

OPEN ACCESS

APPROVED BY
Axel Cloeckaert,
Institut National de recherche pour
l'agriculture, l'alimentation et l'environnement
(INRAE), France

*CORRESPONDENCE

Svetlana Khaiboullina

Sv.khaiboullina@gmail.com

RECEIVED 29 August 2025 ACCEPTED 08 September 2025 PUBLISHED 23 September 2025

CITATION

Holban AM, Alva-Murillo N, Khaiboullina S and Chen Z (2025) Editorial: Women in infectious agents and disease: 2024. Front. Microbiol. 16:1694902. doi: 10.3389/fmicb.2025.1694902

COPYRIGHT

© 2025 Holban, Alva-Murillo, Khaiboullina and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Women in infectious agents and disease: 2024

Alina Maria Holban¹, Nayeli Alva-Murillo², Svetlana Khaiboullina³* and Ze Chen⁴

¹Department of Botany and Microbiology, University of Bucharest, Bucharest, Romania, ²Department of Biology, University of Guanajuato, Guanajuato, Mexico, ³University of Nevada, Reno, Reno, NV, United States, ⁴Department of Biochemistry and Molecular Biology, Hebei Normal University, Shijiazhuang, China

KEYWORDS

infectious disease, women, microbes, pathogenesis, diagnosis

Editorial on the Research Topic

Women in infectious agents and disease: 2024

Only a third of the researchers in the science, technology, engineering, and mathematics (STEM) fields are women. Women remain underrepresented in many fields of science, including Microbiology. The higher rate of male compared to female corresponding authors in manuscripts published in the American Society for Microbiology (ASM) journal was shown by Hagan et al. (2020). Also, only 18% of Editors-in-Chief of all ASM journals were women. Additionally, authors indicate that the outcome of submission is less favorable for women than for men. In another study, Nelson and Rogers (2003) indicate that the representation of women drops from 50% receiving the doctorate degree to 30% holding tenure-track positions. This makes women less likely to obtain the grant funding for the research, which could impact their research career success. Our Research Topic aims to address this discrepancy by providing women a platform for publishing high-quality research, which will boost their careers and improve their visibility in the research field.

The present Research Topic, focusing on microbial pathogenesis, includes 12 publications (9 original research articles and 3 reviews). By providing open-access, cutting-edge original research and comprehensive reviews, this Research Topic serves to further support and promote women in microbiology research.

In the original research, Bok et al. addressed the role of the commensal *Escherichia coli* population in the pathogenesis of extraintestinal infections. *E. coli* is the most common pathogen, which can cause a diverse range of diseases (Pitout et al., 2015). This bacterium can cause bacteremia in older adults and urinary tract infections in young women (Nguyen and Götz, 2016; Yahav et al., 2016). Also, *E. coli* is a frequent cause of meningitis in neonates (Kim, 2016). Extraintestinal *E. coli* infection morbidity and mortality rates are increasing worldwide (Rosenberg et al., 2021; Russo and Johnson, 2003). Also, the emergence of multidrug-resistant *E. coli* represents a significant challenge for healthcare providers (Ohmagari et al., 2023). However, there are still gaps in our understanding of the genetic and phenotypic variations of *E. coli* associated with extraintestinal infections. In this study, genotypic and phenotypic characteristics of two commensal *E. coli* isolates from adults and children were examined. A higher frequency of pathogenicity islands and virulence genes was found in isolates from adults compared to those from children. The dominant phylogroup was B2, with sequence types ST73, ST59, ST131, ST95, ST141, and ST69 being more prevalent in adult isolates. Conversely, a different subset, ST10, ST155,

ST59, and ST1823, was found in isolates from children. Crucially, the hemolytic activity and siderophore receptor expression were more common in these adult-derived isolates. Traits not associated with phylogroup B2, such as adhesion abilities mediated by type 1 and P fimbriae and biofilm formation propensities, were similar in isolates from both adults and children. The importance of monitoring the genetic and phenotypic profiles of commensal *E. coli* was indicated.

