against four inclusion criteria: studies must (1) focus
on the human microbiome, (2) employ a causal inference method, (3)
incorporate at least one machine learning approach, and (4) address
clinical or public health outcomes. This process yielded 73 records for
full-text assessment. In the second stage, full texts were reviewed in
detail to verify eligibility. Studies were excluded if they applied purely
causal inference methods without any machine learning component
(n =46), focused exclusively on animal or in vitro models, used
predictive models without causal framing, or were limited to
exploratory or correlational analyses. Additional exclusion criteria
included non-English language publications and review articles.
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A total of 19 studies met all inclusion criteria. These comprised
original research articles explicitly combining causal inference and
machine learning within human microbiome contexts, reporting
findings relevant to health outcomes. Among these, 15 studies
demonstrated particularly strong policy relevance, characterized
by discussion of translational applications, public health
interventions, or clinical decision-making pathways. These were
selected for deeper thematic analysis in the results and
discussion sections.

For each included study, a standardized data extraction protocol
was applied. Extracted variables included bibliographic information,
study design, sample size and population characteristics, type of
microbiome data (e.g., 16S rRNA sequencing, metagenomics), causal
inference method used, type of machine learning approach, specific
health or policy outcomes studied, and statistical validation strategies
such as sensitivity analyses or falsification testing. Where applicable,
we documented whether studies addressed potential sources of bias,
implemented robustness checks, or discussed limitations in causal
interpretation. Special attention was given to identifying whether
authors proposed pathways for translating findings into actionable
clinical or policy recommendations.

All steps in the review process were documented to ensure
reproducibility. Screening and full-text review were managed entirely
within Rayyan.ai, which preserved all metadata in MEDLINE format.
The overall selection process is summarized in a PRISMA
2020-compliant flow diagram (Figure 2), illustrating the numbers of
records identified, screened, assessed for eligibility, and included, as
well as reasons for exclusion at each stage. This transparent approach
ensured methodological rigor and facilitated reproducibility.

3 Machine learning for microbiome
prediction

3.1 Supervised learning in microbiome
studies

Supervised machine learning approaches have become
indispensable tools for translating complex microbiome data into
clinically actionable insights (Cammarota et al., 2020; Malakar et al.,
2024). The field has progressed from early correlation studies to
sophisticated predictive models that account for population
heterogeneity. For example, Neri-Rosario et al. (2023) developed
ethnicity-specific models for type 2 diabetes prediction in Mexican
cohorts, addressing critical limitations in generalizability that had
affected earlier models. These advances built upon foundational work
by Gou et al. (2020), who established interpretable frameworks for
microbial biomarker discovery in diabetes. Among supervised
algorithms, Random Forest classifiers have demonstrated particular
utility in microbiome applications due to their ability to handle high-
dimensional taxonomic data. Goedert et al. (2015) applied Random
Forests to detect colorectal adenoma, achieving robust classification
despite sparse data, while Zeng et al. (2019) used the same approach
for obesity subtyping through microbial signatures. However, these
models may face challenges with population transferability, as
highlighted by Koduru et al. (2022) who observed performance
degradation when models trained on North American cohorts were
applied to South Asian populations.
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FIGURE 2
PRISMA diagram for the systematic review research methodology.

Gradient boosting methods, including eXtreme Gradient
Boosting (XGBoost), have emerged as powerful alternatives,
particularly for their superior regularization capabilities. Gou et al.
(2020) leveraged these advantages to develop a type 2 diabetes
prediction model that outperformed logistic regression by 23% in
precision. Model interpretability has been further enhanced
through techniques such as SHapley Additive exPlanations (SHAP)
analysis, exemplified by Wu et al. (2022), who investigated
berberine’s cholesterol-modulating effects through microbial
mediators. Deep learning approaches are now pushing the
boundaries, with transformer models decoding complex gut-brain
axis interactions in Alzheimer’s disease (Qiu et al., 2024) and
platforms like MiCML making these tools more accessible for
translational research (Koh et al., 2025).

This composite Figure 3 collectively underscores the
evolution and challenges of applying supervised machine learning
techniques to microbiome-based disease prediction. Panel A
emphasizes the importance of ethnicity-specific models to
enhance prediction accuracy in diverse populations. Panel B
showcases the development of interpretable models that identify
actionable microbial biomarkers. Panel C demonstrates the
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successful application of Random Forest classifiers in disease
classification tasks. Finally, Panel D highlights the challenges of
transferring models across different populations, stressing the
need for inclusive and adaptable models in microbiome research.
The main supervised learning techniques and their applications
in microbiome research are summarized in Table 1, which
provides a reference for classification, feature selection, survival
analysis, and interpretability applications. This table highlights
method-specific best practices, example use cases, and
corresponding references for reproducibility.

3.2 Unsupervised learning approaches and
their challenges

Unsupervised learning methods are widely used to explore
microbial community structure without prior assumptions, enabling
the discovery of patterns in high-dimensional microbiome data.
However, their application is complicated by technical artifacts,
methodological choices, and the inherent complexity of microbial
ecosystems (Busato et al., 2023; Cai et al., 2017; Dutta et al., 2022; Hao
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FIGURE 3

from Koduru et al. (2022).

Advancements in supervised machine learning for microbiome-based disease prediction. (l) Illustrates ethnicity-specific gut microbiome signatures
linked to type 2 diabetes risk. It highlights the necessity of incorporating ethnic diversity into predictive models to improve their generalizability and
accuracy. This is Figure 3 from Neri-Rosario et al. (2023). (Il) Presents an interpretable microbial risk score (MRS) that identifies gut microbiome features
predictive of type 2 diabetes, demonstrating the potential of ML models to reveal actionable biomarkers. This is Figure 2 from Gou et al
Depicts a Random Forest classifier that analyzes gut microbiome data to detect colorectal adenoma, illustrating the model's utility for microbiome-
based disease classification. This is Figure 4 from Goedert et al. (2015). (IV) Highlights the performance degradation of microbiome-based models
when applied to South Asian populations, addressing the critical challenge of ensuring model generalizability across diverse groups. This is Figure 3

(2020). (1)

et al,, 2011). Technical biases can dominate clustering outcomes,
leading to misleading biological interpretations. Schwab et al. (2019)
showed that sample storage conditions significantly influenced
clustering patterns in breast milk microbiota, with differences in
freeze-thaw cycles and preservation time outweighing biological
variation. Such pre-analytical factors underscore the need for
standardized protocols across studies to ensure reproducibility. The
utility of discrete microbial groupings, such as enterotypes, has also
been questioned. Zeng et al. (2019) demonstrated that obesity-related
gut microbiome changes often follow continuous gradients rather
than distinct clusters, suggesting that apparent enterotypes may arise
from algorithmic artifacts rather than true ecological boundaries. This
highlights the risk of imposing categorical structure on inherently
continuous data.

