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Polyhydroxyalkanoates (PHAs) are promising green substitutes for traditional
plastics, offering good biodegradability and biocompatibility. PHA production
using volatile fatty acids (VFAs) obtained from food waste fermentation not
only provides a new way to utilize food waste resources but also reduces the
PHA production cost. However, a review of mechanisms, technical processes,
key influencing factors, and techno-economic analysis of food waste-VFAs-
PHA production is lacking. Thus, this review elucidates the microorganisms that
synthesize PHA and their associated metabolic pathways. A technical process of
food waste-VFAs-PHA generation was proposed. Research status in this field was
summarized. Meanwhile, the influencing factors of PHA synthesis based on VFAs
were discussed. Additionally, techno-economic and environmental analyses of
the food waste-VFAs-PHA process were covered. Finally, the challenges and
prospects of future work were proposed. This review provides new ideas and
theoretical guidance for achieving industrial production of low-cost PHA and
the value-added transformation of food waste.

KEYWORDS

bioplastics, polyhydroxyalkanoates, food waste, waste valorization, mixed microbial
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1 Introduction

With the increase in white pollution and depletion of petroleum resources, it is
imperative to produce excellent and sustainable plastic to replace petrochemical plastics
(Chouhan and Tiwari, 2025). Polyhydroxyalkanoates (PHA) are intracellular polyesters
synthesized by microorganisms (Xiong et al., 2023; Zhang X. et al., 2025). With their
renewable, biodegradable, and biocompatible properties, PHAs are good alternatives
to traditional plastics, offering versatile applications in the fields of biomedicine, food
packaging, agriculture, aquaculture, and tissue engineering (Liu J. et al., 2024; Zhou et al,,
2023). Currently, sugars (glucose, sucrose), alcohols (methanol, ethanol), organic acids
(acetate, propionate, butyrate, valerate), among others, are utilized as raw materials for
PHA synthesis (Lim et al., 2023; Du et al., 2025). However, due to the high cost of substrates
for PHA synthesis (Goswami et al., 2023), there is an urgent need to find cheaper substrates.

Biomass waste is one of the most abundant renewable resources. Volatile fatty acids
(VFAs) derived from fermented biomass waste as carbon sources for PHA synthesis not
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only reduce the cost but also promote waste valorization, offering
both environmental and economic benefits (Zhang et al., 2024).
Various inexpensive carbon sources have been used for PHA
synthesis, including straw biomass, food waste, and sewage sludge
(Bhavana et al., 2025; Sekoai et al., 2022). Among these biomass
wastes, food waste is more suitable as a substrate for PHA precursor
synthesis owing to its richer organic matter content (Zhang X.
et al, 2025). Raunhan et al. (2023) used acetate and propionate
derived from the fermentation of food waste for PHA production
by Thauera mechernichensis, and PHA content was 24.0%. Zhang
G. et al. (2025) utilized food waste digestate as feedstock for
photosynthetic bacteria, and the PHA content reached 40.8%. Thus,
VFAs obtained from food waste to generate PHA are a promising
resource utilization pathway.

Currently, the PHA generation from food waste as a
substrate has been reviewed, focusing on the treatment, disposal,
composition, hydrolysis, and pretreatment of food waste, as well
as PHA synthesis (Chavan et al., 2023; Liu et al., 2025). However,
the mechanisms, key influencing factors, technological processes,
and techno-economic analysis in VFAs obtained from food waste
for generating PHA are often neglected. In this review, we outlined
the composition, classification, microorganisms, and synthetic
pathways of PHA from food waste-based VFAs. A complete
technological process for food waste-VFAs-PHA generation was
presented. Meanwhile, the key factors in the PHA synthesis from
food waste-based VFAs and recent advances in this field were
examined. Furthermore, we evaluated the techno-economic and
environmental analyses of food waste-VFAs-PHA generation.
Finally, the current challenges and prospects were presented.

2 Composition and classification of
polyhydroxyalkanoates

PHAs are a class of macromolecules stored in bacteria and
archaea that provide additional carbon sources for microbial
growth at nutrient-limited conditions, accumulating in the cell
cytoplasm in the form of granules (Ishak et al,, 2021). PHA can
be divided into short-chain length PHA (SCL-PHA) and medium-
chain length PHA (MCL-PHA) based on the number of carbon
atoms contained in the monomer. Length of monomer carbon
chain of SCL-PHA is generally 1-5, and length of monomer
carbon chain of MCL-PHA is between 6 and 14. Long-chain
PHA is not common owing to the complexity of synthesis, and
poly-3-hydroxybutyric acid (PHB) and poly-3-hydroxyvaleric acid
(PHV) are common SCL-PHA (Yim et al., 2023). In general,
natural microorganisms can only accumulate either SCL-PHA
or MCL-PHA. PHA can also be classified into homopolymers,
random copolymers, block copolymers, and so on, according to
the arrangement of monomers. Material properties of PHA are
determined by monomer composition, molecular weight, and its
distribution. The properties of different PHA types vary greatly,
and bioplastic products made from them exhibit corresponding
variations in their properties (Ilhami et al., 2025; Sabapathy et al.,
2020).
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3 Polyhydroxyalkanoate-producing
microorganisms