Another original research by Chen et al. evaluated Human papillomavirus (HPV) competition in unvaccinated women. Human papillomavirus infection is linked to 90% of cervical cancer (WHO, 2024b). The incidence and mortality rates remain on the rise worldwide. According to the WHO, there were 660,000 new cases diagnosed in 2022, with around 350,000 fatalities (WHO, 2024a). There are several vaccines available on the market to prevent HPV infection (Cheng et al., 2020). These vaccines target HPV-16, 18, 6, and 11, which are responsible for most cervical cancer cases (Petrosky et al., 2015). It should be noted that the vaccine can prevent infection with the targeted HPV; however, commonly used vaccines do not target all high-risk HPV types. Therefore, there is a concern of the "type replacement after HPV vaccination (Man et al., 2019). The "type replacement" refers to an increased infection rate of certain HPV types due to the elimination of vaccine-targeted HPV types (Tota et al., 2017). The Authors addressed the "type replacement" concern in this study. Of 159,049 women, 19.8% tested positive for HPV, with 5.1% exhibiting multiple type infections. Significant negative associations were observed between HPV-6 and HPV-72, HPV-18 and HPV-72, HPV-31 and HPV-83, HPV-33 and HPV-26, HPV-45 and HPV-55, HPV-56, and HPV-26, as well as HPV-59 and HPV-69, suggesting potential type competition. However, no type competition pair was found in the cohort study. Conversely, women with vaccinetargeted types had a higher risk of acquiring other types (HR > 1.0).

The study by Diaz-Navarro et al. assessed the association between recurrent vulvovaginal candidiasis (RVVC), biofilmforming capacity, and clinical symptoms. RVVC can be attributed to an imbalance between Candida spp. and vaginal biota, which could be caused by long-term antibiotic treatment, age of the patients and use of contraceptives (Díaz-Navarro et al., 2023). Also, Candida spp. virulence factors could contribute to the adhesion of the microbe to the vaginal epithelium (Kalia et al., 2020; Li et al., 2022). This multifactorial nature of pathogenesis makes the treatment of RCCV challenging. Improving our understanding of the role of these factors in the pathogenesis of RCCV will facilitate the selection of the best treatment for the disease. A total of 271 patients were positive for Candida spp. in vaginal swabs. During 1 year of observation, 55 (20.3%) patients experienced at least one recurrence, with 19 (7.0%) meeting the criteria for RVVC (\geq 3 episodes/year), accounting for 65 episodes in total. Most isolates were Candida albicans (90.0%). The authors concluded that RVVC had high biomass production. Additionally, RVVC clinical isolates tended lower metabolic activity, which may contribute to treatment failure.

An original work by Gohain et al. aimed to identify targets against *Streptococcus pneumoniae* (S. pneumoniae) using an *in silico* subtractive genomics approach. S. pneumoniae is

a significant community health concern. This bacterium can cause meningitis, pneumonia and bacteriemia, characterized by high morbidity and mortality rates (Shami et al., 2023). Antibiotic resistance of S. pneumoniae is on the rise and reported globally (Cillóniz et al., 2018; Cools et al., 2021). This has become a significant health care issue and poses an urgent need for new treatments for drug-resistant S. pneumoniae. 2,000 out of the 2,027 proteins from S. pneumoniae were non-homologous to human proteins. After screening against the Database of Essential Genes (DEG) and human gut microflora, 21 essential genes were prioritized, with Key hub genes such as gpi, fba, rpoD, and trpS associated with 20 pathways. Screening of 2,509 FDA-approved compounds identified Bromfenac as a leading candidate, exhibiting a binding energy of -26.335 ± 29.105 kJ/mol. Bromfenac, particularly when conjugated with AuAgCu2O nanoparticles, has demonstrated antibacterial and anti-inflammatory properties against Staphylococcus aureus. This suggests that Bromfenac could be repurposed as a potential therapeutic agent against S. pneumoniae, pending further experimental validation.

The original research conducted by Aswal et al. focused on identifying pathogenicity proteins in Escherichia coli. Multidrugresistant (MDR) E. coli can cause high morbidity and mortality (Daneman et al., 2023). Microbial drug resistance is a complex phenomenon influenced by an interplay of several genomic, transcriptomic and proteomic factors. Through integrated RNA-Seq and SWATH-LC MS/MS analyses, 763 genes and proteins were found to have differential expression. Of these, 52 genes showed differential expression in MDR E. coli. The majority of these proteins were associated with secondary metabolites, aminoacyl-tRNAs and ribosomes. Among these, multiple hub proteins were involved in aminoacylation of tRNA, lysyl-tRNA and translation. Three hub proteins were involved in several biological pathways directly and/or indirectly related to antibiotic stress. The authors suggest that these proteins could serve as potential future therapeutic targets for the treatment of MDR *E. coli*.

