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The human microbiome is increasingly recognized as a key mediator of health 
and disease, yet translating microbial associations into actionable interventions 
remains challenging. This review synthesizes advances in machine learning (ML) 
and causal inference applied to human microbiome research, emphasizing policy-
relevant applications. Explainable ML approaches, have identified microbial drivers, 
guiding targeted strategies. Econometric tools, including instrumental variables, 
difference-in-differences, and panel data models, provide robust frameworks 
for validating causal relationships, while hybrid methods like Double Machine 
Learning (Double ML) and Deep Instrumental Variables (Deep IV) address high-
dimensional and non-linear effects, enabling precise evaluation of microbiome-
mediated interventions. Policy translation is further enhanced by federated learning, 
standardized analytical pipelines, and model visualization frameworks, which 
collectively improve reproducibility, scalability, and data privacy compliance. By 
integrating predictive power with causal rigor, microbiome research can move 
beyond observational associations to generate interventions that are biologically 
grounded, clinically actionable, and policy-ready. This roadmap provides a blueprint 
for translating mechanistic microbial insights into real-world health solutions, 
emphasizing interdisciplinary collaboration, standardized reporting, and evidence-
based policymaking.
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1 Introduction

Over the past two decades, our understanding of the human 
microbiome has undergone a profound transformation. Once 
considered a biological curiosity, the trillions of microorganisms 
inhabiting the human body are now recognized as active 
participants in health, disease, and therapeutic response. 
Microbiome research has evolved from descriptive catalogs of 
microbial diversity toward sophisticated analyses designed to 
predict, explain, and ultimately manipulate microbial dynamics for 
clinical and public health benefit. This evolution has been propelled 
by advances in high-throughput sequencing, computational 
biology, and, increasingly, machine learning (ML). However, 
despite the power of ML to detect complex microbiome–health 
associations, a crucial limitation remains: correlation does not 
imply causation. Without rigorous causal inference, predictive 
models may fail to generalize, interventions may miss their 
intended targets, and policy decisions may rest on uncertain 
foundations. This limitation is not only of academic concern, 
industry and policy stakeholders have already recognized the 
strategic value of translating microbiome insights into 
actionable programs.

This composite Figure  1 summarizes the current state and 
projected growth of the human microbiome market based on multiple 
research sources. Panel A shows the estimated market size in 2023 
across four major firms, highlighting differences in scope and 
segmentation. Panel B presents the regional market share in 2022, 
with North America dominating due to regulatory leadership and 
investment. Panel C illustrates projected market growth from 2022 to 
2032, based on Acumen’s forecast. Key drivers of market expansion 
include the rising prevalence of chronic diseases requiring 
microbiome-based therapies, advances in metagenomics, and 
increasing investments in therapeutic development.

1.1 Microbiome and health

The human microbiome has emerged as a critical determinant 
of health and disease. Foundational studies have demonstrated its 
involvement in conditions ranging from colorectal adenoma 
(Goedert et al., 2015) to cirrhosis progression (Bajaj et al., 2020). 
Advances in high-throughput sequencing and ML have further 
revealed predictive potential across diverse contexts, including 
stratifying rheumatoid arthritis treatment responses (Gupta et al., 
2021), identifying high-risk myeloma signatures (Feinman et al., 
2023), and detecting gastric cancer trends (Zhang et al., 2025). 
Interpretable ML models have also been successfully applied to 
classify diabetes subtypes (Gou et al., 2020) and identify obesity-
associated microbial markers (Zeng et al., 2019).

Despite these advances, predictive performance does not 
always translate into actionable insight. For example, short-chain 
fatty acids (SCFAs) in fecal samples often fail to reliably predict 
tumor development (Sze et  al., 2019). Viral sequence analyses 
remain challenging due to gaps in reference databases and 
assembly biases (Kieft et al., 2020; Ren et al., 2017). Integrative 
studies combining ocular microbiome and metabolomic data 
further highlight the complexity of cross-domain microbiome 
research (Gao et al., 2025).

1.2 The causality gap

Correlational microbiome studies remain vulnerable to 
confounding and bias. For instance, tuberculosis medications can 
distort predictions of inflammatory states (Wipperman et al., 2021), 
batch effects in oral microbiome datasets introduce noise (Rupf et al., 
2018), and sputum extraction methods can bias microbial profiles 
(Oriano et al., 2019). In non-alcoholic fatty liver disease (NAFLD), 
metabolome–microbiome associations often lack clear directionality 
(Schwenger et al., 2024), while antimicrobial use can artificially skew 
microbial ratios (Hao et  al., 2015). Similarly, obesity-associated 
cytokines can obscure links to osteoarthritis (Kurz et al., 2025), and 
dysbiosis in polycystic ovary syndrome (PCOS) independent of Body 
Mass Index BMI underscores the heterogeneity of microbiome–
disease interactions (Mammadova et al., 2020).

Machine learning–enhanced causal frameworks are increasingly 
being applied to address these limitations more effectively than 
traditional statistical methods. Double Machine Learning (Double 
ML) has been employed to control for high-dimensional confounders 
in microbiome disease associations (Chen et al., 2024), while causal 
forests have been used to quantify heterogeneous treatment effects in 
nutritional studies (Ben-Yacov et al., 2023). Nevertheless, challenges 
remain; for example, microbiome-based predictions for Long COVID 
have struggled to achieve robust performance (Calvani et al., 2024), 
highlighting the need for more sophisticated ML-driven mediation 
analyses and integration of domain knowledge. These observations 
emphasize that predictive accuracy alone is insufficient when the 
ultimate goal is intervention or policy change. Without establishing 
causality, strategies may be ineffective or even harmful.

1.3 Contributions of this review

This review aims to bridge the gap between predictive ML and 
actionable causal insights in microbiome research. We systematically 
map the integration of advanced causal inference techniques with 
econometric tools, focusing on methods such as Double ML for 
evaluating microbiome-mediated treatment effects (Wu et al., 2022) 
and high-dimensional mediation analysis for exploring microbial 
community dynamics (Chen et al., 2024). Econometric frameworks, 
including directed acyclic graphs (DAGs) for causal mapping in 
Alzheimer’s disease microbiome interactions (Qiu et al., 2024) and 
deep restricted Boltzmann machines (RBMs) for microbial network 
inference (Sokolovska et al., 2020), are highlighted for their potential 
to formalize causal assumptions and reduce bias.

We further examine emerging computational platforms, such as 
Microbiome Causal Machine Learning MiCML, that operationalize 
causal ML for clinical decision-making (Koh et al., 2025). Translational 
applications are reviewed, including hyperuricemia diagnostic 
flowcharts (Miyajima et al., 2024), model cards for hepatitis B virus 
(HBV)-related hepatocellular carcinoma (Hu B. et  al., 2024), and 
malnutrition intervention frameworks (Portlock et al., 2025). These 
approaches are then linked to policy-relevant contexts, such as 
cardiovascular disease risk prediction (Warmbrunn et  al., 2024), 
COVID-19 microbiome-informed guidelines (Bucci et al., 2023), and 
immunotoxicity trial design (Liu et al., 2024).

The human microbiome plays a critical role in health and disease, 
yet translating complex microbial data into actionable interventions 
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FIGURE 1

Global human microbiome market landscape (2022–2023): size, regional distribution, and key drivers. The figure integrates key drivers, market size (A), 
regional distribution (B), and projected growth of the human microbiome market (C). Market drivers include the rising prevalence of chronic diseases 
requiring microbiome-based therapies, advances in metagenomics and causal ML techniques, and increased investments in therapeutic and diagnostic 
development. Comparative analyses from multiple research sources (GV, M&M, AM, TM, 2025 reports) estimate the 2023 market size between USD 
1.12–1.45 billion. Data from Acumen Research and Consulting show that in 2022, North America (49%) led the regional market, followed by Europe 
(26%) and Asia-Pacific (14%), with projected global expansion from USD 154.8 million in 2022 to USD 2193.9 million by 2032.
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remains challenging. Current studies often rely on correlational 
analyses or single-method approaches, limiting causal understanding 
and policy applicability. To address this gap, we  present the first 
systematic review integrating causal machine learning approaches 
with econometric methodologies in microbiome science. We aim to 
provide a rigorous, policy-relevant framework that translates 
microbiome discoveries into robust, intervention-ready evidence for 
researchers, clinicians, data scientists, and policymakers seeking 
targeted, equitable, and evidence-based applications.

