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Mycobacterium tuberculosis (Mtb) is among the most successful bacterial

pathogens, with multidrug-resistant strains posing significant challenges to

global tuberculosis control. Traditional single-genome analyses, while essential

for identifying strain-specific mutations, are limited in capturing the full

spectrum of genetic diversity related to virulence, drug susceptibility, and

transmission dynamics. Pangenomics examines the complete gene repertoire

across all sequenced representatives of a species and addresses these limitations

by enabling comprehensive, species-wide assessments of genetic variation.

In this review, we summarize current knowledge of the Mtb pangenome,

focusing on structural organization, methodological frameworks, and clinical

applications. The Mtb pangenome exhibits a highly conserved genetic structure,

with core genome estimates ranging from 1,166 to 3,767 genes, depending

on the analytical thresholds and methodological approaches. Significant

controversy regarding its classification as open or closed arises primarily from

differences in computational pipelines (Roary, BPGA, Panaroo), core genome

inclusion criteria (95%–100% presence), and dataset composition rather than

fundamental biological disagreement. Despite these methodological challenges,

pangenomic applications have demonstrated transformative potential in

molecular epidemiology, drug resistance prediction, and virulence profiling.

This perspective underscores a shift toward diversity-inclusive approaches, with

integration of machine learning and standardization of analytical protocols

identified as key priorities for future tuberculosis research and therapeutic

innovation.
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1 Introduction

Tuberculosis (TB), caused by the Mycobacterium tuberculosis complex (MTBC),
remains one of the leading global infectious diseases. According to the WHO Global
TB Report 2024, an estimated 10.8 million people developed TB in 2023. Although
mortality rates have declined compared to the previous 2 years, TB has once again
become the leading cause of death from a single infectious agent worldwide (World Health
Organization [WHO], 2024). TB is primarily transmitted through airborne particles and is
characterized as highly infectious and contagious, with a prolonged period of infectiousness
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(Martinez et al., 2017). Understanding the dynamics of 
transmission is crucial for outbreak control and for limiting the 
spread of the disease. While TB is distributed, it disproportionately 
aects low-income regions, particularly high-burden countries in 
Sub-Saharan Africa and South Asia (World Health Organization 
[WHO], 2024). Socioeconomic factors such as poverty, 
malnutrition, and poor living conditions are strongly associated 
with increased TB incidence (Lönnroth et al., 2009). 

One of the most significant barriers to TB eradication and 
a major impediment to successful TB treatment is the alarming 
increase in multidrug-resistant (MDR) and extensively drug-
resistant (XDR) strains (Dheda et al., 2024). Drug-resistant TB 
poses a critical threat to global public health, severely undermining 
treatment eectiveness and contributing to the persistence of 
the global epidemic (World Health Organization [WHO], 2024). 
Worryingly, resistance has emerged even against newly developed 
drugs (Zhou et al., 2025; Pym et al., 2016). This resistance is 
primarily driven by spontaneous mutations, followed by selective 
pressure that favors resistant strains (Gandhi et al., 2010). 
Beyond drug resistance, TB presents another persistent challenge: 
its remarkable ability to remain latent in human hosts. It is 
estimated that approximately one quarter to one-third of the 
global population (around two billion people) harbor latent TB. 
Among these, only 5%–10% will develop active diseases during 
their lifetime (World Health Organization [WHO], 2024). The 
ability of Mycobacterium tuberculosis (Mtb) to persist in a dormant 
state, combined with its propensity for developing drug tolerance 
and resistance, contributes to TB relapses, a growing concern for 
global elimination programs (Bhalla and Nanda, 2024). 

Over the past three decades, molecular epidemiology has 
significantly enhanced our understanding of TB transmission 
dynamics and evolutionary biology, thereby informing public 
health strategies (Guerra-Assunção et al., 2015). Whole-
Genome Sequencing (WGS) has revolutionized TB research, 
oering unmatched genetic resolution compared to traditional 
genotyping methods such as IS6110-RFLP, spoligotyping, and 
MIRU-VNTR (Ng et al., 2024). These earlier methods, though 
valuable, suered from limitations including low discriminatory 
power, labor-intensive protocols, and poor reproducibility when 
applied to closely related strains (Guerra-Assunção et al., 2015; 
Couvin et al., 2025). 

2 From single genome analysis to 
pangenomics 

The initial application of WGS in TB research focused primarily 
on comparative analyses between individual clinical strains and 
the H37Rv reference genome. This approach yielded insights 
into strain-specific mutations, particularly those associated with 
drug resistance and virulence (Cole et al., 1998; Zheng et al., 
2008). However, despite its revolutionary impact, this genome-
centric methodology, presented intrinsic limitations in capturing 
the broader genetic landscape and evolutionary dynamics of Mtb 
population at regional and global scales. While single genome 
analyses were instrumental in identifying key genetic determinants 
of pathogenicity and resistance, they oered narrow primarily 
strain-specific perspectives that reflected only a limited portion 

of the species’ overall genomic diversity. Each sequenced strain 
constituted a temporal snapshot of the Mtb genome, and although 
successive studies incrementally expanded our understanding of 
its genetic repertoire, the limitations of single-genome analyses 
became evident (Vernikos et al., 2015). Furthermore, comparative 
studies restricted to pairwise alignments frequently failed to 
capture larger-scale patterns of gene presence, absence, and 
functional distribution that define the species (Vernikos et al., 2015; 
Dunn et al., 2018). 