The study by Kukovica et al. aimed to determine the efficacy of self-collection of rectovaginal swabs as a valid alternative to collection by healthcare workers (HCWs) during pregnancy. Group B streptococcus (GBS) was found to be associated with up to 50% of invasive infections in newborns (Madrid et al., 2017). Prevention of GBS is the most effective approach to protect newborns, which could be done by the collection of intravaginal and colorectal swabs during the third trimester of pregnancy (Verani et al., 2010). However, limitations in healthcare resources and the COVID-19 pandemic made it challenging to collect swabs by medical personnel. Self-collection has emerged as a complementary approach to better accessibility, convenience, and privacy (Smith et al., 2024; WHO, 2024c). This approach could also improve compliance with screening programs. The authors analyzed the efficacy of GBS isolation in samples collected by patients and by HCWs. The authors reported that GBS was detected in 18% collected by HCWs, whereas the self-collection method yielded a GBS positivity rate of 19%. It was concluded that self-collection had a trend for a higher diagnostic yield. It was demonstrated that the most sensitive method was PCR after enrichment from self-collected samples. The authors concluded that self-collection

of rectovaginal swabs during pregnancy could be an alternative to collection by HCWs. Also, PCR from enrichment showed better detection of GBS compared to enrichment culture.

Original research by Ali et al. focused on demonstrating that isothermal recombinase DNA amplification coupled with lateral flow (LF) chromatography on a PCRD cassette is a simple and rapid molecular diagnostic test to detect and identify Leishmania major. Cutaneous leishmaniasis (CL) can cause disfiguring lesions, scars and psychological distress and social stigma (Chahed et al., 2016). The diagnosis is based on microscopic direct examination of Giemsa-stained smears (Khademvatan et al., 2011). This approach is laborious, time-consuming and requires highly trained and experienced personnel. Microscopic examination has low sensitivity and cannot be used to identify Leishmania spp. Currently, only DNA assays accurately identify Leishmania spp. (Salotra et al., 2001). These methods require equipment and trained personnel. The authors developed an L. major speciesspecific RPA-LF assay and computational analysis. This novel assay was tested using 86 human cutaneous samples, demonstrating 100% specificity.

Nicholson and Shore studied whether Bordetella bronchiseptica (B. bronchiseptica) could contribute to the transfer of antimicrobial resistance genes in the swine production environment. B. bronchiseptica is a highly contagious respiratory pathogen (Vötsch et al., 2021). This bacterium has a broad host range, including wild and domestic mammals (Miguelena Chamorro et al., 2023). B. bronchiseptica increases colonization of the respiratory tract with Glaesserella parasuis, Pasteurella multocida, and Streptococcus in swine (Loving et al., 2010; Vötsch et al., 2021). Some of these cocolonizing microbes could harbor antimicrobial resistance genes (Hau et al., 2018; Nicholson and Bayles, 2022), which could be transferred to B. bronchiseptica. Therefore, it is important to analyze the genetic diversity and antimicrobial resistance genes in B. bronchiseptica isolates from swine. The authors identified a high degree of genomic conservation in swine B. bronchiseptica isolates. The majority of B. bronchiseptica isolates had resistance to four antibiotic classes. However, only three antimicrobial resistance genes were identified. Data suggest that B. bronchiseptica isolates are not serving as a source of antimicrobial resistance gene transference.