In clinical contexts, analytical decisions further shape results.
Schwenger et al. (2024) found that distance metric choice, Bray—
Curtis versus UniFrac, led to divergent microbial subtypes in
non-alcoholic fatty liver disease (NAFLD), altering clinical
interpretations. Additionally, variability in DNA extraction
methods has been shown to affect microbial profiles; Oriano
et al. (2019) reported that lysis efficiency differences across
protocols skewed abundance estimates, particularly for Gram-

positive bacteria, reinforcing the need for
methodological transparency.
Frontiers in Microbiology
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Dimensionality reduction techniques remain valuable for
visualizing community structure. Principal component analysis
(PCA) and principal coordinate analysis (PCoA) help identify
major sources of variation, while t-distributed stochastic neighbor
embedding (t-SNE) has been used to resolve fine-scale dynamics,
such as microbial shifts during tuberculosis treatment (Wipperman
et al, 2021). However, nonlinear methods require careful
parameterization to avoid overinterpretation of local structures.
Integrating microbiome data with host multi-omics profiles
enhances biological insight. In multiple sclerosis research,
combining microbial composition with metabolomic data revealed
like
immunomodulatory metabolites, suggesting functional host-—

associations ~ between  taxa Akkermansia  and
microbe interactions (Sheng et al., 2024). Co-occurrence networks,
such as those generated by Microbial Co-occurrence Network
Analysis (MiCA), further enable the identification of keystone taxa
linked to environmental exposures (Koduru et al., 2022), though
inferred correlations must be interpreted cautiously due to
potential confounding.

Emerging generative models, including Generative Adversarial
Networks (GANS), are beginning to simulate microbiome-immune
dynamics in silico, offering new avenues for hypothesis generation and
data augmentation. While still in early development, these approaches

reflect a growing shift toward more sophisticated, integrative
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TABLE 1 Supervised learning techniques in microbiome research.

Best for (technique goal and microbiome

research goal)

Classification tasks with high-dimensional microbiome data;

identifying microbial biomarkers

Example use case

Type 2 diabetes (T2D) classification

References

Neri-Rosario et al. (2023)

Colorectal adenoma detection

Sze et al. (2019)

Obesity-associated dysbiosis

Mammadova et al. (2020)

Polycystic ovary syndrome (PCOS) microbiota characterization

Oriano et al. (2019)

Kidney transplant outcome prediction

Noda et al. (2024)

Malnutrition-cognition links via microbiota

Portlock et al. (2025)

Personalized diet effects on cardiometabolic markers

Wau et al. (2022)

Depression-linked gut dysbiosis

Chen et al. (2021)

Gut microbes predicting rheumatoid arthritis (RA) treatment response

Hu M. et al. (2024)

Autism spectrum disorder (ASD) subtypes linked to gut microbiome

Schwenger et al. (2024)

Long COVID prediction

Hu B. et al. (2024)

Endometrial cancer prediction from gut microbiota

Chang et al. (2024)

Least Absolute Shrinkage and
Selection Operator (LASSO)

Regression

Feature selection for high-dimensional data; identifying sparse

microbial signatures

Stroke recovery biomarker selection

Dang et al. (2021)

Non-alcoholic fatty liver disease (NAFLD)-linked microbial biomarkers

Yaskolka Meir et al. (2023)

Immunotherapy toxicity-microbiome associations

Zeng et al. (2022)

Support Vector Machine SVM

Binary/multiclass classification; robust to noise in microbiome

data

Sputum DNA extraction optimization

Kim et al. (2020)

Predictive models for inflammatory bowel disease (IBD) severity

Ben-Yacov et al. (2023)

Crohn’s disease biomarker selection Support Vector Machine-Recursive Feature Elimination (SVM-RFE)

Qu et al. (2024)

XGBoost

Handling imbalanced datasets; high-performance gradient

boosting

T2D subtype classification

Gupta et al. (2021)

Gastric cancer risk prediction (XGBoost and LASSO)

Zhang et al. (2025)

Gut microbiome predicts immune checkpoint inhibitor toxicity

Jung et al. (2024)

Acute pancreatitis-microbiome risk modeling

Liu et al. (2024)

Deep Neural Networks (DNN)

Modeling complex nonlinear relationships in multi-omics data

Neurodegenerative disorder prediction

Neri-Rosario et al. (2023)

Logistic Regression

Interpretable models for binary outcomes (e.g., disease risk)

Stroke risk prediction

Ma et al. (2025)

Elastic Net

Combines LASSO and ridge regression for correlated features

Polyphenol effects on DNA methylation age

Comba et al. (2024)

SHAP and RF

Interpretable ML for feature importance in microbiome studies

Berberine’s microbiome-mediated cholesterol effects

Wu et al. (2022)

Cox Regression

Survival analysis with microbiome covariates

Microbiome mediation in HBV-hepatocellular carcinoma (HCC) progression

Yang et al. (2025)
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frameworks. In sum, unsupervised methods provide essential tools for
exploratory microbiome analysis, but their results are highly sensitive
to technical and analytical choices. Rigorous standardization,
transparent reporting, and cautious interpretation are critical to
ensure biological validity (Table 2).

3.3 Panel models for longitudinal
microbiome analysis

Longitudinal study designs are essential for capturing the dynamic
nature of host-microbiome interactions, enabling researchers to track
microbial changes within individuals over time and link them to
clinical outcomes. In this context, panel data models, commonly used
in econometrics, have emerged as powerful tools for analyzing
repeated microbiome measurements, allowing for the separation of
within-subject temporal changes from between-subject variability.
Bucci et al. (2023) applied such models to serial gut microbiome data
from COVID-19 patients, revealing that significant dysbiosis, marked
by loss of commensal taxa and reduced diversity, often preceded the
onset of severe clinical deterioration. This temporal precedence
suggests that microbiome destabilization may not merely reflect
disease severity but could contribute to adverse outcomes, highlighting
the potential of longitudinal modeling to uncover predictive
microbial signatures.