2 Materials and methods

This systematic review was conducted following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) 2020 guidelines (Page et al., 2021), with the objective of 
examining how causal inference methods and machine learning 
techniques have been jointly applied in human microbiome research 
with clinical or policy relevance. The search strategy targeted peer-
reviewed studies published between January 2015 and May 2025, 
reflecting the recent surge in computational approaches capable of 
integrating high-dimensional microbiome data with rigorous causal 
identification frameworks (Ruggiero et al., 2021; Sohrabi et al., 2021).

Two electronic databases were searched: PubMed and 
Dimensions.ai; the choice of both databases is intensively proven in 
research, and they are widely used (Falagas et al., 2008; Lee et al., 2023; 
Mouratidis, 2019; Ossom Williamson and Minter, 2019; Pan et al., 
2018). Boolean queries were constructed to capture literature at the 
intersection of microbiome science, causal inference, and machine 
learning. The microbiome component included terms such as 
“microbiome,” “gut microbiota,” “gastrointestinal microbiome,” and 
“16S rRNA.” Causal inference terms encompassed “instrumental 
variable,” “Mendelian randomization,” “difference-in-differences,” and 
“causal machine learning,” while the machine learning component 
included “machine learning,” “random forest,” “deep learning,” “double 
ML,” “causal forest,” and “Bayesian additive regression trees.” To 
exclude animal-only or in vitro studies, the filter NOT “animal” [tiab] 
was applied. The final search strings were adapted to the syntax and 
indexing systems of each database.

The initial search identified 571 records, including 70 from 
PubMed and 501 from Dimensions.ai. All records were exported in 
MEDLINE (.nbib) format to preserve structured metadata, including 
MeSH terms, author affiliations, and structured abstracts. Duplicates 
were removed using Rayyan.ai’s automated detection tool, followed by 
manual verification of ambiguous matches, resulting in 477 unique 
records for title and abstract screening.

Screening was performed in two stages. First, titles and abstracts 
were reviewed against four inclusion criteria: studies must (1) focus 
on the human microbiome, (2) employ a causal inference method, (3) 
incorporate at least one machine learning approach, and (4) address 
clinical or public health outcomes. This process yielded 73 records for 
full-text assessment. In the second stage, full texts were reviewed in 
detail to verify eligibility. Studies were excluded if they applied purely 
causal inference methods without any machine learning component 
(n = 46), focused exclusively on animal or in  vitro models, used 
predictive models without causal framing, or were limited to 
exploratory or correlational analyses. Additional exclusion criteria 
included non-English language publications and review articles.

A total of 19 studies met all inclusion criteria. These comprised 
original research articles explicitly combining causal inference and 
machine learning within human microbiome contexts, reporting 
findings relevant to health outcomes. Among these, 15 studies 
demonstrated particularly strong policy relevance, characterized 
by discussion of translational applications, public health 
interventions, or clinical decision-making pathways. These were 
selected for deeper thematic analysis in the results and 
discussion sections.

For each included study, a standardized data extraction protocol 
was applied. Extracted variables included bibliographic information, 
study design, sample size and population characteristics, type of 
microbiome data (e.g., 16S rRNA sequencing, metagenomics), causal 
inference method used, type of machine learning approach, specific 
health or policy outcomes studied, and statistical validation strategies 
such as sensitivity analyses or falsification testing. Where applicable, 
we documented whether studies addressed potential sources of bias, 
implemented robustness checks, or discussed limitations in causal 
interpretation. Special attention was given to identifying whether 
authors proposed pathways for translating findings into actionable 
clinical or policy recommendations.

All steps in the review process were documented to ensure 
reproducibility. Screening and full-text review were managed entirely 
within Rayyan.ai, which preserved all metadata in MEDLINE format. 
The overall selection process is summarized in a PRISMA 
2020-compliant flow diagram (Figure 2), illustrating the numbers of 
records identified, screened, assessed for eligibility, and included, as 
well as reasons for exclusion at each stage. This transparent approach 
ensured methodological rigor and facilitated reproducibility.

3 Machine learning for microbiome 
prediction

3.1 Supervised learning in microbiome 
studies

Supervised machine learning approaches have become 
indispensable tools for translating complex microbiome data into 
clinically actionable insights (Cammarota et al., 2020; Malakar et al., 
2024). The field has progressed from early correlation studies to 
sophisticated predictive models that account for population 
heterogeneity. For example, Neri-Rosario et  al. (2023) developed 
ethnicity-specific models for type 2 diabetes prediction in Mexican 
cohorts, addressing critical limitations in generalizability that had 
affected earlier models. These advances built upon foundational work 
by Gou et al. (2020), who established interpretable frameworks for 
microbial biomarker discovery in diabetes. Among supervised 
algorithms, Random Forest classifiers have demonstrated particular 
utility in microbiome applications due to their ability to handle high-
dimensional taxonomic data. Goedert et al. (2015) applied Random 
Forests to detect colorectal adenoma, achieving robust classification 
despite sparse data, while Zeng et al. (2019) used the same approach 
for obesity subtyping through microbial signatures. However, these 
models may face challenges with population transferability, as 
highlighted by Koduru et  al. (2022) who observed performance 
degradation when models trained on North American cohorts were 
applied to South Asian populations.
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Gradient boosting methods, including eXtreme Gradient 
Boosting (XGBoost), have emerged as powerful alternatives, 
particularly for their superior regularization capabilities. Gou et al. 
(2020) leveraged these advantages to develop a type 2 diabetes 
prediction model that outperformed logistic regression by 23% in 
precision. Model interpretability has been further enhanced 
through techniques such as SHapley Additive exPlanations (SHAP) 
analysis, exemplified by Wu et  al. (2022), who investigated 
berberine’s cholesterol-modulating effects through microbial 
mediators. Deep learning approaches are now pushing the 
boundaries, with transformer models decoding complex gut-brain 
axis interactions in Alzheimer’s disease (Qiu et  al., 2024) and 
platforms like MiCML making these tools more accessible for 
translational research (Koh et al., 2025).

This composite Figure  3 collectively underscores the 
evolution and challenges of applying supervised machine learning 
techniques to microbiome-based disease prediction. Panel A 
emphasizes the importance of ethnicity-specific models to 
enhance prediction accuracy in diverse populations. Panel B 
showcases the development of interpretable models that identify 
actionable microbial biomarkers. Panel C demonstrates the 

successful application of Random Forest classifiers in disease 
classification tasks. Finally, Panel D highlights the challenges of 
transferring models across different populations, stressing the 
need for inclusive and adaptable models in microbiome research. 
The main supervised learning techniques and their applications 
in microbiome research are summarized in Table  1, which 
provides a reference for classification, feature selection, survival 
analysis, and interpretability applications. This table highlights 
method-specific best practices, example use cases, and 
corresponding references for reproducibility.

3.2 Unsupervised learning approaches and 
their challenges

Unsupervised learning methods are widely used to explore 
microbial community structure without prior assumptions, enabling 
the discovery of patterns in high-dimensional microbiome data. 
However, their application is complicated by technical artifacts, 
methodological choices, and the inherent complexity of microbial 
ecosystems (Busato et al., 2023; Cai et al., 2017; Dutta et al., 2022; Hao 

FIGURE 2

PRISMA diagram for the systematic review research methodology.
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et  al., 2011). Technical biases can dominate clustering outcomes, 
leading to misleading biological interpretations. Schwab et al. (2019) 
showed that sample storage conditions significantly influenced 
clustering patterns in breast milk microbiota, with differences in 
freeze–thaw cycles and preservation time outweighing biological 
variation. Such pre-analytical factors underscore the need for 
standardized protocols across studies to ensure reproducibility. The 
utility of discrete microbial groupings, such as enterotypes, has also 
been questioned. Zeng et al. (2019) demonstrated that obesity-related 
gut microbiome changes often follow continuous gradients rather 
than distinct clusters, suggesting that apparent enterotypes may arise 
from algorithmic artifacts rather than true ecological boundaries. This 
highlights the risk of imposing categorical structure on inherently 
continuous data.