Gao et al. investigated the incidence, clinical characteristics, risk factors, microbiological features, and antibiotic resistance patterns of maternal peripartum bloodstream infection (BSI). Over half of intrahospital death is accounted for by infection-related maternal deaths, according to the Global Maternal Sepsis Study group (Bonet et al., 2020). Maternal BSI remains a significant health care problem characterized by high morbidity and mortality (Surgers et al., 2013; Zou et al., 2021). However, our understanding of the microbiological characteristics, clinical features, and prognoses is limited. This study focused on understanding the roles of premature rupture of membranes (PROM) and fever in BSI. Authors included BSI (n = 85) and non-BSI (n = 361) groups. It was demonstrated that spontaneous rupture of membranes (PROM, vaginal examinations >5 times, and cesarean sections during labor were more common in the BSI group. Escherichia coli (58.1%) was the major causative pathogen, followed by Enterococcus faecalis (7.1%). The BSI group exhibited higher rates of maternal sepsis and Apgar scores ≤7 at 1 min. Furthermore,

PROM, fever \geq 38.9 °C (102°F), and fever within 24 h after delivery were risk factors for postpartum BSI in the adjusted analysis. The authors conclude that the maternal BSI is associated with PROM. Early identification of pathogens and antimicrobial resistance can prevent adverse outcomes.

In the review, Huang et al. summarized diagnostic methods for Bovine rotavirus (BRV), discussed their advantages, and presented future perspectives on BRV diagnosis. This review aims to provide references for the effective diagnosis and control of BRV-related diseases. BRV can cause diarrhea in calves, profoundly impacting the cattle industry, resulting in substantial economic losses (Geletu et al., 2021). The diagnostic approaches for BRV primarily include etiological methods, such as electron microscopy, virus isolation, and culture (Cho and Yoon, 2014). Serological methods such as enzyme-linked immunosorbent assay (ELISA), latex agglutination test (LAT), and immunofluorescence techniques are widely utilized for BRV diagnosis. Additionally, molecular methods, including reverse transcription-polymerase chain reaction (RT-PCR), realtime quantitative PCR (qPCR), and loop-mediated isothermal amplification (LAMP), as well as next-generation sequencing (NGS) technology, are also used to diagnose BRV (Irehan et al., 2025).

The systematic review by Ji et al. compared the accuracy and acceptance of self-sampling to clinician sampling for Human papillomavirus (HPV) testing in Asia. The authors included 67 studies, revealing that the sensitivity and specificity of HPV self-sampling for detecting cervical intraepithelial neoplasia were higher than 80% and 70%, respectively, consistent with clinician sampling results. The consistency between self-sampling and clinician-sampling was high in most studies, with kappa values exceeding 0.7. Women had high acceptance of self-sampling but expressed some concerns. The authors conclude that self-sampling for HPV testing can significantly improve cervical cancer screening coverage. This is especially important in areas with limited medical resources or reluctance to accept physician sampling. However, the diagnostic criteria and HPV detection methods need to be adjusted due to the low sensitivity of HPV self-sampling in studies from China and India.

The review by Chen et al. addressed the impact of climate change on the spread of severe fever with thrombocytopenia syndrome (SFTS) and its biological vectors. SFTS caused by *Dabie bandavirus*, transmitted by ticks (Kim and Park, 2023). This disease emerged in 2009 in Hubei and Henan provinces of Central China and spread over East and Southeast Asia (Cui et al., 2024). *H. longicornis* tick species are the principal vector for the Dabie bandavirus (Luo et al., 2015). The prevention and control strategies for SFTS include tick' control and public education (Centers for Disease Control Prevention (CDC), 2024). Public health policies also aimed to reduce contact between ticks and animals and alleviate the disease's impact on human health. SFTS is an emerging tick-borne zoonotic disease (USDA, 2024).

In conclusion, this Research Topic highlights a collection of research articles authored by women, focusing on some of the most pressing challenges in infectious disease. These studies explore novel pathogenicity markers of infectious agents, uncover host risk factors, and investigate mechanisms of antibiotic resistance. Collectively, this Research Topic underscores the vital contributions of women to advancing research in the field.

Author contributions

AH: Writing – review & editing. NA–M: Resources, Writing – review & editing. SK: Writing – original draft. ZC: Writing – review & editing.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Bonet, M., Brizuela, V., Abalos, E., Cuesta, C., Baguiya, A., Chamillard, M., et al. (2020). Frequency and management of maternal infection in health facilities in 52 countries (GLOSS): a 1-week inception cohort study. *Lancet Global Health* 8, e661–e671. doi: 10.1016/S2214-109X(20)30109-1

Centers for Disease Control and Prevention (CDC). (2024). *Preventing Tick Bites*. Available online at: https://www.cdc.gov/ticks/prevention/index.html (Accessed September 10, 2025).