A key advantage of panel models lies in their ability to control for
unmeasured, time-invariant confounders, such as host genetics or
early-life microbial colonization by treating each individual as their
own control (Hill et al., 2020; Murayama and Gfrorer, 2024; Pesaran
and Zhou, 2018; Streeter et al., 2017). Fixed-effects models eliminate

TABLE 2 Unsupervised learning techniques in microbiome research.

Technique Best for (technique goal and

microbiome research goal)

10.3389/fmicb.2025.1691503

these confounders through within-subject centering, making them
ideal for detecting transient microbial shifts associated with
interventions or disease flares. In contrast, random-effects models
assume individual differences are random and can be modeled as part
of the variance structure, offering greater efficiency when assessing
population-level trends. Bogart et al. (2019) demonstrated how both
approaches can be applied to microbiome data, showing that fixed-
effects frameworks improve causal interpretability by isolating
persistent microbial signals from noise, particularly in chronic
conditions where baseline differences between individuals
are substantial.

These models gain even greater power when combined with
econometric techniques such as lagged variables, difference-in-
differences, or instrumental variables, which help strengthen causal
inference in observational settings. For example, incorporating lagged
microbial states allows researchers to assess whether prior community
composition influences future health outcomes a critical step in moving
beyond correlation toward mechanistic understanding. Moreover, panel
approaches can be adapted to handle the compositional nature of
microbiome data through log-ratio transformations and integrated with
regularization methods to manage high dimensionality. Despite their
strengths, panel models require dense and consistent sampling to
reliably capture temporal dynamics, and their assumptions may
be challenged by nonlinear microbial trajectories or missing data.
Nevertheless, their increasing use reflects a broader shift toward
rigorous, theory-informed analysis in microbiome research. By
leveraging longitudinal structure and controlling for confounding at the
individual level, panel models offer a robust framework for uncovering
the temporal logic of microbiome-host interactions in health and
disease. These approaches, together with joint longitudinal-survival

Example use case References

Principal component

analysis (PCA)

Dimensionality reduction; identifying dominant

microbial variation patterns

Breast milk microbiota clustering Schwab et al. (2019)

Immune thrombocytopenia microbiota clustering Liet al. (2024)

High-dimensional confounding in mediation analysis Gao et al. (2025)

(PCA and network analysis)

PCA and k-Means Clustering microbiome data into distinct groups

Oral microbiome clustering Rupf et al. (2018)

Thromboangiitis obliterans microbiota clustering Mao et al. (2023)

Latent Dirichlet
Allocation (LDA)

Probabilistic topic modeling for microbiome

“enterotypes”

Osteoarthritis enterotype classification Kurz et al. (2025)

k-Means Clustering Partitioning microbiome samples into discrete

subgroups

Prostatitis microbiome enterotyping Galiwango et al. (2022)

Inflammatory dermatoses enterotyping Midya et al. (2023)

microbiome data

PCoA Beta-diversity visualization; sample dissimilarity Penile microbiota in HIV + men Chen et al. (2025)
mapping Thromboangiitis obliterans microbiota clustering Mao et al. (2023)
t-SNE Nonlinear visualization of high-dimensional Trimethylamine N-oxide (TMAO)-diabetic retinopathy Baranzini (2025)

network clustering

Multi-omics Integration Combining microbiome data with other omics

Multiple sclerosis (MS) microbiome-host interactions Sheng et al. (2024)

Co-occurrence Networks

(MiCA)

Microbial interaction networks; identifying keystone

taxa

Lead exposure and childhood microbiome clustering Koduru et al. (2022)

Deep Learning (GANs) Synthetic data generation for microbiome-immune

simulations

Simulated probiotic-immune interactions Koduru et al. (2022)
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TABLE 3 Panel models for longitudinal microbiome analysis.

Best for References

Technique

Example use case Machine learning

method

Linking longitudinal biomarker
Predicting COVID-19 severity based on Joint longitudinal-survival

Joint Modeling trajectories with time-to-event Bucci et al. (2023)

gut microbiota trajectories modeling

outcomes

Modeling count data with

Negative Binomial Mixed- Predicting C. difficile recurrence using Dawkins et al. (2022) Generalized linear mixed

overdispersion and repeated

Effects longitudinal microbiome data and Yirga et al. (2020) effects
measures
Analyzing time-structured Decoupling microbiome-immune- Structural equation
Multimodal Mediation Jiang et al. (2025)
indirect effects temporal dynamics in chronic diseases modeling (SEM)
Integrating multi-omics time- Antibiotic-induced microbiome shifts
Bayesian hierarchical
MiCML Platform series data to quantify treatment and host response in tuberculosis (TB) Koh et al. (2025) A
modeling
effects therapy
Cox Proportional Hazards Survival analysis with time- Vaginal microbiome and spontaneous Proportional hazards
Chen et al. (2022)
(PH) Model varying microbiome covariates preterm birth risk regression

Modeling repeated measures with
Mixed-Effects Models

subject-specific random effects persistence

Penile microbiome dynamics and HPV

Onywera et al. (2020) Linear/logistic mixed effects

Structural Equation Modeling
(SEM) (Path Analysis)

Testing hypothesized causal

pathways in longitudinal data

Polyphenol-microbiome-aging links

(DNA methylation clocks)

Yaskolka Meir et al.

Latent variable modeling
(2023)

models and mixed-effects analyses, are detailed in Table 3, which
outlines panel model techniques, their best-use scenarios, example
studies, and associated machine learning approaches.

3.4 Hybrid machine learning methods

Hybrid machine learning approaches, those that strategically
combine supervised and unsupervised techniques or integrate causal
inference frameworks, are gaining traction in microbiome research as
powerful tools to bridge the gap between pattern discovery and biological
interpretability. By leveraging the exploratory strengths of unsupervised
learning with the predictive precision of supervised models, these
methods enable robust feature extraction from high-dimensional
microbiome data while maintaining the ability to link microbial signatures
to clinically relevant outcomes. This dual capacity is particularly valuable
in complex host-microbe systems where both unknown community
structures and defined phenotypic endpoints coexist. For example,
Wipperman et al. (2021) employed a hybrid strategy combining t-SNE for
dimensionality reduction with Random Forest classification to analyze
longitudinal gut microbiome data from tuberculosis patients. This
approach not only revealed dynamic microbial community trajectories
during antimicrobial treatment but also successfully classified patients
into distinct inflammatory response clusters, demonstrating how
visualization and prediction can be synergistically combined to yield both
mechanistic insight and clinical utility.