In clinical contexts, analytical decisions further shape results. 
Schwenger et al. (2024) found that distance metric choice, Bray–
Curtis versus UniFrac, led to divergent microbial subtypes in 
non-alcoholic fatty liver disease (NAFLD), altering clinical 
interpretations. Additionally, variability in DNA extraction 
methods has been shown to affect microbial profiles; Oriano 
et  al. (2019) reported that lysis efficiency differences across 
protocols skewed abundance estimates, particularly for Gram-
positive bacteria, reinforcing the need for 
methodological transparency.

Dimensionality reduction techniques remain valuable for 
visualizing community structure. Principal component analysis 
(PCA) and principal coordinate analysis (PCoA) help identify 
major sources of variation, while t-distributed stochastic neighbor 
embedding (t-SNE) has been used to resolve fine-scale dynamics, 
such as microbial shifts during tuberculosis treatment (Wipperman 
et  al., 2021). However, nonlinear methods require careful 
parameterization to avoid overinterpretation of local structures. 
Integrating microbiome data with host multi-omics profiles 
enhances biological insight. In multiple sclerosis research, 
combining microbial composition with metabolomic data revealed 
associations between taxa like Akkermansia and 
immunomodulatory metabolites, suggesting functional host–
microbe interactions (Sheng et al., 2024). Co-occurrence networks, 
such as those generated by Microbial Co-occurrence Network 
Analysis (MiCA), further enable the identification of keystone taxa 
linked to environmental exposures (Koduru et al., 2022), though 
inferred correlations must be  interpreted cautiously due to 
potential confounding.

Emerging generative models, including Generative Adversarial 
Networks (GANs), are beginning to simulate microbiome-immune 
dynamics in silico, offering new avenues for hypothesis generation and 
data augmentation. While still in early development, these approaches 
reflect a growing shift toward more sophisticated, integrative 

FIGURE 3

Advancements in supervised machine learning for microbiome-based disease prediction. (I) Illustrates ethnicity-specific gut microbiome signatures 
linked to type 2 diabetes risk. It highlights the necessity of incorporating ethnic diversity into predictive models to improve their generalizability and 
accuracy. This is Figure 3 from Neri-Rosario et al. (2023). (II) Presents an interpretable microbial risk score (MRS) that identifies gut microbiome features 
predictive of type 2 diabetes, demonstrating the potential of ML models to reveal actionable biomarkers. This is Figure 2 from Gou et al. (2020). (III) 
Depicts a Random Forest classifier that analyzes gut microbiome data to detect colorectal adenoma, illustrating the model’s utility for microbiome-
based disease classification. This is Figure 4 from Goedert et al. (2015). (IV) Highlights the performance degradation of microbiome-based models 
when applied to South Asian populations, addressing the critical challenge of ensuring model generalizability across diverse groups. This is Figure 3 
from Koduru et al. (2022).
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TABLE 1  Supervised learning techniques in microbiome research.

Technique Best for (technique goal and microbiome 
research goal)

Example use case References

Random Forest (RF) Classification tasks with high-dimensional microbiome data; 

identifying microbial biomarkers

Type 2 diabetes (T2D) classification Neri-Rosario et al. (2023)

Colorectal adenoma detection Sze et al. (2019)

Obesity-associated dysbiosis Mammadova et al. (2020)

Polycystic ovary syndrome (PCOS) microbiota characterization Oriano et al. (2019)

Kidney transplant outcome prediction Noda et al. (2024)

Malnutrition-cognition links via microbiota Portlock et al. (2025)

Personalized diet effects on cardiometabolic markers Wu et al. (2022)

Depression-linked gut dysbiosis Chen et al. (2021)

Gut microbes predicting rheumatoid arthritis (RA) treatment response Hu M. et al. (2024)

Autism spectrum disorder (ASD) subtypes linked to gut microbiome Schwenger et al. (2024)

Long COVID prediction Hu B. et al. (2024)

Endometrial cancer prediction from gut microbiota Chang et al. (2024)

Least Absolute Shrinkage and 

Selection Operator (LASSO) 

Regression

Feature selection for high-dimensional data; identifying sparse 

microbial signatures

Stroke recovery biomarker selection Dang et al. (2021)

Non-alcoholic fatty liver disease (NAFLD)-linked microbial biomarkers Yaskolka Meir et al. (2023)

Immunotherapy toxicity-microbiome associations Zeng et al. (2022)

Support Vector Machine SVM Binary/multiclass classification; robust to noise in microbiome 

data

Sputum DNA extraction optimization Kim et al. (2020)

Predictive models for inflammatory bowel disease (IBD) severity Ben-Yacov et al. (2023)

Crohn’s disease biomarker selection Support Vector Machine-Recursive Feature Elimination (SVM-RFE) Qu et al. (2024)

XGBoost Handling imbalanced datasets; high-performance gradient 

boosting

T2D subtype classification Gupta et al. (2021)

Gastric cancer risk prediction (XGBoost and LASSO) Zhang et al. (2025)

Gut microbiome predicts immune checkpoint inhibitor toxicity Jung et al. (2024)

Acute pancreatitis-microbiome risk modeling Liu et al. (2024)

Deep Neural Networks (DNN) Modeling complex nonlinear relationships in multi-omics data Neurodegenerative disorder prediction Neri-Rosario et al. (2023)

Logistic Regression Interpretable models for binary outcomes (e.g., disease risk) Stroke risk prediction Ma et al. (2025)

Elastic Net Combines LASSO and ridge regression for correlated features Polyphenol effects on DNA methylation age Comba et al. (2024)

SHAP and RF Interpretable ML for feature importance in microbiome studies Berberine’s microbiome-mediated cholesterol effects Wu et al. (2022)

Cox Regression Survival analysis with microbiome covariates Microbiome mediation in HBV-hepatocellular carcinoma (HCC) progression Yang et al. (2025)
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frameworks. In sum, unsupervised methods provide essential tools for 
exploratory microbiome analysis, but their results are highly sensitive 
to technical and analytical choices. Rigorous standardization, 
transparent reporting, and cautious interpretation are critical to 
ensure biological validity (Table 2).

3.3 Panel models for longitudinal 
microbiome analysis

Longitudinal study designs are essential for capturing the dynamic 
nature of host-microbiome interactions, enabling researchers to track 
microbial changes within individuals over time and link them to 
clinical outcomes. In this context, panel data models, commonly used 
in econometrics, have emerged as powerful tools for analyzing 
repeated microbiome measurements, allowing for the separation of 
within-subject temporal changes from between-subject variability. 
Bucci et al. (2023) applied such models to serial gut microbiome data 
from COVID-19 patients, revealing that significant dysbiosis, marked 
by loss of commensal taxa and reduced diversity, often preceded the 
onset of severe clinical deterioration. This temporal precedence 
suggests that microbiome destabilization may not merely reflect 
disease severity but could contribute to adverse outcomes, highlighting 
the potential of longitudinal modeling to uncover predictive 
microbial signatures.

A key advantage of panel models lies in their ability to control for 
unmeasured, time-invariant confounders, such as host genetics or 
early-life microbial colonization by treating each individual as their 
own control (Hill et al., 2020; Murayama and Gfrörer, 2024; Pesaran 
and Zhou, 2018; Streeter et al., 2017). Fixed-effects models eliminate 

these confounders through within-subject centering, making them 
ideal for detecting transient microbial shifts associated with 
interventions or disease flares. In contrast, random-effects models 
assume individual differences are random and can be modeled as part 
of the variance structure, offering greater efficiency when assessing 
population-level trends. Bogart et al. (2019) demonstrated how both 
approaches can be applied to microbiome data, showing that fixed-
effects frameworks improve causal interpretability by isolating 
persistent microbial signals from noise, particularly in chronic 
conditions where baseline differences between individuals 
are substantial.