Chahed, M. K., Bellali, H., Ben Jemaa, S., and Bellaj, T. (2016). Psychological and psychosocial consequences of zoonotic cutaneous leishmaniasis among women in Tunisia: Preliminary findings from an exploratory study. *PLOS Neglect. Trop. Dis.* 10:e0005090. doi: 10.1371/journal.pntd.0005090

Cheng, L., Wang, Y., and Du, J. (2020). Human papillomavirus vaccines: an updated review. *Vaccines* 8:391, doi: 10.3390/vaccines8030391

Cho, Y-. I., and Yoon, K-. J. (2014). An overview of calf diarrhea—Infectious etiology, diagnosis, and intervention. J. Vet. Sci. 15:1. doi: 10.4142/jvs.2014.15.1.1

Cillóniz, C., Garcia-Vidal, C., Ceccato, A., and Torres, A. (2018). "Antimicrobial resistance among *Streptococcus pneumoniae*," in *Antimicrobial Resistance in the 21st Century* (Berlin: Springer International Publishing), 13–38.

Cools, F., Delputte, P., and Cos, P. (2021). The search for novel treatment strategies for *Streptococcus pneumoniae* infections. *FEMS Microbiol. Rev.* 45:fuaa072. doi: 10.1093/femsre/fuaa072

Cui, H., Shen, S., Chen, L., Fan, Z., Wen, Q., Xing, Y., et al. (2024). Global epidemiology of severe fever with thrombocytopenia syndrome virus in humans and animals: a systematic review and meta-analysis. *Lancet Reg. Health West. Pac.* 48:101133. doi: 10.1016/j.lanwpc.2024.101133

Daneman, N., Fridman, D., Johnstone, J., Langford, B. J., Lee, S. M., MacFadden, D. M., et al. (2023). Antimicrobial resistance and mortality following *E. coli* bacteremia. *EClinicalMedicine* 56:101781. doi: 10.1016/j.eclinm.2022.101781

Díaz-Navarro, M., Irigoyen Von-Sierakowski, Á., Palomo, M., Escribano, P., Guinea, J., Burillo, A., et al. (2023). *In vitro* study to assess modulation of *Candida* biofilm by *Escherichia coli* from vaginal strains. *Biofilm* 5:100116. doi: 10.1016/j.bioflm.2023.100116

Geletu, U. S., Usmael, M. A., and Bari, F. D. (2021). Rotavirus in calves and its zoonotic importance. *Vet. Med. Int.* 2021:6639701. doi: 10.1155/2021/6639701

Hagan, A. K., Topçuoglu, B. D., Gregory, M. E., Barton, H. A., and Schloss, P. D. (2020). Women are underrepresented and receive differential outcomes at ASM journals: a six-year retrospective analysis. *mBio* 11:e01680–20. doi: 10.1128/mBio.01680-20

Hau, S. J., Jisun, S., Davies, P. R., Frana, T., and Nicholson, T. L.. (2018). Antimicrobial resistance distribution differs among methicillin resistant *Staphylococcus aureus* sequence type (ST) 5 isolates from health care and agricultural sources. *Front. Microbiol.* 9:2102. doi: 10.3389/fmicb.2018.02102

Irehan, B., Ozkaraca, M., Gulacti, I., Sener, L., and Dursun, M. F. (2025). Diagnosis of bovine group A rotavirus, bovine coronavirus, *Escherichia coli* K99, *Cryptosporidium*

spp., Giardia spp. in calf diarrhea with one-step duplex RT-PCR: Histopathological and immunochromatographic methods. Vet. Res. Forum Int. Q. J. 16, 221–227. doi: 10.30466/vrf.2024.2025299.4208

Kalia, N., Singh, J., and Kaur, M. (2020). Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. *Ann. Clin. Microbiol. Antimicrobials* 19:5. doi: 10.1186/s12941-020-0347-4

Khademvatan, S., Neisi, N., Maraghi, S., and Saki, J. (2011). Diagnosis and identification of *Leishmania* spp. from Giemsa-stained slides, by real-time PCR and melting curve analysis in south-west of Iran. *Ann. Trop. Med. Parasitol.* 105, 559–565. doi: 10.1179/2047773211Y.0000000014