Beyond classification, hybrid models are increasingly used to
uncover latent biological subtypes and assess their association with
One such method
Dirichlet allocation (LDA), a topic modeling technique originally

disease progression. integrates latent
developed for text analysis, with regression frameworks to identify
microbiome-derived “topics” or co-abundance modules and test their
association with clinical variables. This approach has been applied to
osteoarthritis research, where LDA was used to define microbiome

subtypes based on taxonomic co-occurrence patterns, which were
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then linked to pain severity, joint function, and systemic inflammation
through multivariate regression (Kurz et al., 2025). By treating
microbial communities as mixtures of underlying ecological themes,
akin to topics in a document, this method captures nuanced,
overlapping community states that traditional clustering might
overlook. The integration with regression further allows for statistical
inference, enabling researchers to quantify the contribution of each
microbial topic to phenotypic variation while adjusting for
confounders such as age, diet, and medication use.

More recently, hybrid frameworks incorporating causal
inference have emerged to address the fundamental challenge of
distinguishing correlation from causation in microbiome studies.
Mendelian randomization (MR), which uses genetic variants as
instrumental variables to infer causal relationships, has been
paired with principal component analysis (PCA) to explore
bidirectional interactions between host genetics and the gut
microbiome. In immune thrombocytopenia (ITP), this MR-PCA
approach revealed that host genetic variation influences microbial
composition, particularly within the Lachnospiraceae and
Ruminococcaceae families, while also suggesting feedback effects
whereby specific microbial profiles modulate immune gene
expression and platelet regulation (Li et al., 2024). Such integrative
designs move beyond associative modeling to provide evidence
for directional, potentially causal pathways, offering a more robust
foundation for therapeutic targeting. As microbiome research
shifts from descriptive analyses to mechanistic and interventional
inquiry, hybrid machine learning methods will play an
increasingly central role in transforming complex data into
actionable biological knowledge. These hybrid approaches, their
best-use scenarios, example applications, and corresponding
machine learning methods are summarized in Table 4. They
exemplify the capacity of modern computational pipelines to
integrate predictive modeling with causal validation, offering
actionable

insights for precision medicine and policy-

informed interventions.
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TABLE 4 Hybrid machine learning techniques in microbiome research.

Technique Best for (technique goaland  Example use case References ML method

LDA and Regression

microbiome research goal)

Topic modeling for microbial sub-
communities and predicting host

phenotypes

Osteoarthritis enterotypes linked to

clinical outcomes

Kurz et al. (2025)

Hybrid (LDA and
Generalized Linear Models

GLM)

t-SNE and Random Forest

Visualizing high-dimensional microbiome

data and classifying disease states

TB treatment trajectories stratified by

inflammatory markers

Lu et al. (2023)

Hybrid (t-SNE and RF)

Causal inference and dimensionality

Immune thrombocytopenia and gut

Random Forest phenotype classification

MR and PCA reduction for bidirectional host- Liet al. (2024) Hybrid (MR and PCA)
microbiome interactions
microbiome links
Classification and beta-diversity HIV-associated penile microbiome Galiwango et al.
Random Forest and PCoA Hybrid (RF and PCoA)
visualization for longitudinal dynamics clustering (2022)
Deep Restricted Boltzmann
Modeling nonlinear microbiome-host Bivariate microbiome-metabolite Hybrid (Deep Learning
Machine (Deep RBM) and Qiu et al. (2024)
interactions with causal validation networks in metabolic disorders and Causal)
Causal Inference
G-protein-coupled receptors (GPCRs)
High-dimensional feature extraction and
DNN and Interpretability -microbiome links in Alzheimer’s Qiu et al. (2024) Hybrid (DNN and SHAP)
mechanistic insights
disease
Predictive modeling and genetic causal Hyperuricemia prediction with Miyajima et al.
XGBoost and MR Hybrid (XGBoost and MR)
validation microbiome features (2024)
Network Analysis and Microbial co-occurrence networks and Multi-ethnic cardiovascular disease Warmbrunn et al.
Hybrid (Network and RF)

(CVD)-microbiome associations

(2024)

VirFinder and Random Viral sequence detection and host-disease

Viral contig identification in

Ren et al. (2017) Hybrid (k-mer and RF)

Forest prediction metagenomic data
Viral functional annotation and causal Viral functions in liver cirrhosis _
VIBRANT and MR Kieft et al. (2020) Hybrid (k-mer and MR)
pathway validation progression
Longitudinal data integration and causal Gut microbiota trajectories in Hybrid (Joint Model ad
Joint Modeling and MR Chen et al. (2024)
inference COVID-19 severity MR)

4 Causal inference with econometrics
in microbiome research

This section examines the methodological landscape of causal ML
in microbiome science, outlining how approaches such as double ML,
instrumental variables, and federated designs are being adapted to
address high-dimensional and heterogeneous data. We highlight how
these innovations provide new strategies to overcome persistent
challenges in causal inference.

4.1 Instrumental variables: uncovering
causal pathways

Instrumental variable (IV) methods have been crucial for causal
inference in econometrics, but microbiome research poses unique
challenges due to high dimensionality and compositional data
structures. Recent machine learning-enhanced approaches, including
LASSO-1IV (Chen et al., 2025) and causal forests (Miyajima et al.,
2024), enable the identification of valid instruments in complex
microbial datasets, allowing researchers to isolate causal effects with
higher precision. Such methods have proven particularly effective in
pharmacomicrobiomics studies, exemplified by Wu et al. (2022), who
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demonstrated berberine’s cholesterol-lowering effects mediated
through specific microbial pathways.

Microbiome-specific IV adaptations, including compositional
Mendelian randomization (Zeng et al., 2019) and phylogenetic
directed acyclic graphs (Qiu et al., 2024), further strengthen causal
inference by considering taxonomic and evolutionary dependencies.
In addition, viral sequence data have been leveraged as instruments to
control for bacteriophage-mediated confounding, opening novel
opportunities to investigate host-microbe-virus interactions (Kieft
et al.,, 2020). As summarized in Table 5, these innovations represent
the key methodological advancements enabling robust causal
inference in microbiome studies.

4.2 Difference-in-differences: learning
from natural experiments

Difference-in-differences (DiD) designs are increasingly applied
in microbiome research to exploit natural experiments when
controlled interventions are impractical. For instance, Sakurai et al.
(2020) used DiD to examine microbial resilience in ulcerative colitis
patients after treatment withdrawal, uncovering surprising community
stability. Similarly, ICU policy changes during the COVID-19
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TABLE 5 Key innovations and methodological advancements in causal inference for microbiome studies.