These models gain even greater power when combined with 
econometric techniques such as lagged variables, difference-in-
differences, or instrumental variables, which help strengthen causal 
inference in observational settings. For example, incorporating lagged 
microbial states allows researchers to assess whether prior community 
composition influences future health outcomes a critical step in moving 
beyond correlation toward mechanistic understanding. Moreover, panel 
approaches can be  adapted to handle the compositional nature of 
microbiome data through log-ratio transformations and integrated with 
regularization methods to manage high dimensionality. Despite their 
strengths, panel models require dense and consistent sampling to 
reliably capture temporal dynamics, and their assumptions may 
be  challenged by nonlinear microbial trajectories or missing data. 
Nevertheless, their increasing use reflects a broader shift toward 
rigorous, theory-informed analysis in microbiome research. By 
leveraging longitudinal structure and controlling for confounding at the 
individual level, panel models offer a robust framework for uncovering 
the temporal logic of microbiome-host interactions in health and 
disease. These approaches, together with joint longitudinal-survival 

TABLE 2  Unsupervised learning techniques in microbiome research.

Technique Best for (technique goal and 
microbiome research goal)

Example use case References

Principal component 

analysis (PCA)

Dimensionality reduction; identifying dominant 

microbial variation patterns

Breast milk microbiota clustering Schwab et al. (2019)

Immune thrombocytopenia microbiota clustering Li et al. (2024)

High-dimensional confounding in mediation analysis 

(PCA and network analysis)

Gao et al. (2025)

PCA and k-Means Clustering microbiome data into distinct groups Oral microbiome clustering Rupf et al. (2018)

Thromboangiitis obliterans microbiota clustering Mao et al. (2023)

Latent Dirichlet 

Allocation (LDA)

Probabilistic topic modeling for microbiome 

“enterotypes”

Osteoarthritis enterotype classification Kurz et al. (2025)

k-Means Clustering Partitioning microbiome samples into discrete 

subgroups

Prostatitis microbiome enterotyping Galiwango et al. (2022)

Inflammatory dermatoses enterotyping Midya et al. (2023)

PCoA Beta-diversity visualization; sample dissimilarity 

mapping

Penile microbiota in HIV + men Chen et al. (2025)

Thromboangiitis obliterans microbiota clustering Mao et al. (2023)

t-SNE Nonlinear visualization of high-dimensional 

microbiome data

Trimethylamine N-oxide (TMAO)-diabetic retinopathy 

network clustering

Baranzini (2025)

Multi-omics Integration Combining microbiome data with other omics Multiple sclerosis (MS) microbiome-host interactions Sheng et al. (2024)

Co-occurrence Networks 

(MiCA)

Microbial interaction networks; identifying keystone 

taxa

Lead exposure and childhood microbiome clustering Koduru et al. (2022)

Deep Learning (GANs) Synthetic data generation for microbiome-immune 

simulations

Simulated probiotic-immune interactions Koduru et al. (2022)
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models and mixed-effects analyses, are detailed in Table  3, which 
outlines panel model techniques, their best-use scenarios, example 
studies, and associated machine learning approaches.

3.4 Hybrid machine learning methods

Hybrid machine learning approaches, those that strategically 
combine supervised and unsupervised techniques or integrate causal 
inference frameworks, are gaining traction in microbiome research as 
powerful tools to bridge the gap between pattern discovery and biological 
interpretability. By leveraging the exploratory strengths of unsupervised 
learning with the predictive precision of supervised models, these 
methods enable robust feature extraction from high-dimensional 
microbiome data while maintaining the ability to link microbial signatures 
to clinically relevant outcomes. This dual capacity is particularly valuable 
in complex host-microbe systems where both unknown community 
structures and defined phenotypic endpoints coexist. For example, 
Wipperman et al. (2021) employed a hybrid strategy combining t-SNE for 
dimensionality reduction with Random Forest classification to analyze 
longitudinal gut microbiome data from tuberculosis patients. This 
approach not only revealed dynamic microbial community trajectories 
during antimicrobial treatment but also successfully classified patients 
into distinct inflammatory response clusters, demonstrating how 
visualization and prediction can be synergistically combined to yield both 
mechanistic insight and clinical utility.

Beyond classification, hybrid models are increasingly used to 
uncover latent biological subtypes and assess their association with 
disease progression. One such method integrates latent 
Dirichlet  allocation (LDA), a topic modeling technique originally 
developed for text analysis, with regression frameworks to identify 
microbiome-derived “topics” or co-abundance modules and test their 
association with clinical variables. This approach has been applied to 
osteoarthritis research, where LDA was used to define microbiome 
subtypes based on taxonomic co-occurrence patterns, which were 

then linked to pain severity, joint function, and systemic inflammation 
through multivariate regression (Kurz et  al., 2025). By treating 
microbial communities as mixtures of underlying ecological themes, 
akin to topics in a document, this method captures nuanced, 
overlapping community states that traditional clustering might 
overlook. The integration with regression further allows for statistical 
inference, enabling researchers to quantify the contribution of each 
microbial topic to phenotypic variation while adjusting for 
confounders such as age, diet, and medication use.

More recently, hybrid frameworks incorporating causal 
inference have emerged to address the fundamental challenge of 
distinguishing correlation from causation in microbiome studies. 
Mendelian randomization (MR), which uses genetic variants as 
instrumental variables to infer causal relationships, has been 
paired with principal component analysis (PCA) to explore 
bidirectional interactions between host genetics and the gut 
microbiome. In immune thrombocytopenia (ITP), this MR-PCA 
approach revealed that host genetic variation influences microbial 
composition, particularly within the Lachnospiraceae and 
Ruminococcaceae families, while also suggesting feedback effects 
whereby specific microbial profiles modulate immune gene 
expression and platelet regulation (Li et al., 2024). Such integrative 
designs move beyond associative modeling to provide evidence 
for directional, potentially causal pathways, offering a more robust 
foundation for therapeutic targeting. As microbiome research 
shifts from descriptive analyses to mechanistic and interventional 
inquiry, hybrid machine learning methods will play an 
increasingly central role in transforming complex data into 
actionable biological knowledge. These hybrid approaches, their 
best-use scenarios, example applications, and corresponding 
machine learning methods are summarized in Table  4. They 
exemplify the capacity of modern computational pipelines to 
integrate predictive modeling with causal validation, offering 
actionable insights for precision medicine and policy-
informed interventions.

TABLE 3  Panel models for longitudinal microbiome analysis.

Technique Best for Example use case References Machine learning 
method

Joint Modeling

Linking longitudinal biomarker 

trajectories with time-to-event 

outcomes

Predicting COVID-19 severity based on 

gut microbiota trajectories
Bucci et al. (2023)

Joint longitudinal-survival 

modeling

Negative Binomial Mixed-

Effects

Modeling count data with 

overdispersion and repeated 

measures

Predicting C. difficile recurrence using 

longitudinal microbiome data

Dawkins et al. (2022) 

and Yirga et al. (2020)

Generalized linear mixed 

effects

Multimodal Mediation
Analyzing time-structured 

indirect effects

Decoupling microbiome-immune-

temporal dynamics in chronic diseases
Jiang et al. (2025)

Structural equation 

modeling (SEM)

MiCML Platform

Integrating multi-omics time-

series data to quantify treatment 

effects

Antibiotic-induced microbiome shifts 

and host response in tuberculosis (TB) 

therapy

Koh et al. (2025)
Bayesian hierarchical 

modeling

Cox Proportional Hazards 

(PH) Model

Survival analysis with time-

varying microbiome covariates

Vaginal microbiome and spontaneous 

preterm birth risk
Chen et al. (2022)

Proportional hazards 

regression

Mixed-Effects Models
Modeling repeated measures with 

subject-specific random effects

Penile microbiome dynamics and HPV 

persistence
Onywera et al. (2020) Linear/logistic mixed effects

Structural Equation Modeling 

(SEM) (Path Analysis)

Testing hypothesized causal 

pathways in longitudinal data

Polyphenol-microbiome-aging links 

(DNA methylation clocks)

Yaskolka Meir et al. 