Currently, both pure and mixed microbial cultures are
used for PHA synthesis. Fast-growing, adaptable, high-yielding,
and efficient PHA synthesis strains or communities are a
key area of research, representing an important direction. To
date, nearly 100 genera of microorganisms have been isolated
from different natural ecosystems for PHA generation (Fu
et al., 2023). These strains, screened from natural ecosystems,
have demonstrated a good ability to produce PHA (Table 1),
including Halomonas, Cupriavidus, Pseudomonas, Methylotrophs,
and Azoobacter, among others. With the development of
molecular biology, some genetically engineered bacteria capable
of producing PHA efficiently have been constructed. For example,
the recombinant Escherichia coli constructed by Jung et al. (2019)
produced PHA accounting for up to 66% of the dry cell weight,
which was 25-28 times higher than that of the wild strain. The
disadvantage of pure microbial cultures is the high cost. Thus,
strategies such as increasing strain yields, utilizing inexpensive
materials, and developing open fermentation techniques have been
employed to reduce the production cost of PHA (Chavan et al.,
2023; Fu et al., 2023).

PHA synthesis using mixed strains can reduce the risk
of contamination by stray bacteria and expand the range of
carbon source selection, which is an important strategy for
synthesizing PHA with high efficiency and low cost (Pesante
and Frison, 2023). Currently, the most common pattern of
mixed strains is the combination of PHA-producing bacteria. A
mixed microbial community based on symbiotic or mutualistic
relationships can overcome the low PHA accumulation caused
by the intermediate accumulation (Thamarai et al, 2024).
Meanwhile, the mixed microbial community domesticated from
activated sludge does not require the extermination of stray
bacteria, offering advantages such as adaptability, simplicity, and
applicability to various inexpensive carbon sources (Fu et al,
2023).

The synthesis of PHA from organic waste in a mixed microbial
community is generally divided into three stages (Du et al,
2025). The first stage involves the anaerobic fermentation of
organic waste to produce VFAs. The second stage involves the
domestication of mixed communities from activated sludge, which
have the ability to efficiently produce PHA. This is the key
stage that determines the efficiency of PHA production. The
third stage involves PHA production by the domesticated mixed
microbial communities using VFAs-rich digestate under optimal
conditions (pH, temperature, dosing batch time, and synthesis
time). Wu et al. (2023) reported that PHA content reached
47.9% in a pilot plant after 180 days of operation in a three-
stage process, indicating the potential for large-scale production
of PHA by a mixed microbial community. However, the failure
of mixed microbial culture to achieve industrial production is
primarily attributed to their low PHA vyield and the difficulty in
maintaining the stability of long-time fermentation (Matos et al.,
2021).
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TABLE 1 PHA producing microorganisms obtained by natural screening.

10.3389/fmicb.2025.1693596

Genus level Species Source PHA content (wt%) References
Pseudomonas Pseudomonas sp. strain P16 Soil 84.0 Aljuraifani et al., 2019
Pseudomonas mendocina PSU Sediment 79.7 Chanasit et al., 2016
Cupriavidus Cupriavidus sp. USMAA2-4. Soil 68.0 Kek et al., 2010
Cupriavidus necator Soil 76.8 Morlino et al., 2023
Halobacterium Halomonas venusta KT832796 Marine 88.1 Stanley et al., 2018
Halomonas bluephagenesis Marine 86.0 Ling et al., 2018
Halomonas alkaliantarctica Saline sediment 20.1 Mozejko-Ciesielska et al., 2023
Halomonas halophila Saline soil 74.7 Kourilova et al., 2021
Bacillus Bacillus thuringiensis A102 Red ant intestines 87.4 Gowda and Shivakumar, 2014
Bacillus megaterium Mangrove forest 62.0 Mohapatra et al., 2020
Methylobacterium Methylobacterium sp. 1805 Oil field 86.6 Wang et al., 2020
Paracoccus Paracoccus sp. LL1 Sediment 724 Sawant et al,, 2015
Enterobacter Enterobacter sp. TS1L Textile wastewater 81.2 Rakkan and Sangkharak, 2020
Streptomyces Streptomyces toxytricini D2 Soil 86.7 Narayanan et al., 2021