Kim, E.-H., and Park, S.-J. (2023). Emerging tick-borne Dabie bandavirus: Virology, epidemiology, and prevention. $\it Microorganisms$ 11:2309. doi: 10.3390/microorganisms11092309

Kim, K. S. (2016). Human meningitis-associated *Escherichia coli. EcoSal Plus* 7:ESP-0015-2015. doi: 10.1128/ecosalplus.esp-0015-2015

Li, X., Chen, S., Lyu, X., and Tian, J. (2022). Virulence is one of the mechanisms of vulvovaginal candidiasis recurrence, rather than drug resistance. *Med. Mycol.* 60:myac087. doi: 10.1093/mmy/myac087

Loving, C. L., Brockmeier, S. L., Vincent, A. L., Palmer, M. V., Sacco, R. E., Nicholson, T. L., et al. (2010). Influenza virus coinfection with *Bordetella bronchiseptica* enhances bacterial colonization and host responses exacerbating pulmonary lesions. *Microbial Pathogen.* 49, 237–245. doi: 10.1016/j.micpath.2010.06.004

Luo, L-. M., Zhao, L., Wen, H-. L., Zhang, Z-. T., Liu, J-. W., Fang, L-. Z., et al. (2015). *Haemaphysalis longicornis* ticks as reservoir and vector of severe fever with thrombocytopenia syndrome virus in China. *Emerg. Infect. Dis.* 21, 1770–1776. doi: 10.3201/eid2110.150126

Madrid, L., Seale, A. C., Kohli-Lynch, M., Edmond, K. M., Lawn, J. E., Heath, P. T., et al. (2017). Infant group B streptococcal disease incidence and serotypes worldwide: systematic review and meta-analyses. *Clin. Infect. Dis.* 65, S160–S172. doi: 10.1093/cid/cix656

Man, I., Auranen, K., Wallinga, J., and Bogaards, J. A. (2019). Capturing multiple-type interactions into practical predictors of type replacement following human papillomavirus vaccination. *Philos. Transac. Royal Soc. B Biol. Sci.* 374, 20180298. doi: 10.1098/rstb.2018.0298

Miguelena Chamorro, B., De Luca, K., Swaminathan, G., Longet, S., Mundt, E., and Paul, S. (2023). *Bordetella bronchiseptica* and *Bordetella pertussis*: similarities and differences in infection, immuno-modulation, and vaccine considerations. *Clin. Microbiol. Rev.* 36:e00164-22. doi: 10.1128/cmr.00164-22

Nelson, D. J., and Rogers, D. C. (2003). A National Analysis of Diversity in Science and Engineering faculties at Research Universities. Washington, DC: National Organization for Women.

Nguyen, M. T., and Götz, F. (2016). Lipoproteins of Gram-positive bacteria: Key players in the immune response and virulence. *Microbiol. Mol. Biol. Rev.* 80, 891–903. doi: 10.1128/MMBR.00028-16

Nicholson, T. L., and Bayles, D. O. (2022). Comparative virulence and antimicrobial resistance distribution of *Streptococcus suis* isolates obtained from the United States. *Front. Microbiol.* 13:1043529. doi: 10.3389/fmicb.2022.1043529