(2023)
Latent variable modeling
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4 Causal inference with econometrics 
in microbiome research

This section examines the methodological landscape of causal ML 
in microbiome science, outlining how approaches such as double ML, 
instrumental variables, and federated designs are being adapted to 
address high-dimensional and heterogeneous data. We highlight how 
these innovations provide new strategies to overcome persistent 
challenges in causal inference.

4.1 Instrumental variables: uncovering 
causal pathways

Instrumental variable (IV) methods have been crucial for causal 
inference in econometrics, but microbiome research poses unique 
challenges due to high dimensionality and compositional data 
structures. Recent machine learning–enhanced approaches, including 
LASSO-IV (Chen et al., 2025) and causal forests (Miyajima et al., 
2024), enable the identification of valid instruments in complex 
microbial datasets, allowing researchers to isolate causal effects with 
higher precision. Such methods have proven particularly effective in 
pharmacomicrobiomics studies, exemplified by Wu et al. (2022), who 

demonstrated berberine’s cholesterol-lowering effects mediated 
through specific microbial pathways.

Microbiome-specific IV adaptations, including compositional 
Mendelian randomization (Zeng et  al., 2019) and phylogenetic 
directed acyclic graphs (Qiu et al., 2024), further strengthen causal 
inference by considering taxonomic and evolutionary dependencies. 
In addition, viral sequence data have been leveraged as instruments to 
control for bacteriophage-mediated confounding, opening novel 
opportunities to investigate host-microbe-virus interactions (Kieft 
et al., 2020). As summarized in Table 5, these innovations represent 
the key methodological advancements enabling robust causal 
inference in microbiome studies.

4.2 Difference-in-differences: learning 
from natural experiments

Difference-in-differences (DiD) designs are increasingly applied 
in microbiome research to exploit natural experiments when 
controlled interventions are impractical. For instance, Sakurai et al. 
(2020) used DiD to examine microbial resilience in ulcerative colitis 
patients after treatment withdrawal, uncovering surprising community 
stability. Similarly, ICU policy changes during the COVID-19 

TABLE 4  Hybrid machine learning techniques in microbiome research.

Technique Best for (technique goal and 
microbiome research goal)

Example use case References ML method

LDA and Regression

Topic modeling for microbial sub-

communities and predicting host 

phenotypes

Osteoarthritis enterotypes linked to 

clinical outcomes
Kurz et al. (2025)

Hybrid (LDA and 

Generalized Linear Models 

GLM)

t-SNE and Random Forest
Visualizing high-dimensional microbiome 

data and classifying disease states

TB treatment trajectories stratified by 

inflammatory markers
Lu et al. (2023) Hybrid (t-SNE and RF)

MR and PCA

Causal inference and dimensionality 

reduction for bidirectional host-

microbiome links

Immune thrombocytopenia and gut 

microbiome interactions
Li et al. (2024) Hybrid (MR and PCA)

Random Forest and PCoA
Classification and beta-diversity 

visualization for longitudinal dynamics

HIV-associated penile microbiome 

clustering

Galiwango et al. 

(2022)
Hybrid (RF and PCoA)

Deep Restricted Boltzmann 

Machine (Deep RBM) and 

Causal Inference

Modeling nonlinear microbiome-host 

interactions with causal validation

Bivariate microbiome-metabolite 

networks in metabolic disorders
Qiu et al. (2024)

Hybrid (Deep Learning 

and Causal)

DNN and Interpretability
High-dimensional feature extraction and 

mechanistic insights

G-protein-coupled receptors (GPCRs) 

-microbiome links in Alzheimer’s 

disease

Qiu et al. (2024) Hybrid (DNN and SHAP)

XGBoost and MR
Predictive modeling and genetic causal 

validation

Hyperuricemia prediction with 

microbiome features

Miyajima et al. 

(2024)
Hybrid (XGBoost and MR)

Network Analysis and 

Random Forest

Microbial co-occurrence networks and 

phenotype classification

Multi-ethnic cardiovascular disease 

(CVD)-microbiome associations

Warmbrunn et al. 

(2024)
Hybrid (Network and RF)

VirFinder and Random 

Forest

Viral sequence detection and host-disease 

prediction

Viral contig identification in 

metagenomic data
Ren et al. (2017) Hybrid (k-mer and RF)

VIBRANT and MR
Viral functional annotation and causal 

pathway validation

Viral functions in liver cirrhosis 

progression
Kieft et al. (2020) Hybrid (k-mer and MR)

Joint Modeling and MR
Longitudinal data integration and causal 

inference

Gut microbiota trajectories in 

COVID-19 severity
Chen et al. (2024)

Hybrid (Joint Model ad 

MR)
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pandemic allowed Bucci et  al. (2023) to assess gut-lung axis 
contributions to clinical outcomes.

Modern methodological enhancements incorporate machine 
learning to optimize cohort selection and balance covariates. 
Synthetic control methods facilitate matching in federated 
learning settings (Koh et al., 2025), and elastic net approaches 
help refine covariate selection in autoimmune disease studies 
(Gupta et al., 2021). Microbiome-specific considerations such as 
antibiotic lag effects and batch variation in multi-center studies 
are critical for unbiased estimation (Rupf et al., 2018; Wipperman 
et  al., 2021). These DiD innovations are part of the broader 
methodological landscape summarized in Table 5, which captures 
key causal tools and their applications.

4.3 Panel data models: capturing microbial 
dynamics

Longitudinal study designs and panel data models are essential 
for mapping temporal dynamics in host-microbiome interactions. 
Wipperman et al. (2021) employed panel models to track tuberculosis 
treatment trajectories, revealing resilient microbial patterns post-
antibiotics. Advanced computational frameworks, including MITRE 
algorithms (Bogart et al., 2019) and LASSO-penalized fixed effects 
models (Chen et al., 2025), further enhance the analysis of high-
dimensional longitudinal data. Recurrent neural networks with taxon 
embeddings have also shown promise in modeling microbial 
succession patterns (Sokolovska et al., 2020). These panel models, 
which are referenced in Table 5 through their integration with causal 
inference frameworks, allow for robust temporal mapping of 
microbiome-host dynamics.

4.4 Policy-ready causal tools: from bench 
to bedside

Translating microbiome causal evidence into clinical or policy 
applications requires explainable, validated frameworks. Meta-
learners such as T-learners, X-learners, and causal forests have guided 

treatment personalization and preventive interventions. For example, 
T-learners optimized rheumatoid arthritis therapy based on microbial 
biomarkers (Gupta et al., 2021), while causal forests improved dietary 
guidance for diabetes prevention (Gou et al., 2020). X-learners are 
now applied to target uric acid–microbiome pathways for gout 
prevention (Miyajima et al., 2024).

Mechanistic frameworks increasingly incorporate explainable AI, 
such as SHAP values, to prioritize microbial features for interventions 
like hepatocellular carcinoma screening (Hu B. et al., 2024), and DAGs 
to clarify strain-specific probiotic pathways (Qiu et al., 2024). Robust 
validation techniques, including adversarial testing, ensure that 
inferred causal relationships are resilient to confounders like 
antibiotics (Wipperman et al., 2021). The full suite of policy-ready 
causal tools, methodological breakthroughs, and representative 
applications is presented in Table 5.

5 Hybrid methods for policy-ready 
causal inference

Here we turn to applications, showing how causal ML combined 
with econometric tools is being deployed to study disease 
susceptibility, treatment response, and biomarker development. The 
focus is on emerging evidence that demonstrates both scientific 
robustness and clinical relevance.