4 Biosynthesis of
polyhydroxyalkanoate

4.1 Metabolic pathways

There are three main pathways for PHA biosynthesis, namely
synthesis of PHA using acetyl-coenzyme A (CoA) as a precursor
(pathway I), the B-oxidation pathway of fatty acids (pathway II),
and the de novo synthesis of fatty acids (pathway III) (Figure 1).
In pathway I, two acetyl-CoA molecules are first condensed by p-
ketothiolase to form acetoacetyl-CoA, which is then converted to
(R)-3-hydroxybutyryl-CoA by acetoacetyl-CoA reductase. Finally,
(R)-3-hydroxybutyryl CoA is catalyzed by PHA synthase (PhaC)
for PHB generation. Pathway I is the most common one for PHA
biosynthesis, and C. necator is the model strain that synthesizes
PHA in this manner (Nygaard et al., 2025). In pathway II, fatty
acids are first activated to esteroyl CoA, which then enters the p-
oxidation pathway and is converted from (S)-3-hydroxy esteroyl
CoA to (R)-3-hydroxy esteroyl CoA by enoyl CoA hydratase,
and then finally synthesized into PHA catalyzed by PhaC. The
majority of Pseudomonas spp. can obtain energy to sustain cell
growth via the B-oxidation pathway of fatty acids (Kim et al,
2007). In pathway III, intermediates of the fatty acid de novo
synthesis pathway are involved in the synthesis of PHA. 3-
Hydroxyesteroyl ACP-CoA transferase (PhaG) acts as a key enzyme
to convert (R)-3-hydroxyesteroyl ACP to (R)-3-hydroxyesteroyl
CoA, which can eventually be catalyzed by PhaC to synthesize
PHA. Among these three pathways, pathway I is more compatible
with simple carbon sources, whereas pathways II and III allow
for the utilization of complex substrates, such as fatty acids (Choi
et al, 2020). In addition to the three major pathways, other
PHA synthesis pathways exist in microorganisms, as well as new
pathways constructed through genetic engineering. For example,
3-hydroxyvaleryl-CoA was genetically engineered for poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (P3HB-co-3HV) synthesis
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from oxaloacetate (Meng et al., 2014), and 4-hydroxybutyryl CoA
was provided for the synthesis of poly(3-hydroxybutyrate-co-4-
hydroxybutyrate) (P3HB-co-4HB) from succinyl-CoA (Li et al,
2010).

4.2 Process of synthesizing PHA from food
waste

Food waste contains a variety of organic compounds, including
carbohydrates, proteins, lipids, and cellulose, which can be used
as cheap substrates for VFA production, thereby generating PHA
(Valentino et al., 2021). Generally, this process can be divided
into three steps (Figure 2). (1) Hydrolysis and acidification of food
waste to generate VFAs-rich digestate; (2) cultivation of efficient
pure strains or enrichment of efficient mixed microbial culture for
PHA synthesis; and (3) microorganisms synthesizing PHA using
VFAs-rich digestate.

4.2.1 Production of PHA precursors

VFAs are intermediate products in anaerobic fermentation of
food waste (Chacon et al,, 2024). Typically, the organic matter
in food waste exists in the form of solid particles, which is not
conducive to its decomposition and utilization (Moza et al., 2022).
The hydrolysis efficiency of food waste becomes the limiting step
(Bourgeois et al., 2025). Thus, suitable pretreatment methods can
make the solid organic matter easy to decompose. The pretreatment
methods include physical, chemical, biological, and combined
pretreatments (Chavan et al., 2024; Kumar Biswal et al., 2020).
These pretreatments can decrease the particle size of food waste and
increase the reaction contact area, thus accelerating the hydrolysis
process (Gallego-Garcia et al,, 2023). Meanwhile, pretreatments can
provide more suitable environments for microorganisms, enhance
the biochemical reaction rate, and promote the hydrolysis of
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starch, cellulose, and other organic matter (Sagar et al, 2024).
Although physical, chemical, and biological pretreatment methods
can effectively enhance the hydrolysis efficiency of food waste, their
potential for industrial application varies significantly, depending
on the trade-off between cost, efficiency, and environmental
impact. In addition, improving some fermentation factors, such
as pH, temperature, and organic load rate (OLR), is beneficial to
enhancing the hydrolysis of food waste (Zhang et al., 2023a,b).
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The inherent properties of food waste (such as high salinity,
high oils, variability in composition, and nutrient imbalance) also
influence the VFA production. Sodium chloride in food waste
had an inhibitory effect on VFA production, and the inhibition
significantly increased when the salt concentration exceeded 6
g/L (Huang et al., 2022; Li et al, 2023). The sodium chloride
concentration of food waste as a substrate for VFA production
should be less than 6 g/L. Sodium chloride not only affects
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the hydrolysis and acidification of food waste, but also impacts
subsequent PHA production. Screening and domesticating salt-
tolerant PHA-producing strains (e.g., Halomonas) or microbial
communities is a viable approach (Muigano et al., 2025). Large
amounts of oil in food waste also inhibited the acidification
process, which was mainly manifested in a reduction in VFA
concentration and a lag in VFA production (Salama et al., 2019).
Oils were hydrolyzed into long-chain fatty acids, which attached
to microbial surfaces, thereby reducing the rate of substrate
translocation by microorganisms (Li et al., 2023). Noted that
long-chain fatty acids were solubilized into short-chain fatty acids
by microorganisms, which further increased the VFA production
(Watson et al., 2021). Thus, the appropriate oils may improve the
VFA generation efficiency and modulate the VFA fractions in the
anaerobic fermentation of food waste.

In addition to high salt and oils, the composition variability
and nutrient imbalance of food waste also affect VFA production,
further affecting the production of PHA (Sagar et al., 2024).
The composition of food waste fluctuates significantly due to
seasonal variations, geographical differences, and variations in
dietary habits. The uncertainty surrounding carbohydrate, protein,
carbon-to-nitrogen (C/N) ratio, and trace element content in
food waste poses substantial challenges to the stability and
reproducibility of PHA production. For such situations, source
separation and pretreatment of food waste are key strategies
for achieving efficient homogenization (Chavan et al, 2024).
Meanwhile, the mixed waste co-fermentation strategy (such as
carbon-rich agricultural residues, nitrogen-rich livestock manure,
and buffering sewage sludge) not only balances the C/N ratio
but also provides the trace elements and growth factors (Soon
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et al., 2025). This supports a richer and more stable microbial
community structure, thereby enhancing the resilience against
substrate fluctuations of the system.