- Ohmagari, N., Choi, W. S., Tang, H-. J., Atanasov, P., Jiang, X., Hernandez Pastor, L., et al. (2023). Targeted literature review of the burden of extraintestinal pathogenic *Escherichia coli* among elderly patients in Asia Pacific regions. *J. Med. Econ.* 26, 168–178. doi: 10.1080/13696998.2023.2169447
- Petrosky, E., Bocchini, J., Hariri, S., Chesson, H., Curtis, C. R., Saraiya, M., et al. (2015). Use of 9-valent human papillomavirus (HPV) vaccine: Updated HPV vaccination recommendations of the Advisory Committee on Immunization Practices. *Morb. Mortal. Wkly. Rep.* 64, 300–304. doi: 10.15585/mmwr.mm6411a3
- Pitout, J. D. D., Poolman, J. T., Peirano, G., and Cheng, M. (2015). Extraintestinal pathogenic *Escherichia coli. EcoSal Plus* 6:ESP-0005-2015. doi: 10.1128/ecosalplus.ESP-0005-2015
- Rosenberg, S., Bonten, M., Haazen, W., Spiessens, B., Abbanat, D., Go, O., et al. (2021). Epidemiology and O-serotypes of extraintestinal pathogenic *Escherichia coli* disease in patients undergoing transrectal ultrasound prostate biopsy: a prospective multicenter study. *J. Urol.* 205, 826–832. doi: 10.1097/JU.0000000000001425
- Russo, T. A., and Johnson, J. R. (2003). Medical and economic impact of extraintestinal infections due to *Escherichia coli*: focus on an increasingly important endemic problem. *Microb. Infect.* 5, 449–456. doi: 10.1016/S1286-4579(03)00049-2
- Salotra, P., Sreenivas, G., Pogue, G. P., Lee, N., Nakhasi, H. L., Ramesh, V., et al. (2001). Development of a species-specific PCR assay for detection of *Leishmania donovani* in clinical samples from patients with kala-azar and post-kala-azar dermal leishmaniasis. *J. Clin. Microbiol.* 39, 849–854. doi: 10.1128/JCM.39.3.849-854.2001
- Shami, A., Alharbi, N., Al-Saeed, F., Alsaegh, A., Al Syaad, K., Abd El-Rahim, I., et al. (2023). *In silico* subtractive proteomics and molecular docking approaches for the identification of novel inhibitors against *Streptococcus pneumoniae* strain D39. *Life* 13:1128. doi: 10.3390/life13051128
- Smith, A. C., Thorpe, P. G., Learner, E. R., Galloway, E. T., and Kersh, E. N. (2024). At-home specimen self-collection as an additional testing strategy for chlamydia and gonorrhoea: A systematic literature review and meta-analysis. *BMJ Global Health* 9:e015349. doi: 10.1136/bmjgh-2024-015349

- Surgers, L., Valin, N., Carbonne, B., Bingen, E., Lalande, V., Pacanowski, J., et al. (2013). Evolving microbiological epidemiology and high fetal mortality in 135 cases of bacteremia during pregnancy and postpartum. *Eur. J. Clin. Microbiol. Infect. Dis.* 32, 107–113. doi: 10.1007/s10096-012-17 24-5
- Tota, J. E., Struyf, F., Merikukka, M., Gonzalez, P., Kreimer, A. R., Bi, D., et al. (2017). Evaluation of type replacement following HPV16/18 vaccination: Pooled analysis of two randomized trials. *J. Natl. Cancer Inst.* 109:djw300. doi:10.1093/jnci/djw300
- USDA (2024). Monitoring Haemaphysalis longicornis, the Asian Longhorned Tick, Populations in the United States (Washington, DC: US Department of Agriculture), 1–19.
- Verani, J. R., McGee, L., and Schrag, S. J. (2010). Prevention of perinatal group B streptococcal disease: revised guidelines from CDC, 2010. *MMWR Recommend. Rep.* 59, 1–32. Available online at: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5910a1.htm
- Vötsch, D., Willenborg, M., Baumgärtner, W., Rohde, M., and Valentin-Weigand, P. (2021). Bordetella bronchiseptica promotes adherence, colonization, and cytotoxicity of Streptococcus suis in a porcine precision-cut lung slice model. Virulence 12, 84–95. doi: 10.1080/21505594.2020.1858604
 - WHO (2024a). Cervical Cancer. Geneva: World Health Organization.
- WHO (2024b). Human Papillomavirus and Cancer. Geneva: World Health Organization.
- WHO (2024c). Implementation of Self-Care Interventions for Health and Well-Being. Geneva: World Health Organization.
- Yahav, D., Eliakim-Raz, N., Leibovici, L., and Paul, M. (2016). Bloodstream infections in older patients. *Virulence* 7, 341–352. doi: 10.1080/21505594.2015. 1132142
- Zou, Q., Zou, H., Shen, Y., Yu, L., Zhou, W., Sheng, C., et al. (2021). Pathogenic spectrum and resistance pattern of bloodstream infections isolated from postpartum women: a multicenter retrospective study. *Infect. Drug Resist.* 14, 2387–2395. doi: 10.2147/IDR.S315367