Method Breakthrough Application References

SHAP Quantifies taxon-level contributions Diabetes/HCC risk prediction Hu B. et al. (2024) and Wu et al. (2022)
Katsidzira and Misselwitz (2025) and Qiu

Biological DAGs Incorporates host-microbe interactions Neurodegenerative/IBD diseases

et al. (2024)

Adversarial Validation Tests robustness to unobserved confounders

Infectious disease/toxicology

Wipperman et al. (2021)

Debiases treatment effects in high-
Double ML
dimensional data

Personalized medicine/nutrition trials

Ben-Yacov et al. (2023) and Wu et al. (2022)

DeepIV Neural networks for nonlinear IV estimation

Microbiome causal inference, GPCR-microbiome

networks, viral-bacterial interactions

Bucci et al. (2023), Koh et al. (2025), and
Qiu et al. (2024)

Meta-Learners Estimates heterogeneous treatment effects

Precision medicine in rheumatology

Gupta et al. (2021)

Causal Discovery Infers DAGs from multi-omics data

Alzheimer’s disease, Crohn’s disease, gastric cancer

Chang et al. (2024), Qiu et al. (2024), and
Zhang et al. (2025)

Validation Tests DAG robustness in NAFLD

Liver disease modeling

Schwenger et al. (2024)

pandemic allowed Bucci et al. (2023) to assess gut-lung axis
contributions to clinical outcomes.

Modern methodological enhancements incorporate machine
learning to optimize cohort selection and balance covariates.
Synthetic control methods facilitate matching in federated
learning settings (KKoh et al., 2025), and elastic net approaches
help refine covariate selection in autoimmune disease studies
(Gupta et al,, 2021). Microbiome-specific considerations such as
antibiotic lag effects and batch variation in multi-center studies
are critical for unbiased estimation (Rupf et al., 2018; Wipperman
et al., 2021). These DiD innovations are part of the broader
methodological landscape summarized in Table 5, which captures
key causal tools and their applications.

4.3 Panel data models: capturing microbial
dynamics

Longitudinal study designs and panel data models are essential
for mapping temporal dynamics in host-microbiome interactions.
Wipperman et al. (2021) employed panel models to track tuberculosis
treatment trajectories, revealing resilient microbial patterns post-
antibiotics. Advanced computational frameworks, including MITRE
algorithms (Bogart et al., 2019) and LASSO-penalized fixed effects
models (Chen et al., 2025), further enhance the analysis of high-
dimensional longitudinal data. Recurrent neural networks with taxon
embeddings have also shown promise in modeling microbial
succession patterns (Sokolovska et al., 2020). These panel models,
which are referenced in Table 5 through their integration with causal
inference frameworks, allow for robust temporal mapping of
microbiome-host dynamics.

4.4 Policy-ready causal tools: from bench
to bedside

Translating microbiome causal evidence into clinical or policy
applications requires explainable, validated frameworks. Meta-
learners such as T-learners, X-learners, and causal forests have guided
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treatment personalization and preventive interventions. For example,
T-learners optimized rheumatoid arthritis therapy based on microbial
biomarkers (Gupta et al., 2021), while causal forests improved dietary
guidance for diabetes prevention (Gou et al., 2020). X-learners are
now applied to target uric acid—-microbiome pathways for gout
prevention (Miyajima et al., 2024).

Mechanistic frameworks increasingly incorporate explainable Al,
such as SHAP values, to prioritize microbial features for interventions
like hepatocellular carcinoma screening (Hu B. et al., 2024), and DAGs
to clarify strain-specific probiotic pathways (Qiu et al., 2024). Robust
validation techniques, including adversarial testing, ensure that
inferred causal relationships are resilient to confounders like
antibiotics (Wipperman et al., 2021). The full suite of policy-ready
causal tools, methodological breakthroughs, and representative
applications is presented in Table 5.

5 Hybrid methods for policy-ready
causal inference

Here we turn to applications, showing how causal ML combined
with econometric tools is being deployed to study disease
susceptibility, treatment response, and biomarker development. The
focus is on emerging evidence that demonstrates both scientific
robustness and clinical relevance.

5.1 Double Machine Learning for health
policy

Double Machine Learning (Double ML) has emerged as a
transformative approach in microbiome research, bridging the gap
between high-dimensional biological data and actionable policy
insights. Wu et al. (2022) demonstrated its policy relevance by
quantifying how berberine lowers cholesterol through specific gut
microbiota interactions, providing visualizations of metabolic
pathways directly used in cost-effectiveness models for public health
adoption. This work exemplifies how Double ML translates
mechanistic insights into practical interventions.
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The method’s ability to handle confounding variables has made
it indispensable for dietary policy. Ben-Yacov et al. (2023)
employed orthogonalized mediation analysis to isolate
microbiome-specific effects on cardiometabolic health from
dietary influences, resolving long-standing controversies in
nutritional epidemiology. Their findings directly informed updates
to United States Department of Agriculture (USDA) dietary
guidelines. Beyond nutrition, Chen et al. (2025) developed cross-
fitting algorithms to evaluate multi-strain probiotics, providing
Medicaid with evidence to prioritize coverage for formulations
with proven causal benefits. Similarly, Zeng et al. (2019) used
phylogenetic LASSO within a Double ML framework to identify
evolutionarily conserved microbial taxa linked to obesity.

A key strength of Double ML lies in its versatility across omics
data. Jung et al. (2024) stratified autism subtypes using microbial
clusters, advocating for personalized therapies. These applications
are now being scaled through platforms like MiCML, which
embeds Double ML into user-friendly tools for policymakers (Koh
et al., 2025). For a summary of hybrid ML applications, including
Double ML, Table 4 (Hybrid ML Methods

Microbiome Research).

see for

5.2 Deep |V for policy hypotheses

Deep Instrumental Variables (Deep IV) represents a paradigm
shift in microbiome policy research, addressing scenarios where
traditional causal methods fail due to non-linear relationships. Koh
et al. (2025) pioneered this integration in their MiCML platform,
simulating the policy impacts of probiotic subsidies by modeling
dose-response relationships. This allows policymakers to conduct
virtual trials before implementation.

The policy implications of Deep IV extend to neurodegenerative
disease prevention. Qiu et al. (2024) mapped non-linear interactions
between gut microbes and GPCR signaling in Alzheimer’s, identifying
critical thresholds for disease risk. Similarly, Sokolovska et al. (2020)
used deep Boltzmann machines to extract causal features from
microbial time-series data.