4.2.2 Microbial domestication/microbial culture
enrichment

Different screening and fermentation media are used to
select efficient strains that can synthesize PHA using VFAs as
carbon sources. Currently, some strains such as Pseudomonas
putida and C. necator, have been used industrially to produce
PHA using VFAs as substrates (Martin-Pascual et al, 2021;
Morlino et al., 2023). Mixed-strain fermentation can reduce the
risk of contamination and expand the range of carbon source
selection, which is an important strategy for synthesizing PHA
efficiently and cost-effectively (Du et al., 2025). Meanwhile, the
symbiotic or mutualistic relationship between strains in building
a mixed-strain fermentation system can relieve the excessive
accumulation of intermediate products, thereby further promoting
PHA accumulation (Soto et al., 2019). However, due to the
complex composition of food waste digestate (including high salt,
ammonia nitrogen, and sulfides), it requires extensive pretreatment
and sterilization in pure microbial culture, presenting significant
engineering challenges that remain far from being addressed in
large-scale applications. For this food waste digestate, a mixed
microbial culture is currently considered to offer greater practical
feasibility and development potential.

The domestication of mixed microbial culture in activated
sludge aims to control the supply of carbon sources, thereby
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repeatedly placing the microorganisms in a state of “feast-
famine,” which enhances the ability to synthesize PHA (Fu et al,
2023). In the “famine” state, microorganisms can convert the
excess carbon source into PHA stored in bacterial cells. In the
“feast” state, microorganisms that have synthesized PHA can
utilize PHA as a carbon source for growth and metabolism,
while the growth and metabolism of microorganisms that cannot
synthesize PHA are inhibited due to a lack of carbon sources,
thus enriching the PHA synthesizing communities in the activated
sludge (Rajesh Banu et al,, 2021). Among them, control of feast-
famine time in microbial domestication has been recognized
as a key factor in successful domestication, with the duration
of famine being less than 25% of the full domestication cycle
Jia et al, 2013; Liao et al, 2018). Based on the above, the
microbial quality of PHA synthesis by aerobic dynamic drainage
is higher than that of other microorganisms, thus increasing the
sedimentation of microorganisms and facilitating the enrichment
of microbial communities for efficient PHA synthesis (Chen Z.
etal., 2015).

4.2.3 PHA synthesis

The addition of VFAs derived from food waste to domesticated
mixed microbial culture or enriched pure culture systems
achieves an efficient PHA synthesis by controlling the appropriate
fermentation conditions. The PHA synthesis reactors are classified
into batch, fed-batch, and continuous (Kumar et al., 2019).
Batch reactors are commonly used in PHA synthesis due to
their simplicity of operation and cost-effectiveness. However, the
microorganisms are “famine” at the end of the fermentation
due to the inability to continuously add carbon sources,
resulting in the synthesized PHA being utilized as carbon
sources (Sekoai et al, 2022). Fed-batch reactors can make
up for the shortcomings of batch reactors by replenishing
the nutrients during fermentation, reducing the accumulation
of by-products, and increasing the PHA yield. However, the
design and fabrication of a fed-batch reactor are complex,
does not readily produce PHA on a large scale (Du et al,
2025).

Continuous reactors are much simpler in design and operation,
and can also completely compensate for the disadvantage of
insufficient nutrients, thereby stabilizing mixed microbial cultures
during the PHA synthesis (Sekoai et al., 2022). Koller and Muhr
(2014) used continuous fermentation to obtain PHA, which
compensated for the unpredictable quality and low yield of the
fed-batch. Bhalerao et al. (2020) produced PHA in a continuous
reactor using yeast wastewater as a carbon source, and achieved
65% PHA accumulation, which was slightly lower than the batch
reactor, but the biomass growth increased 4-fold and the theoretical
yield reached 270 t/year. In addition, Matos et al. (2021) achieved
the worlds highest PHA content and productivity (80.5% and
8.1g PHA/L-day) in a pilot plant using fruit waste as substrate
in a continuous reactor. However, microbial function is prone to
degradation, and substrate utilization is low during continuous
fermentation. Currently, few studies have been conducted on the
continuous fermentation of PHA generation using food waste
digestate, which needs further study.
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4.3 Factors affecting food waste-derived
VFAs-sourced PHA production

PHA generated from food waste digestate is influenced by
factors such as VFA components, pH, C/N ratio, dissolved
oxygen, OLR, and carbon source composition (Figure 3). These
factors can influence microbial community structure, microbial
activity, and microbial metabolic pathways, which further affect
the PHA production. Optimization of these influencing factors
can maximize PHA production, which is essential for industrial-
scale applications.