5.1 Double Machine Learning for health 
policy

Double Machine Learning (Double ML) has emerged as a 
transformative approach in microbiome research, bridging the gap 
between high-dimensional biological data and actionable policy 
insights. Wu et  al. (2022) demonstrated its policy relevance by 
quantifying how berberine lowers cholesterol through specific gut 
microbiota interactions, providing visualizations of metabolic 
pathways directly used in cost-effectiveness models for public health 
adoption. This work exemplifies how Double ML translates 
mechanistic insights into practical interventions.

TABLE 5  Key innovations and methodological advancements in causal inference for microbiome studies.

Method Breakthrough Application References

SHAP Quantifies taxon-level contributions Diabetes/HCC risk prediction Hu B. et al. (2024) and Wu et al. (2022)

Biological DAGs Incorporates host–microbe interactions Neurodegenerative/IBD diseases
Katsidzira and Misselwitz (2025) and Qiu 

et al. (2024)

Adversarial Validation Tests robustness to unobserved confounders Infectious disease/toxicology Wipperman et al. (2021)

Double ML
Debiases treatment effects in high-

dimensional data
Personalized medicine/nutrition trials Ben-Yacov et al. (2023) and Wu et al. (2022)

DeepIV Neural networks for nonlinear IV estimation
Microbiome causal inference, GPCR-microbiome 

networks, viral-bacterial interactions

Bucci et al. (2023), Koh et al. (2025), and 

Qiu et al. (2024)

Meta-Learners Estimates heterogeneous treatment effects Precision medicine in rheumatology Gupta et al. (2021)

Causal Discovery Infers DAGs from multi-omics data Alzheimer’s disease, Crohn’s disease, gastric cancer
Chang et al. (2024), Qiu et al. (2024), and 

Zhang et al. (2025)

Validation Tests DAG robustness in NAFLD Liver disease modeling Schwenger et al. (2024)
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The method’s ability to handle confounding variables has made 
it indispensable for dietary policy. Ben-Yacov et  al. (2023) 
employed orthogonalized mediation analysis to isolate 
microbiome-specific effects on cardiometabolic health from 
dietary influences, resolving long-standing controversies in 
nutritional epidemiology. Their findings directly informed updates 
to United  States Department of Agriculture (USDA) dietary 
guidelines. Beyond nutrition, Chen et al. (2025) developed cross-
fitting algorithms to evaluate multi-strain probiotics, providing 
Medicaid with evidence to prioritize coverage for formulations 
with proven causal benefits. Similarly, Zeng et  al. (2019) used 
phylogenetic LASSO within a Double ML framework to identify 
evolutionarily conserved microbial taxa linked to obesity.

A key strength of Double ML lies in its versatility across omics 
data. Jung et al. (2024) stratified autism subtypes using microbial 
clusters, advocating for personalized therapies. These applications 
are now being scaled through platforms like MiCML, which 
embeds Double ML into user-friendly tools for policymakers (Koh 
et al., 2025). For a summary of hybrid ML applications, including 
Double ML, see Table  4 (Hybrid ML Methods for 
Microbiome Research).

5.2 Deep IV for policy hypotheses

Deep Instrumental Variables (Deep IV) represents a paradigm 
shift in microbiome policy research, addressing scenarios where 
traditional causal methods fail due to non-linear relationships. Koh 
et al. (2025) pioneered this integration in their MiCML platform, 
simulating the policy impacts of probiotic subsidies by modeling 
dose–response relationships. This allows policymakers to conduct 
virtual trials before implementation.

The policy implications of Deep IV extend to neurodegenerative 
disease prevention. Qiu et al. (2024) mapped non-linear interactions 
between gut microbes and GPCR signaling in Alzheimer’s, identifying 
critical thresholds for disease risk. Similarly, Sokolovska et al. (2020) 
used deep Boltzmann machines to extract causal features from 
microbial time-series data.

Real-world policy optimization has benefited significantly from 
Deep IV’s ability to model heterogeneity. Portlock et al. (2025) derived 
dose–response curves linking malnutrition to cognitive deficits, 
informing revisions to the WIC program’s, Special Supplemental 
Nutrition Program for Women, Infants, and Children (a U.S. federal 
assistance program run by the USDA), nutritional standards. 
Meanwhile, Miyajima et al. (2024) applied causal forests to validate 
intervention effectiveness across diverse demographic groups. Deep 
IV therefore provides a flexible framework for translating mechanistic 
microbiome insights into actionable public health strategies.

5.3 Integration with econometric causal 
methods

These hybrid approaches complement traditional econometric 
causal inference techniques (see Table  4), including instrumental 
variables, difference-in-differences, and panel models. By combining 
machine learning with econometric rigor, researchers can robustly 
estimate heterogeneous treatment effects while controlling for high-
dimensional confounders. For example, LASSO-IV and phylogenetic 

DAGs can be embedded within Double ML or Deep IV pipelines, 
enhancing causal precision for interventions ranging from probiotic 
supplementation to dietary recommendations.

5.4 Other causal machine learning 
approaches for policy translation

Beyond Double ML and Deep IV, a growing suite of causal 
machine learning (CML) frameworks provides complementary 
strategies for tackling high-dimensional microbiome data while 
producing actionable insights for policy and clinical translation. 
Causal forests Athey and Wager (2019) extend random forests to 
estimate heterogeneous treatment effects, allowing policymakers to 
identify subpopulations most likely to benefit from dietary 
interventions or probiotic therapies. X-learner and T-learner meta-
algorithms have been successfully adapted to microbiome studies, 
providing stratified risk estimates for conditions such as gout and 
rheumatoid arthritis (Gupta et al., 2021; Miyajima et al., 2024).

Targeted maximum likelihood estimation (TMLE) offers a doubly 
robust approach for multi-omics longitudinal studies, integrating 
ensemble learners for nuisance parameters while producing unbiased 
treatment effect estimates. Causal variational autoencoders (CVAEs) 
capture latent confounders and nonlinear interactions, enabling 
scenario-based simulations for personalized interventions and 
preventive strategies. These approaches can be  further enriched 
through multi-modal data integration, combining longitudinal 
microbiome profiles with metabolomics, transcriptomics, and clinical 
records to generate robust, interpretable treatment effect estimates. 
Platforms such as MiCML can embed these advanced CML models 
alongside Double ML and Deep IV, creating a versatile toolkit for 
translating microbiome discoveries into policy-relevant interventions. 
Collectively, these methods expand the causal inference toolkit 
beyond traditional econometrics, enabling precise, evidence-based 
decision-making in public health and clinical nutrition.

6 Policy implementation roadmap

In this section, we  explore the policy and translational 
implications of causal ML in the microbiome domain. We illustrate 
how these methods intersect with regulatory standards, cost-
effectiveness benchmarks, and data-sharing principles, signaling 
their growing role in shaping health system decision-making.

6.1 Data privacy and cross-border 
collaboration

Effective microbiome policy implementation requires balancing 
access to diverse datasets with stringent privacy regulations. Federated 
learning has emerged as a key solution, enabling decentralized analysis 
without raw data sharing, thus preserving patient confidentiality while 
facilitating large-scale studies. Hu B. et  al. (2024) demonstrated this 
approach in multi-cohort HBV-related HCC research, where federated 
learning-maintained data privacy across institutions while improving 
predictive accuracy. Koh’s et al. (2025) MiCML platform further advanced 
this framework by embedding General Data Protection Regulation 
(GDPR) and Health Insurance Portability and Accountability Act 

https://doi.org/10.3389/fmicb.2025.1691503
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Khelfaoui et al.� 10.3389/fmicb.2025.1691503

Frontiers in Microbiology 13 frontiersin.org

(HIPAA) compliance into privacy-preserving causal machine learning 
workflows. Emerging techniques such as secure multi-party computation 
(SMPC) and differential privacy are being integrated to enhance data 
protection. These approaches allow aggregated insights without exposing 
individual-level data, valuable for international consortia studying 
microbiome-disease associations. Challenges remain in standardizing 
data formats across legal jurisdictions, particularly when combining 
microbiome data with electronic health records (EHRs).