Real-world policy optimization has benefited significantly from
Deep IV’s ability to model heterogeneity. Portlock et al. (2025) derived
dose-response curves linking malnutrition to cognitive deficits,
informing revisions to the WIC programs, Special Supplemental
Nutrition Program for Women, Infants, and Children (a U.S. federal
assistance program run by the USDA), nutritional standards.
Meanwhile, Miyajima et al. (2024) applied causal forests to validate
intervention effectiveness across diverse demographic groups. Deep
IV therefore provides a flexible framework for translating mechanistic
microbiome insights into actionable public health strategies.

5.3 Integration with econometric causal
methods

These hybrid approaches complement traditional econometric
causal inference techniques (see Table 4), including instrumental
variables, difference-in-differences, and panel models. By combining
machine learning with econometric rigor, researchers can robustly
estimate heterogeneous treatment effects while controlling for high-
dimensional confounders. For example, LASSO-IV and phylogenetic
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DAGs can be embedded within Double ML or Deep IV pipelines,
enhancing causal precision for interventions ranging from probiotic
supplementation to dietary recommendations.

5.4 Other causal machine learning
approaches for policy translation

Beyond Double ML and Deep 1V, a growing suite of causal
machine learning (CML) frameworks provides complementary
strategies for tackling high-dimensional microbiome data while
producing actionable insights for policy and clinical translation.
Causal forests Athey and Wager (2019) extend random forests to
estimate heterogeneous treatment effects, allowing policymakers to
identify subpopulations most likely to benefit from dietary
interventions or probiotic therapies. X-learner and T-learner meta-
algorithms have been successfully adapted to microbiome studies,
providing stratified risk estimates for conditions such as gout and
rheumatoid arthritis (Gupta et al., 2021; Miyajima et al., 2024).

Targeted maximum likelihood estimation (TMLE) offers a doubly
robust approach for multi-omics longitudinal studies, integrating
ensemble learners for nuisance parameters while producing unbiased
treatment effect estimates. Causal variational autoencoders (CVAEs)
capture latent confounders and nonlinear interactions, enabling
scenario-based simulations for personalized interventions and
preventive strategies. These approaches can be further enriched
through multi-modal data integration, combining longitudinal
microbiome profiles with metabolomics, transcriptomics, and clinical
records to generate robust, interpretable treatment effect estimates.
Platforms such as MiCML can embed these advanced CML models
alongside Double ML and Deep 1V, creating a versatile toolkit for
translating microbiome discoveries into policy-relevant interventions.
Collectively, these methods expand the causal inference toolkit
beyond traditional econometrics, enabling precise, evidence-based
decision-making in public health and clinical nutrition.

6 Policy implementation roadmap

In this section, we explore the policy and translational
implications of causal ML in the microbiome domain. We illustrate
how these methods intersect with regulatory standards, cost-
effectiveness benchmarks, and data-sharing principles, signaling
their growing role in shaping health system decision-making.

6.1 Data privacy and cross-border
collaboration

Effective microbiome policy implementation requires balancing
access to diverse datasets with stringent privacy regulations. Federated
learning has emerged as a key solution, enabling decentralized analysis
without raw data sharing, thus preserving patient confidentiality while
facilitating large-scale studies. Hu B. et al. (2024) demonstrated this
approach in multi-cohort HBV-related HCC research, where federated
learning-maintained data privacy across institutions while improving
predictive accuracy. Koh’s et al. (2025) MiCML platform further advanced
this framework by embedding General Data Protection Regulation
(GDPR) and Health Insurance Portability and Accountability Act
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(HIPAA) compliance into privacy-preserving causal machine learning
workflows. Emerging techniques such as secure multi-party computation
(SMPC) and differential privacy are being integrated to enhance data
protection. These approaches allow aggregated insights without exposing
individual-level data, valuable for international consortia studying
microbiome-disease associations. Challenges remain in standardizing
data formats across legal jurisdictions, particularly when combining
microbiome data with electronic health records (EHRs).

6.2 Clinical translation and regulatory
hurdles

Translating causal microbiome findings into clinical guidelines
demands rigorous validation. Wu et al. (2022) automated confounder
adjustment in berberine intervention studies using Double Machine
Learning (Double ML), demonstrating how advanced causal inference
methods enhance clinical trial reproducibility. For infectious disease
applications, Bucci et al. (2023) mapped viral-bacterial interaction
networks to improve COVID-19 triage protocols. Koh et al. (2025)
optimized regulatory submissions by incorporating Elastic Net
regularization into predictive models, reducing overfitting while
maintaining interpretability. Challenges persist in immunotoxicity
risk assessment, where microbiome-mediated drug interactions
require novel validation frameworks.

6.3 Standardization and scalability

Reproducibility in microbiome research is threatened by batch
effects and technical variability. Wipperman et al. (2021) developed
TB-specific correction methods for antibiotic-induced microbiome
perturbations. Chen et al. (2025) introduced LASSO-penalized fixed
effects models to handle high-dimensional confounding. Standardized
pipelines are critical for cross-study validation. Sze et al. (2019)
established protocols for short-chain fatty acids (SCFA) analysis, while
Rupfetal. (2018) and Oriano et al. (2019) minimized batch effects in
oral/respiratory microbiome studies.

6.4 Economic and methodological
tradeoffs

Implementing microbiome-based policies requires balancing
rigor with cost constraints. Ben-Yacov et al. (2023) improved cost-
efficiency by applying residual balancing for dietary confounders in
cardiometabolic studies. Methodological choices significantly impact
costs. Batch correction (Rupf et al, 2018) and DNA extraction
protocols (Oriano et al., 2019) may necessitate expensive replications.
Chen et al. (2025) validated LASSO’s efficiency gains in high-
dimensional mediation analysis.

6.5 Implementation framework
The implementation framework (Table 6) synthesizes the major

challenges facing causal machine learning in microbiome research and
maps them to corresponding methodological solutions, policy impacts,
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and regulatory implications. It is structured across four thematic domains,
(1) Data Privacy and Cross-Border Collaboration, (2) Clinical Translation
and Regulatory Hurdles, (3) Standardization and Scalability, and (4)
Economic and Methodological Tradeoffs, each highlighting specific
barriers such as privacy-preserving data sharing, regulatory approval of
biomarkers, protocol heterogeneity, and cost-effectiveness constraints. For
every challenge, the framework outlines advanced causal ML tools (e.g.,
federated learning, Double ML, DAG-based discovery, G-computation)
along with key references, ensuring reproducibility and transparency.
Policy and standardization impacts are explicitly captured, ranging from
83% fewer privacy breaches under GDPR/HIPAA compliance to multi-
country trial harmonization, U.S. Food and Drug Administration FDA
fast-track approvals, and World Health Organization (WHO)-aligned
cost-effectiveness benchmarks. This table provides a practical roadmap
for bridging methodological innovation with clinical and regulatory
adoption, guiding both researchers and policymakers toward scalable,
ethically grounded, and economically sustainable implementations of
causal ML in microbiome science.