4.3.1 VFA components

VFA components directly influence the PHA production and
its monomer composition. Modulation of key organic acid ratios
in VFA components is essential for the synthesis of functionally
specific PHA (Fu et al.,, 2023). Generally, even-carbon VFAs (acetate
and butyrate) are synthesized as HB, while HV can be synthesized
in the presence of propionate, which in turn produces HBV
(Chacén et al,, 2024). An increase in the proportion of propionate
promotes HV production using mixed VFAs as a carbon source,
whereas valerate increases HV production by directly generating
3-hydroxy-pentanoyl (Rajesh Banu et al., 2021). Butyrate is more
effective in synthesizing PHA than acetate and propionate because
butyrate does not require NADH for PHA synthesis (Tao et al,
2022). Microorganisms in the synthesis of PHA from mixed VFAs
firstly utilize acetate for their growth, which further increases the
storage capacity of PHA in the microorganisms to obtain a higher
yield of PHA. Even-carbon VFAs are utilized preferentially, and
odd-carbon VFAs are utilized later (Sekoai et al., 2022). This is
mainly due to the increased demand for acetyl-CoA during PHA
synthesis, which further leads to an increase in the consumption
of its precursor, even-carbon VFAs. Thus, the performance and
yield of PHA are directly influenced by the ratio of odd-even
numbered acids in the VFA fractions. However, VFAs synthesized
from organic acids greatly increase the production cost of PHA and
limit its large-scale production.

VFAs obtained from anaerobic fermentation of food waste
offer the possibility of large-scale PHA production. Chandra et al.
(2023) reported that acetate and butyrate from food waste were
the main precursors with the highest utilization efficiency, followed
by propionate and valerate during PHA synthesis. Raunhan et al.
(2023) used VFAs in food waste digestate for PHA generation
by T. mechernichensis, and acetate and propionate were the main
precursors, followed by butyrate. Matos et al. (2021) achieved
the highest PHA productivity and content using VFAs rich in
butyrate obtained from fruit waste by mixed microbial culture
in a pilot plant. Thus, acetate, propionate, and butyrate obtained
from anaerobic fermentation of food waste are more suitable as
precursors for PHA generation. Meanwhile, the mass fraction of
odd-even acids in VFAs is directionally regulated to optimize PHA
properties. Targeted VFA generation by anaerobic fermentation of
food waste becomes a critical step for efficient PHA generation.
However, the complex food waste composition increases the
difficulty of targeted VFA production, and the components of food
waste digestate are complex, with a large number of non-VFA
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TABLE 2 Food waste-oriented VFAs for PHA generation using pure bacterial culture or mixed microbial culture.

Substrate VFA composition Culture Reactor type PHA content PHA yield PHA References
(%) (g/g VFAs) production
rate (g/L/h)
Food waste Acetate, propionate, Cupriavidus necator | Batch 56.0 0.63 0.05 3HB-co-3-HV Vuetal, 2022
butyrate, hexanoate
Food waste Acetate, propionate, C. necator Batch 77.5 0.27 0.04 3HB Khatami et al., 2022
butyrate, isovalerate
Food waste Acetate, propionate, Burkholderia Batch 54.9 0.17 0.02 3HB Khatami et al., 2022
butyrate, isovalerate cepacia
Food waste Acetate, propionate, Rhodopseudomonas Batch 48.6 nd nd 3HB, 3HV Dan et al., 2023
butyrate palustris
Fruit waste Acetate, butyrate C. necator Batch 63.0 0.27 0.06 3HB Martinez et al., 2016
Food waste Lactate, acetate, propionate C. necator Batch 87.0 0.18 0.03 3HB-co-3-HV Hafuka et al., 2011
Food waste Acetate, propionate, Halomonas Batch 70.0 nd 0.34 3HB-co-3-HV Garcia-Torreiro et al., 2016
butyrate boliviensis
Cheese whey Hexanoate, octanoate C. necator Batch 71.0 0.60 0.21 3HB Domingos et al., 2018
Food waste Acetate, propionate, Mixed culture Batch 36.9 nd nd 3HB, 3HV Reddy and Mohan, 2012
butyrate, valerate
Food waste Acetate, butyrate, hexanoate Mixed culture Batch 435 0.08 0.11 3HB, 3HV Perez-Zabaleta et al., 2021
Cheese whey Acetate, propionate, Mixed culture Batch 45-50 nd nd 3HB, 3HV Lagoa-Costa et al., 2022
butyrate
Fruit waste Acetate, butyrate, hexanoate Mixed culture Batch 71.3 nd 0.14 HB, HV, HH Silva et al., 2022
Cheese whey Acetate, butyrate, hexanoate Mixed culture Batch 32.5 0.25 0.07 3HB, 3HV, 3HH Iglesias-Iglesias et al., 2021
Cheese whey VFA mixtures Mixed culture Batch 43 0.55 0.11 HB, HV Oliveira et al., 2018
Food waste VFA mixtures Mixed culture Batch 479 0.13* 0.83 3HB, 3HV Wu et al., 2022

nd, not detected; “The unit of this value is g/g volatile solids.
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TABLE 3 Techno-economic and environmental analysis of PHA production.