6.2 Clinical translation and regulatory 
hurdles

Translating causal microbiome findings into clinical guidelines 
demands rigorous validation. Wu et al. (2022) automated confounder 
adjustment in berberine intervention studies using Double Machine 
Learning (Double ML), demonstrating how advanced causal inference 
methods enhance clinical trial reproducibility. For infectious disease 
applications, Bucci et al. (2023) mapped viral-bacterial interaction 
networks to improve COVID-19 triage protocols. Koh et al. (2025) 
optimized regulatory submissions by incorporating Elastic Net 
regularization into predictive models, reducing overfitting while 
maintaining interpretability. Challenges persist in immunotoxicity 
risk assessment, where microbiome-mediated drug interactions 
require novel validation frameworks.

6.3 Standardization and scalability

Reproducibility in microbiome research is threatened by batch 
effects and technical variability. Wipperman et al. (2021) developed 
TB-specific correction methods for antibiotic-induced microbiome 
perturbations. Chen et al. (2025) introduced LASSO-penalized fixed 
effects models to handle high-dimensional confounding. Standardized 
pipelines are critical for cross-study validation. Sze et  al. (2019) 
established protocols for short-chain fatty acids (SCFA) analysis, while 
Rupf et al. (2018) and Oriano et al. (2019) minimized batch effects in 
oral/respiratory microbiome studies.

6.4 Economic and methodological 
tradeoffs

Implementing microbiome-based policies requires balancing 
rigor with cost constraints. Ben-Yacov et al. (2023) improved cost-
efficiency by applying residual balancing for dietary confounders in 
cardiometabolic studies. Methodological choices significantly impact 
costs. Batch correction (Rupf et  al., 2018) and DNA extraction 
protocols (Oriano et al., 2019) may necessitate expensive replications. 
Chen et  al. (2025) validated LASSO’s efficiency gains in high-
dimensional mediation analysis.

6.5 Implementation framework

The implementation framework (Table  6) synthesizes the major 
challenges facing causal machine learning in microbiome research and 
maps them to corresponding methodological solutions, policy impacts, 

and regulatory implications. It is structured across four thematic domains, 
(1) Data Privacy and Cross-Border Collaboration, (2) Clinical Translation 
and Regulatory Hurdles, (3) Standardization and Scalability, and (4) 
Economic and Methodological Tradeoffs, each highlighting specific 
barriers such as privacy-preserving data sharing, regulatory approval of 
biomarkers, protocol heterogeneity, and cost-effectiveness constraints. For 
every challenge, the framework outlines advanced causal ML tools (e.g., 
federated learning, Double ML, DAG-based discovery, G-computation) 
along with key references, ensuring reproducibility and transparency. 
Policy and standardization impacts are explicitly captured, ranging from 
83% fewer privacy breaches under GDPR/HIPAA compliance to multi-
country trial harmonization, U.S. Food and Drug Administration FDA 
fast-track approvals, and World Health Organization (WHO)-aligned 
cost-effectiveness benchmarks. This table provides a practical roadmap 
for bridging methodological innovation with clinical and regulatory 
adoption, guiding both researchers and policymakers toward scalable, 
ethically grounded, and economically sustainable implementations of 
causal ML in microbiome science.

6.6 Monitoring, feedback, and adaptive 
policy learning

Once microbiome-informed policies are implemented, adaptive 
monitoring frameworks are crucial to ensure sustained effectiveness and 
equitable outcomes. Reinforcement learning (RL) pipelines, integrated 
with real-world clinical data, enable dynamic recalibration of 
interventions, as demonstrated in personalized nutrition and bioreactor 
control studies for optimizing microbial communities (Liu, 2025). For 
example, continuous monitoring of pediatric cohorts using adaptive 
learning can detect shifts in microbiome-drug interactions, adjusting 
interventions to improve efficacy (Zheng et al., 2023). Feedback loops also 
allow for equity auditing, where multi-omic AI models and causal 
mediation analysis (e.g., SparseMCMM_HD) identify populations 
underrepresented in trials and quantify disparities (Wang et al., 2023). By 
embedding these adaptive learning strategies, policymakers can iteratively 
refine clinical guidelines, optimize cost-effectiveness, and mitigate 
emergent safety risks, ensuring interventions remain evidence-driven and 
socially responsible (Koh et al., 2025).

7 Visual abstract and flowchart

To guide future researchers in interpreting our findings and 
making methodological decisions, we propose two complementary 
visual tools. For brevity, we did not report every method or technique; 
however, we  included the most commonly used and impactful 
approaches to maximize practical relevance.

7.1 Three-panel visual abstract: the story of 
microbiome science

The three-panel visual abstract illustrates the trajectory from 
discovery to real-world impact in microbiome research. In Panel 1, 
machine learning identifies key microbiome-disease associations, 
effectively acting as a treasure map that highlights bacterial “suspects.” 
Interpretable models such as SHAP plots reveal microbial drivers of 
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TABLE 6  Implementation framework.

Challenge Solution (tools) Key references Policy/standardization impact

1. Data privacy and cross-border collaboration

Small samples in multi-center 

studies

Federated causal ML (MiCML, Differentially 

Private Federated Learning DP-FL)

Hu B. et al. (2024) and Kurz et al. 

(2025)

Enables more than 12 institution collaborations: 

83% fewer privacy breaches (HIPAA/GDPR)

Population diversity in 

metabolomics

Privacy-preserving causal inference (GDPR-

IV, Meta-learners)

Andrikopoulos et al. (2023) and 

Yaskolka Meir et al. (2023)

Standardizes consent across more than 45 

countries for Europe Union EU/US trials

Batch effects in international 

cohorts

Causal batch correction (Combating Batch 

Effects (ComBat)-GLMM, Fixed-effects ML)

Portlock et al. (2025) and Wipperman 

et al. (2021)

Reduces technical variability by 67% in TB/HIV 

studies

Cross-border biomarker 

validation

Federated IV regression (WHO-aligning, 

Secure Multi-Party Computation (SMPC))

Bucci et al. (2023) and Zhang et al. 

(2025)

Accelerates pandemic response by 40% 

(COVID-19/Long COVID)

Pediatric data privacy

Age-aware causal ML (Dynamic e-consent, 

Differentially Private Stochastic Gradient 

Descent (DP-SGD))

Gao et al. (2025) and Portlock et al. 

(2025)

55% higher pediatric participation via dynamic 

consent

Neurodegenerative data silos
Global causal discovery (DAGs, Federated 

G-computation)

Baranzini (2025) and Yang et al. 

(2025)

Unlocks $220M/year in multiple sclerosis (MS)/

Alzheimer’s research

2. Clinical translation and regulatory hurdles

Regulatory approval of ML 

biomarkers
Federated causal ML (MiCML, Elastic Net) Gou et al. (2020) and Koh et al. (2025)

40% faster FDA/the European Medicines 

Agency (EMA) reviews with 95% reproducibility

Microbiome-dependent drug 

mechanisms

Causal patent stratification (Double ML, 

DAGs)

Ben-Yacov et al. (2023) and Wu et al. 

(2022)

Resolves 68% intellectual property (IP) disputes 

(the United States Patent and Trademark Office 

(USPTO) 2024)

Ethnic bias in biomarker 

validation

Multi-ethnic causal ML (Polygenic Risk Score 

(PRS), Residual Balancing)

Dang et al. (2021) and Neri-Rosario 

et al. (2023)

Diverse cohort representation raises from 12 to 

41% (U.S. National Institutes of Health (NIH) 

compliant)

IBD therapy development
ML-mediated causal analysis (G-computation, 

Meta-learners)
Bi et al. (2024) and Jiang et al. (2025)

Saves $8.2M in Phase III trials via precision 

stratification

Emergency biomarker 

qualification

Rapid causal Emergency Use Authorization 

(EUA) tools (IV Regression, SMPC)
Qiu et al. (2024) and Qu et al. (2024)

COVID-19 biomarker approval in 14 days (vs. 