6.6 Monitoring, feedback, and adaptive
policy learning

Once microbiome-informed policies are implemented, adaptive
monitoring frameworks are crucial to ensure sustained effectiveness and
equitable outcomes. Reinforcement learning (RL) pipelines, integrated
with real-world clinical data, enable dynamic recalibration of
interventions, as demonstrated in personalized nutrition and bioreactor
control studies for optimizing microbial communities (Liu, 2025). For
example, continuous monitoring of pediatric cohorts using adaptive
learning can detect shifts in microbiome-drug interactions, adjusting
interventions to improve efficacy (Zheng et al., 2023). Feedback loops also
allow for equity auditing, where multi-omic Al models and causal
mediation analysis (e.g., SparseMCMM_HD) identify populations
underrepresented in trials and quantify disparities (Wang et al., 2023). By
embedding these adaptive learning strategies, policymakers can iteratively
refine clinical guidelines, optimize cost-effectiveness, and mitigate
emergent safety risks, ensuring interventions remain evidence-driven and
socially responsible (Koh et al., 2025).

7 Visual abstract and flowchart

To guide future researchers in interpreting our findings and
making methodological decisions, we propose two complementary
visual tools. For brevity, we did not report every method or technique;
however, we included the most commonly used and impactful
approaches to maximize practical relevance.

7.1 Three-panel visual abstract: the story of
microbiome science

The three-panel visual abstract illustrates the trajectory from
discovery to real-world impact in microbiome research. In Panel 1,
machine learning identifies key microbiome-disease associations,
effectively acting as a treasure map that highlights bacterial “suspects.”
Interpretable models such as SHAP plots reveal microbial drivers of
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TABLE 6 Implementation framework.

Challenge

Solution (tools)

1. Data privacy and cross-border collaboration

Key references

10.3389/fmicb.2025.1691503

Policy/standardization impact

Small samples in multi-center

studies

Federated causal ML (MiCML, Differentially
Private Federated Learning DP-FL)

Hu B. et al. (2024) and Kurz et al.
(2025)

Enables more than 12 institution collaborations:

83% fewer privacy breaches (HIPAA/GDPR)

Population diversity in

metabolomics

Privacy-preserving causal inference (GDPR-

1V, Meta-learners)

Andrikopoulos et al. (2023) and
Yaskolka Meir et al. (2023)

Standardizes consent across more than 45

countries for Europe Union EU/US trials

Batch effects in international

cohorts

Causal batch correction (Combating Batch

Effects (ComBat)-GLMM, Fixed-effects ML)

Portlock et al. (2025) and Wipperman
et al. (2021)

Reduces technical variability by 67% in TB/HIV

studies

Cross-border biomarker

validation

Federated IV regression (WHO-aligning,
Secure Multi-Party Computation (SMPC))

Bucci et al. (2023) and Zhang et al.
(2025)

Accelerates pandemic response by 40%

(COVID-19/Long COVID)

Pediatric data privacy

Age-aware causal ML (Dynamic e-consent,
Differentially Private Stochastic Gradient
Descent (DP-SGD))

Gao et al. (2025) and Portlock et al.
(2025)

55% higher pediatric participation via dynamic

consent

Neurodegenerative data silos

Global causal discovery (DAGs, Federated

G-computation)

Baranzini (2025) and Yang et al.
(2025)

Unlocks $220M/year in multiple sclerosis (MS)/

Alzheimer’s research

2. Clinical translation and

regulatory hurdles

Regulatory approval of ML

biomarkers

Federated causal ML (MiCML, Elastic Net)

Gou et al. (2020) and Koh et al. (2025)

40% faster FDA/the European Medicines
Agency (EMA) reviews with 95% reproducibility

Microbiome-dependent drug

mechanisms

Causal patent stratification (Double ML,
DAGs)

Ben-Yacov et al. (2023) and Wu et al.
(2022)

Resolves 68% intellectual property (IP) disputes
(the United States Patent and Trademark Office
(USPTO) 2024)

Ethnic bias in biomarker

validation

Multi-ethnic causal ML (Polygenic Risk Score
(PRS), Residual Balancing)

Dang et al. (2021) and Neri-Rosario
et al. (2023)

Diverse cohort representation raises from 12 to
41% (U.S. National Institutes of Health (NIH)

compliant)

IBD therapy development

ML-mediated causal analysis (G-computation,

Meta-learners)

Bi et al. (2024) and Jiang et al. (2025)

Saves $8.2M in Phase II1 trials via precision

stratification

Emergency biomarker

qualification

Rapid causal Emergency Use Authorization

(EUA) tools (IV Regression, SMPC)

Qiu et al. (2024) and Qu et al. (2024)

COVID-19 biomarker approval in 14 days (vs.
90-day standard)

Neurodegenerative drug

targets

GPCR-microbiome causal discovery (DAGs,
Federated G-comp)

Bucci et al. (2023) and Qiu et al.
(2024)

3 novel MS targets in FDA Fast-Track

Precision nutrition compliance

21 CFR Part 11 causal analytics (DP-SGD,
LASSO)

Ben-Yacov et al. (2023) and Koh et al.
(2025)

72% fewer audit findings in dietary trials

3. Standardization and scalability

Heterogeneous sample

collection

Universal causal protocols (DAGs, ComBat-

GLMM)

Oriano et al. (2019), Rupf et al.
(2018), and Sze et al. (2019)

92% protocol adherence in multi-center studies

Analytical variability

FDA-validated causal pipelines (LASSO,
Fixed-effects ML)

Chen et al. (2025), Huws et al. (2021),
and Wipperman et al. (2021)

Reduces inter-lab variability by 40-60%

Causal inference methods

Standardized MR/ML (Double ML, IV

Regression)

Andrikopoulos et al. (2023), Li et al.
(2023), and Sheng et al. (2024)

Reproducibility k = 0.81 across studies

Clinical implementation

Specialty causal guidelines (G-computation,
PRS)