10.3389/fmicb.2025.1693596

Scale of study PHA production Global warming Abiotic depletion = References
cost ($/kg) potential (kg potential (MJ/kg
CO;-eq/kg PHA) polymer)

Cheese whey Lab scale 3.0 5.9 79.5 Asunis et al., 2021
Paper mill or food Lab scale 1.5-2.1 2.2-43 106-158 Ferndndez-Dacosta et al.,
industry wastewater 2015
Soybean oil Theoretical nd 44 50.3 Kookos et al., 2019

simulations
Sunflower meal and Theoretical 12,5 0.6 61.7 Kachrimanidou et al., 2021
crude glycerol simulations
Glycerol Lab scale 5.9-6.1 0.6 nd Leong et al., 2017
Sugarcane bagasse Theoretical 2.1 42 nd Nieder-Heitmann et al., 2019

simulations
Food waste Pilot scale nd 70.2 nd Wu et al., 2022
Crude glycerol Lab scale 1.5-2.0 5.4-8.2 nd Thanahiranya et al., 2025
Polypropylene Industrial scale 1.1 1.6-2.2 70.2-71.3 Mannheim and Simenfalvi,

2020

Polyethylene Industrial scale 1.4 22 69.0 Nieder-Heitmann et al., 2019
terephthalate

nd, not detected.

substances that will inevitably impact the performance of PHA. For
example, Rangel et al. (2023, 2024) found that ethanol significantly
inhibited PHA content and yield.

4.3.2 C/N ratio

Carbon and nitrogen are essential nutrients for microbial
growth, and the C/N ratio directly affects microbial growth,
reproduction, and substance synthesis (Wang et al., 2023). A high
C/N ratio favored the acquisition of a community with strong PHA
synthesis capacity due to the ability of these bacteria to adapt to
the nutrient imbalance conditions. A low C/N ratio increased the
biomass of cells and decreased the ability of the mixed community
to synthesize PHA due to competition from stray bacteria (Chavan
et al.,, 2023). Raunhan et al. (2023) found that T. mechernichensis
achieved 23.9% of PHA at an optimal C/N ratio of 20 with
food waste digestate as substrate. Sanchez-Valencia et al. (2021)
investigated the effect of C/N ratios of the range 13.3-42.1 on PHA
yield using municipal solid waste digestate as substrate, finding that
a C/N ratio of 23.3 favored PHA synthesis. P. putida also achieved
a PHA content of 56% at high nutrient (25 mmol NH}') with a
high carboxylate concentration (C/N ratio of 26.5) accumulated
from food waste (Chandra et al., 2023). Therefore, high C/N ratios
may be more favorable for PHA accumulation from food waste;
however, excessively high ratios are not beneficial.

The high PHA content obtained under nitrogen-limited
conditions may be attributed to the inhibition of protein synthesis,
with PHA becoming the major product (Wen et al, 2010).
Additionally, the changes in the C/N ratio can significantly affect
the PHA composition. Silva et al. (2017) reported that when the
C/N ratio increased from 14.3 to 17.9, the percentage of PHV in
PHA decreased from 20% to 12%. The changes in the C/N ratio of
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the substrate affect the yield and monomer composition of PHA
during PHA generation. Thus, maintaining a stable C/N ratio is an
effective strategy for efficient targeted PHA generation.

4.3.3 pH

pH is one of the most important parameters in PHA synthesis.
A pH level that is too high or too low pH can influence the enzymes
and metabolic pathways of microorganisms, thereby reducing
microbial activity (Catherine et al., 2022). Besides, pH affects the
structure of the complex microbial community, which further
alters the amount and type of PHA. The majority of studies have
shown that microorganisms maximize PHA content at neutral pH
conditions (Liang et al., 2024; Liu S. et al., 2024). In contrast, Villano
et al. (2010) found that PHA yield increased as pH increased from
7.5 to 9.5, and the proportion of PHV increased accordingly. In
the case of food waste digestate as a substrate, Dan et al. (2023)
found that neutral or slightly alkaline (pH 7.0-8.0) environments
favored PHA synthesis, while acidic pH was not conducive to
PHA synthesis. Therefore, a neutral pH is more favorable for PHA
synthesis using food waste digestate as substrate.

4.3.4 OLR

OLR affects microbial growth and its metabolic pathways,
which further affect PHA synthesis. Typically, an appropriate
increase in OLR can increase biomass growth, further improving
PHA production, while too high OLR may lead to inhibitory effects
or microbial imbalances, which further affect the PHA yield. Fang
et al. (2019) found that a moderate OLR of 2.4 g chemical oxygen
demand (COD)/L-day favored PHA generation using rice winery
wastewater as substrate, with a PHA yield of 0.23 g/g. de Oliveira
et al. (2019) explored the increase in organic loading from 1.0 to
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7.1 g COD/L-day on PHA yield using sugarcane stillage as substrate,
and observed that the highest PHA vyield (0.60 g/g) was obtained
when the OLR was 4.5g COD/L-day. Matos et al. (2021) achieved
the highest PHA productivity and content (8.1 g PHA/L-day and
80.5%) with a high OLR (8.7g COD/L-day) by mixed microbial
culture at a pilot plant using fruit waste as substrate. Thus,
appropriately increasing the OLR can increase PHA production
according to the actual situation of the process. However, there is
no consensus on the OLR for PHA generation from food waste, and
further research is still needed.