90-day standard)

Neurodegenerative drug 

targets

GPCR-microbiome causal discovery (DAGs, 

Federated G-comp)

Bucci et al. (2023) and Qiu et al. 

(2024)
3 novel MS targets in FDA Fast-Track

Precision nutrition compliance
21 CFR Part 11 causal analytics (DP-SGD, 

LASSO)

Ben-Yacov et al. (2023) and Koh et al. 

(2025)
72% fewer audit findings in dietary trials

3. Standardization and scalability

Heterogeneous sample 

collection

Universal causal protocols (DAGs, ComBat-

GLMM)

Oriano et al. (2019), Rupf et al. 

(2018), and Sze et al. (2019)
92% protocol adherence in multi-center studies

Analytical variability
FDA-validated causal pipelines (LASSO, 

Fixed-effects ML)

Chen et al. (2025), Huws et al. (2021), 

and Wipperman et al. (2021)
Reduces inter-lab variability by 40–60%

Causal inference methods
Standardized MR/ML (Double ML, IV 

Regression)

Andrikopoulos et al. (2023), Li et al. 

(2023), and Sheng et al. (2024)
Reproducibility κ = 0.81 across studies

Clinical implementation
Specialty causal guidelines (G-computation, 

PRS)

Baranzini (2025), Bucci et al. (2023), 

and Jiang et al. (2025)

Implemented in 3 of 5 cancer centers in 

accordance with National Comprehensive 

Cancer Network (NCCN) and American Society 

of Clinical Oncology (ASCO) guidelines

Tool fragmentation
Open-source causal platforms (MITRE, 

Pathway Networks)

Bi et al. (2024), Schwenger et al. 

(2024), and Yang et al. (2025)
70% cost reduction vs. proprietary tools

4. Economic and methodological tradeoffs

High diagnostic costs
Microbiome-first causal screening (Double 

ML and Mediation Analysis)
Wang et al. (2023)

45% cost reduction vs. traditional diagnostics. 

Informs NCCN cost-effectiveness guidelines; 

validates microbiome biomarkers for clinical use 

under In Vitro Diagnostic Regulation (IVDR)

(Continued)
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disease, exemplified by taxa linked to diabetes (Gou et al., 2020). Panel 2 
emphasizes causal validation, as correlation alone does not imply 
causation. Econometric tools, including Instrumental Variables and 
Double ML, serve as rigorous tests to confirm whether specific microbes 
truly drive disease outcomes. For instance, IV analyses have validated the 
causal effect of TMAO on kidney function (Andrikopoulos et al., 2023). 
In Panel 3, these verified causal insights are translated into actionable 
interventions. A prime example is microbiome-informed COVID-19 
triage models, where risk stratification informs clinical decision-making 
in real-world settings (Bucci et al., 2023). Together, these panels transform 
complex and noisy datasets into policy-relevant science, bridging the gap 
between discovery and implementation. This process is summarized in 
Figure 4.

7.2 Method selection flowchart

We developed a decision tree (“Which Method Should I Use?”; 
Figure 5) to guide selection of causal ML tools based on study design, 
data availability, and policy goals. This “Choose Your Adventure” 
flowchart, spanning discovery-focused ML, econometric strategies 
(IV, DiD), and hybrid tools like Double ML, addresses a critical gap in 
microbiome research: even robust causal findings often stall at the 
policy doorstep because researchers and policymakers lack shared 
frameworks for actionability (Li et al., 2022; Mirzayi et al., 2021). Our 
analysis reveals how method-policy pairings create distinct pathways 
for translation. When genetic instruments anchor causal claims (Deep 
IV), policies gain biological plausibility for precision interventions 
(e.g., SNP-stratified probiotic subsidies). Where longitudinal data 
enables panel models, health systems can monitor microbiome 
trajectories just as they track vital signs. Most pivotally, Double ML’s 
confounder-adjusted estimates empower resource allocation where 

observational data previously sufficed only for correlation, 
transforming associations into accountable policies (Chen et al., 2025; 
Koh et  al., 2025; Liu, 2025; Malakar et  al., 2024; Sokolovska 
et al., 2020).

The field must now operationalize these linkages. Three priorities 
emerge: (1) Embedding method selection trees in funding calls to 
ensure fit-for-purpose causal designs; (2) Co-developing “policy 
model cards” that mirror ML model cards, explicitly linking 
methodological choices to their policy ceilings; and (3) Establishing 
microbiome-specific benchmarks for causal evidence strength across 
regulatory contexts. By making these connections systematic rather 
than serendipitous, we  move beyond asking “What does the 
microbiome do?” to answering “How should society respond?”

8 Conclusions and policy roadmap

Machine learning has begun to uncover actionable microbiome, 
disease relationships, from explainable AI identifying microbial 
drivers of dietary policy in type 2 diabetes (T2D) (Gou et al., 2020), 
to unsupervised learning revealing myeloma risk signatures for 
early detection (Feinman et al., 2023). Yet these advances remain 
limited without causal validation. This review uniquely integrates 
causal ML with econometric frameworks to demonstrate how 
approaches such as Double ML (Wu et al., 2022), DAGs (Qiu et al., 
2024), and DiD designs (Sakurai et al., 2020) enable the transition 
from predictive association to policy-ready evidence. By embedding 
standardized reporting, structured tools for clinical communication 
(Hu B. et al., 2024), and privacy-preserving scalable platforms (Koh 
et al., 2025), we highlight how causal ML can extend reproducibility, 
equity, and cross-border collaboration beyond the scope of 
existing reviews.

TABLE 6  (Continued)

Challenge Solution (tools) Key references Policy/standardization impact

Therapy optimization
Causal Forest and G-computation for 

heterogeneous effects
Koh et al. (2025)

30% variance in disease susceptibility explained. 

FDA Fast-Track designation for microbiome-

guided therapies; standardized protocols for 

RCTs (reproducibility, consistency, and 

regulatory compliance protocols)

Health equity gaps

Ethnicity-stratified causal mediation Sparse 

Microbiome Causal Mediation Model—High-

Dimensional (SparseMCMM_HD)

Wang et al. (2023)

$3.6B/year potential CVD savings in high-risk 

groups. Directly supports WHO 2025 health 

disparity targets; enables public health 

surveillance

Tool fragmentation
Open-source causal platforms (MiCML and 

Standardized Pipelines)
Marcos-Zambrano et al. (2021)

40% lower healthcare system costs; 22% 

improved diagnostic accuracy. Adopted as 

ASCO 2024 benchmarking standards; 

implements FAIR (Findable, Accessible, 

Interoperable, and Reusable) data principles

Longitudinal ROI
Dynamic causal cost–benefit models (DAGs, 

Meta-learners)
Mainali et al. (2019)

3 times cheaper lead screening; meets Institute 

for Clinical and Economic Review (ICER)’s 

$50K/quality-adjusted life year (QALY) 

threshold. Incorporated into WHO 2025 cost-

effectiveness benchmarks; endorsed by The UK’s 

National Institute for Health and Care 

Excellence (NICE)
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FIGURE 4

The story of causal ML microbiome science.

Looking forward, advancing microbiome-based health solutions 
requires three priorities: (1) biological validation of causal models 
through mechanistic pathways such as GPCR–microbiome networks, 
(2) clinical adoption of harmonized pipelines and reporting tools for 
reproducible risk prediction, and (3) policy design informed by natural 
experiments and synthetic controls to evaluate intervention efficacy 

under real-world constraints. The future of microbiome research will 
be  defined not by data volume alone, but by causal rigor and 
translational design. By uniting ML’s predictive power with econometric 
validation, we propose a roadmap for delivering microbiome-driven 
interventions that are biologically grounded, clinically reproducible, and 
accountable within health policy frameworks. Taken together, these 
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insights not only advance microbiome science but also provide a 
practical foundation for shaping evidence-based health policies.
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