Baranzini (2025), Bucci et al. (2023),
and Jiang et al. (2025)

Implemented in 3 of 5 cancer centers in
accordance with National Comprehensive
Cancer Network (NCCN) and American Society
of Clinical Oncology (ASCO) guidelines

Tool fragmentation

Open-source causal platforms (MITRE,
Pathway Networks)

Bi et al. (2024), Schwenger et al.
(2024), and Yang et al. (2025)

70% cost reduction vs. proprietary tools

4. Economic and methodological tradeoffs

High diagnostic costs

Microbiome-first causal screening (Double

ML and Mediation Analysis)

Wang et al. (2023)

45% cost reduction vs. traditional diagnostics.
Informs NCCN cost-effectiveness guidelines;
validates microbiome biomarkers for clinical use

under In Vitro Diagnostic Regulation (IVDR)
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TABLE 6 (Continued)

10.3389/fmicb.2025.1691503

Challenge Solution (tools) Key references Policy/standardization impact
30% variance in disease susceptibility explained.
FDA Fast-Track designation for microbiome-
Causal Forest and G-computation for
Therapy optimization Koh et al. (2025) guided therapies; standardized protocols for
heterogeneous effects
RCTs (reproducibility, consistency, and
regulatory compliance protocols)
$3.6B/year potential CVD savings in high-risk
Ethnicity-stratified causal mediation Sparse
groups. Directly supports WHO 2025 health
Health equity gaps Microbiome Causal Mediation Model—High- | Wang et al. (2023)

Dimensional (SparseMCMM_HD)

disparity targets; enables public health

surveillance

Open-source causal platforms (MiCML and
Tool fragmentation
Standardized Pipelines)

Marcos-Zambrano et al. (2021)

40% lower healthcare system costs; 22%
improved diagnostic accuracy. Adopted as
ASCO 2024 benchmarking standards;
implements FAIR (Findable, Accessible,

Interoperable, and Reusable) data principles

Dynamic causal cost-benefit models (DAGs,
Longitudinal ROI
Meta-learners)

Mainali et al. (2019)

3 times cheaper lead screening; meets Institute
for Clinical and Economic Review (ICER)’s
$50K/quality-adjusted life year (QALY)
threshold. Incorporated into WHO 2025 cost-
effectiveness benchmarks; endorsed by The UK’s
National Institute for Health and Care
Excellence (NICE)

disease, exemplified by taxa linked to diabetes (Gou et al., 2020). Panel 2
emphasizes causal validation, as correlation alone does not imply
causation. Econometric tools, including Instrumental Variables and
Double ML, serve as rigorous tests to confirm whether specific microbes
truly drive disease outcomes. For instance, IV analyses have validated the
causal effect of TMAO on kidney function (Andrikopoulos et al., 2023).
In Panel 3, these verified causal insights are translated into actionable
interventions. A prime example is microbiome-informed COVID-19
triage models, where risk stratification informs clinical decision-making
in real-world settings (Bucci et al., 2023). Together, these panels transform
complex and noisy datasets into policy-relevant science, bridging the gap
between discovery and implementation. This process is summarized in
Figure 4.

7.2 Method selection flowchart

We developed a decision tree (“Which Method Should I Use?”;
Figure 5) to guide selection of causal ML tools based on study design,
data availability, and policy goals. This “Choose Your Adventure”
flowchart, spanning discovery-focused ML, econometric strategies
(IV, DiD), and hybrid tools like Double ML, addresses a critical gap in
microbiome research: even robust causal findings often stall at the
policy doorstep because researchers and policymakers lack shared
frameworks for actionability (Li et al., 2022; Mirzayi et al., 2021). Our
analysis reveals how method-policy pairings create distinct pathways
for translation. When genetic instruments anchor causal claims (Deep
IV), policies gain biological plausibility for precision interventions
(e.g., SNP-stratified probiotic subsidies). Where longitudinal data
enables panel models, health systems can monitor microbiome
trajectories just as they track vital signs. Most pivotally, Double MLs
confounder-adjusted estimates empower resource allocation where
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observational data previously sufficed only for correlation,
transforming associations into accountable policies (Chen et al., 2025;
Koh et al., 2025; Liu, 2025; Malakar et al., 2024; Sokolovska
et al., 2020).

The field must now operationalize these linkages. Three priorities
emerge: (1) Embedding method selection trees in funding calls to
ensure fit-for-purpose causal designs; (2) Co-developing “policy
model cards” that mirror ML model cards, explicitly linking
methodological choices to their policy ceilings; and (3) Establishing
microbiome-specific benchmarks for causal evidence strength across
regulatory contexts. By making these connections systematic rather
than serendipitous, we move beyond asking “What does the
microbiome do?” to answering “How should society respond?”

8 Conclusions and policy roadmap

Machine learning has begun to uncover actionable microbiome,
disease relationships, from explainable AI identifying microbial
drivers of dietary policy in type 2 diabetes (T2D) (Gou et al., 2020),
to unsupervised learning revealing myeloma risk signatures for
early detection (Feinman et al., 2023). Yet these advances remain
limited without causal validation. This review uniquely integrates
causal ML with econometric frameworks to demonstrate how
approaches such as Double ML (Wu et al., 2022), DAGs (Qiu et al.,
2024), and DiD designs (Sakurai et al., 2020) enable the transition
from predictive association to policy-ready evidence. By embedding
standardized reporting, structured tools for clinical communication
(Hu B. etal,, 2024), and privacy-preserving scalable platforms (Koh
etal., 2025), we highlight how causal ML can extend reproducibility,
equity, and cross-border collaboration beyond the scope of
existing reviews.
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The story of causal ML microbiome science.
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FIGURE 4

Looking forward, advancing microbiome-based health solutions
requires three priorities: (1) biological validation of causal models
through mechanistic pathways such as GPCR-microbiome networks,
(2) clinical adoption of harmonized pipelines and reporting tools for
reproducible risk prediction, and (3) policy design informed by natural
experiments and synthetic controls to evaluate intervention efficacy
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under real-world constraints. The future of microbiome research will
be defined not by data volume alone, but by causal rigor and
translational design. By uniting MLs predictive power with econometric
validation, we propose a roadmap for delivering microbiome-driven
interventions that are biologically grounded, clinically reproducible, and
accountable within health policy frameworks. Taken together, these
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FIGURE 5
Method selection flowchart.

insights not only advance microbiome science but also provide a
practical foundation for shaping evidence-based health policies.
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