4.4 Recent advances in PHA production
from food waste digestate

4.4.1 Pure microbial culture

Table 2 shows that many bacteria utilize VFAs from food
waste as a carbon source for PHA generation, and the VFAs
composition determines the yield and type of PHA. In many
industrial processes, pure bacterial culture was utilized for PHA
production. R. palustris used VFAs generated from food waste
to produce PHA, reaching 49% of content, and VFAs with even
numbers of carbon were synthesized as 3HB, and VFAs with odd
numbers of carbon were synthesized as 3HV (Dan et al., 2023). P.
putida achieved a PHA content of 56% at nutrient control with
a high carboxylate concentration accumulated from food waste,
and acetate, propionate, and butyrate were the main precursors for
PHA synthesis (Chandra et al., 2023). Noted that C. necator, as an
efficient producer of PHA, reached 56-87% utilizing food waste as
a carbon source (Hafuka et al., 2011; Vu et al., 2022).

4.4.2 Mixed microbial culture

Composite bacteria domesticated from activated sludge or
directly utilizing the microbial community of activated sludge to
synthesize PHA can effectively reduce the PHA generation cost
compared to pure culture (Fu et al., 2023). Some studies have
attempted to combine VFA fermentation and PHA generation in
mixed microbial culture. Amulya et al. (2015) evaluated the PHA
generation in a multi-stage operation using food waste as substrate,
and PHA content reached 16%—24% accompanied by VFA removal
up to 84%—88%. PHA content in an enriched salinophilic mixed
microbial culture reached 33% using food waste digestate as
substrate (Wang et al., 2018). Lagoa-Costa et al. (2022) used the
co-fermentation digestate of cheese whey and beer wastewater as a
carbon source for PHA generation in mixed microbial culture, with
PHA content reaching 45%—50%, and found that VFA components
in the fermentation digestate significantly affected the microbial
community composition. In general, mixed microbial cultures
have a lower capacity to produce PHA compared to pure culture
(Table 2). This might be mainly due to the low biomass density in
the mixed microbial cultures (Wang et al., 2021).

4.4.3 Pilot-scale PHA production

Pilot-scale PHA production is a necessary step prior to

industrial PHA production. Some studies have explored
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the pilot-scale PHA production from food waste to achieve
commercialization levels. Marreiros et al. (2023) successfully
converted lab-scale PHA production using acetate and butyrate
obtained from salmon silage as substrates to pilot scale, and PHA
content and yield reached 50.4% and 0.189 g/g, respectively, higher
than using cheese whey as a substrate in mixed microbial culture
(Lagoa-Costa et al., 2022; Oliveira et al., 2018). Kacanski et al.
(2023) achieved a pilot-scale PHA production with Pseudomonas
citronellolis using acetic acid as a carbon source, and a total of
1.75kg of PHA was produced, corresponding to a PHA yield
of 0.051 g/g. In a pilot plant for PHA generation from a mixed
microbial culture, utilizing food waste as feedstock for 180 days of
operation, the PHA content achieved 48% in a conventional three-
stage process (Wu et al., 2022), while the greenhouse gas emission
was as high as 70.2kg CO;-eq/kg PHA. Silva et al. (2022) achieved
the hydroxyhexanoate (HHx)-containing PHA production in
a conventional three-stage process at pilot scale, utilizing fruit
waste as feedstock, and PHA content reached 71.3%. Matos et al.
(2021) achieved the highest PHA productivity and content (8.1¢g
PHA/L-days and 80.5%) through a series of regulatory strategies
(such as high OLR and continuous feeding) by mixed microbial
culture at a pilot plant using fruit waste as a substrate. The above
research lays the foundation for the scale-up production of PHA
using food waste.

5 Techno-economic and
environmental analysis for PHA
generation

Presently, the cost competitiveness and environmental
friendliness are the main factors limiting the industrial PHA
generation as a viable alternative to petrochemical plastics.
The production cost of PHA using a single substrate (e.g.,
glycerol, glucose, sucrose) is $3.0-6.1/kg, significantly higher
than the current market price of polypropylene and polyethylene
terephthalate ($1.1-1.4/kg) (Table 3). To further improve the
economic viability of PHA generation, the development of various
food wastes as inexpensive carbon sources can effectively reduce
production costs. Gnaim et al. (2025) reported that the lowest
achievable cost for producing 1,871 ton/year of PHA reached
$4.6/kg using Cobetia amphilecti from celery waste. On a large
scale of 10,000 ton/year, the production cost of PHA was estimated
to be $1.5-3.0/kg utilizing sugarcane bagasse as a substrate
(Nieder-Heitmann et al, 2019). Meanwhile, in a study with
an annual production of 50,000 ton of PHA using rice straw
and softwood as substrates, the production cost of PHA was
$3.5-3.9/kg, which was lower than that of glucose (Ozturk et al.,
2025). Additionally, Zahari et al. (2015) reported that the estimated
production cost of oil palm leaves as substrate was $3.4/kg due
to the lower production efficiency, slightly higher than that using
sugarcane bagasse ($2.1/kg) (Nieder-Heitmann et al., 2019) and
crude glycerol ($1.5-2.0/kg) (Thanahiranya et al., 2025). Thus,
PHA generation from food waste as a substrate contributes to
reducing costs. Meanwhile, further reductions in production costs
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and improvements in PHA production efficiency are still needed to
maintain cost competitiveness with petrochemical peers.

Life-cycle assessment (LCA) can evaluate the environmental
impact of raw material selection on the PHA production process.
Kookos et al. (2019) estimated the greenhouse gas emissions of
PHA generation from soybean oil, reaching 4.4 kg CO,-eq/kg PHA,
which was higher than the study of Akiyama et al. (2003), who
used the same carbon source, ranging from —0.2 to 0.8 kg CO;-
eq/kg PHA. The latter study attributed the low CO, emissions
to absorption of CO; by soybean plants from the air, which was
advantageous compared to other food waste, such as cheese whey
(5.9kg CO;z-eq/kg PHA) (Asunis et al., 2021) and sugarcane bagasse
(4.2kg CO;-eq/kg PHA) (Nieder-Heitmann et al., 2019). Wu et al.
(2023) first reported that a pilot-scale PHA generation utilizing
food waste as the feedstock achieved a PHA content of 47.9%,
and the greenhouse gas emission was 70.2kg CO;-eq/kg PHA,
which was more than 5 times that of the other references. Also, the
fossil consumption potential was about 10 times that of petroleum-
based polyethylene plastics. As a whole, there is no environmental
advantage in terms of carbon footprint of PHA production from
food waste compared to conventional plastics (1.6-2.2 kgCO,-
eq/kg PHA) (Lim et al., 2023). The higher global warming potential
might be due to the low PHA yield from food waste fermentation
and the complex PHA extraction process (Khatun and Wright,
2025; Ramos et al., 2019). Thus, the economic and environmental
impacts of PHA generation from food waste need to be further
studied, and ongoing research should aim to increase PHA yield
and quality and optimize the PHA extraction process, which further
improve the economic and environmental viability of PHA on a
commercial scale.

In conclusion, the techno-economic and environmental
analysis of PHA production from food waste has great differences
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due to the differences in substrates and scales, which impose
substantial limitations on comparing them. This section mainly
focuses on the comparison of trends and qualitative insights rather
than on direct numerical comparisons.

6 Challenges and prospects

Though VFAs obtained from food waste to generate PHA
greatly reduce costs, providing a new model for PHA production
(Liang et al., 2024), some challenges still need to be addressed
(Figure 4).

(1) VFA components obtained from anaerobic fermentation
of food waste determine the content of PHA and its monomer
composition. However, the inherent properties of food waste
(such as high salinity, variability in composition, and nutrient
imbalance) significantly influence the stability and reproducibility
of VFA production, which in turn affects PHA production.
PHA synthesis typically employs a “two-stage fermentation,”
involving rapid microbial growth followed by stimulation of
substantial PHA accumulation under nutrient-limited conditions.
This process demands extremely precise control of dissolved
oxygen, pH, temperature, and feeding strategies. However, the
unstable fractions of food waste digestate significantly complicate
these control requirements. Thus, stable VFA fractions obtained
from food waste fermentation are crucial for achieving efficient
PHA production.

(2) Due to the complex composition of food waste digestate,
the majority of the known PHA-producing strains or mixed
communities face low production efficiency and are susceptible
to bacterial contamination, making it difficult to meet the
requirements of industrial production. More excellent strains or
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mixed communities through natural screening, mutation breeding,
or genetic engineering still need to be developed. Meanwhile, the
resources for strains or mixed communities resistant to extreme
environments (e.g., oils, salts, acids, and alkalis) are being further
developed, thereby increasing microbial resistance and reducing
the risk of bacterial contamination. In addition, the majority of
the research studies about PHA generation utilizing food waste
digestate focused on the lab level, and a few research studies
explored it on a pilot scale. Further pilot-scale research studies need
to be verified.

(3) Currently, most research on PHA production from
food waste digestate focuses on efficiency, often neglecting the
quality and monomer composition of PHA. The appropriate
strategies for increasing the natural copolymerization of
PHA within microorganisms need to be further explored to
increase the PHA quality. Some new monomers, structures,
and processing techniques for PHA performance still need
to be developed, so that PHA properties can approach or
even surpass those of petroleum-based plastics. Currently,
PHA extraction technologies are costly, highly toxic, and
environmentally unfriendly. Green, efficient, and economical
PHA extraction technologies require further development.
Finally, a comprehensive techno-economic and environmental
analysis of PHA generation utilizing VFAs from food waste is
required to assess the feasibility of PHA as an alternative to

petrochemical plastics.

7 Conclusion

VFAs
promise

derived from food waste as carbon sources hold

for large-scale and commercialized production

directly affect PHA
composition,

of low-cost PHA. VFA components
production, its monomer and performance.
Even-carbon VFAs are synthesized as HB, and odd-carbon
VFAs are synthesized as HV. Butyrate synthesized PHA more
efficiently than acetate and propionate. Pretreatment of food
waste and the targeted regulation of anaerobic fermentation
systems to produce VFAs are beneficial for PHA generation.
The pH, C/N ratio, and OLR, etc., are the main factors
affecting PHA generation. Also, mixed microbial culture and
genetic engineering improve PHA synthesis ability, which is
beneficial for further optimization and scale-up purposes. In
addition, techno-economic and environmental analysis for PHA
generation using VFAs obtained from food waste requires further

comprehensive evaluation.
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