The recognition of the limitations of traditional genomic 
approaches has catalyzed a paradigm shift toward pangenomics. 
This analytical framework encompasses the entire gene repertoire 
of a bacterial species across all its sequenced representatives 
(Tettelin et al., 2005). By integrating data from multiple genomes 
simultaneously, pangenomics oers a comprehensive overview 
of species-wide genetic content, revealing patterns of gene 
conservation, acquisition, and loss that remain undetectable when 
analyzing genomes in isolation, as a pairwise comparison with a 
reference genome. 

In the case of Mtb, the transition to pangenomic research 
has proven particularly valuable due to the pathogen’s clinical 
relevance and the increasing availability of high-quality genome 
sequences from diverse geographical regions and evolutionary 
lineages. This framework enables researchers to systematically 
examine how genetic diversity correlates with phenotypic traits, 
such as virulence, drug susceptibility, and host adaptation across 
the MTBC. Furthermore, it provides critical insights into the 
evolutionary forces shaping the genetic architecture of the species, 
advancing both our fundamental understanding of TB biology 
and its practical applications in diagnostics, treatment, and 
epidemiological monitoring. 

As our understanding of how genomic diversity aects 
mycobacterial virulence and transmissibility continues to deepen 
(Coscolla and Gagneux, 2014), this comprehensive genetic 
perspective becomes increasingly vital. Thus, the pangenomic 
approach represents not only a methodological advance but also 
a fundamental reconceptualization of how Mtb is studied as a 
genetically diverse pathogen with profound implications for global 
public health. 

3 The Mycobacterium tuberculosis 
pangenome: definition and 
conceptual framework 

3.1 Pangenome architecture in 
M. tuberculosis 

The Mtb genome is known for its high degree of conservation, 
exhibiting limited genetic variability across strains (Sreevatsan 
et al., 1997). This genomic stability is largely attributed to the 
organism’s clonal nature and the near absence of horizontal gene 
transfer, which restricts opportunities for large scale genomic 
diversification (Becq et al., 2007). 

The pangenome of MTBC is organized into distinct functional 
compartments based on gene frequency distribution across strains. 
The core genome, comprising genes present in all analyzed strains, 
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encodes essential functions such as basic metabolism, cell wall 
biosynthesis, and key cellular processes (Tettelin et al., 2005). 
Recent estimates place the size of the Mtb core genome between 
3,032 and 3,767 genes, reflecting a relatively conserved genetic 
backbone required for viability and virulence (Espinoza et al., 
2025; Morey-León et al., 2025). The soft-core genome includes 
genes found in most strains (≥95%), typically encompassing near 
universal functions within the species (Periwal et al., 2015). In 
contrast, the accessory genome comprises genes present in a 
subset of strains, often reflecting lineage-specific, geographically 
restricted, or phenotype-associated traits, such as drug resistance 
or virulence factors (Dar et al., 2020). Large-scale analyses of 
clinical isolates underscore the core genome’s role as a blueprint 
of essential pathogenic functions, oering key insights into 
the genetic architecture necessary for infection establishment 
and maintenance (Periwal et al., 2015). The highly conserved 
foundation contrasts markedly with the accessory genome’s 
variability, which contributes to lineage-specific adaptations and 
regional epidemiological dynamics (Chekesa et al., 2024). Such 
genomic duality highlights an evolutionary process wherein the 
accessory genome serves as a reservoir of genetic innovation, 
promoting adaptability to diverse host environments and selective 
pressures, including the emergence of antimicrobial resistance and 
enhanced virulence (Espinoza et al., 2025). 

3.2 Comparative pangenomic context: 
M. tuberculosis among intracellular 
pathogens 

To contextualize the distinctive features of the Mtb pangenome, 
it is instructive to compare its genetic architecture with that of 
other intracellular bacterial pathogens. Such comparative analyses 
aid in revealing both convergent evolutionary patterns and species-
specific adaptations that delineate Mtb’s unique position within the 
broader spectrum of intracellular pathogenesis. Pangenome size 
and conservation levels vary widely among intracellular pathogens. 
For instance, the facultative intracellular bacterium Salmonella 
enterica possesses a core genome of approximately 2,800 genes 
within a compact pangenome of ∼10,000 gene families, indicating 
genomic plasticity in contrast to its close relative E. coli, which 
exhibits continuous expansion of its genetic repertoire (Jacobsen 
et al., 2011). In contrast, Legionella pneumophila, demonstrates 
a core genome of 1,979 genes, but markedly greater genetic 
diversity reflecting its adaptation to diverse environmental niches 
and extensive horizontal gene transfer (D’Auria et al., 2010). 
Similarly, Listeria monocytogenes, another facultative intracellular 
pathogen, shows moderate genetic diversity with lineage-specific 
adaptations across its three major phylogenetic groups (den Bakker 
et al., 2010). Within this comparative framework, Mtb stands out 
by maintaining a larger and conserved core genome comprising 
over 3,000 genes (Espinoza et al., 2025; Morey-León et al., 2025; 
Behruznia et al., 2025; Bundhoo et al., 2024) than other intracellular 
pathogens such as Salmonella enterica (∼2,800 genes), Legionella 
pneumophila (1,979 genes), or Listeria spp. (2,032 core genes) 
(Jacobsen et al., 2011; D’Auria et al., 2010; den Bakker et al., 
2010). This suggests that Mtb obligate pathogenic lifestyle demands 
retention of a broader set of essential functions across all strains, 

allowing genomic variability and reduced tolerance for gene loss 
compared to facultative pathogens, which rely on greater inter-
strain plasticity to adapt to variable environmental conditions. 

These evolutionary constraints and their functional 
consequences become clearly evident through pangenomic 
comparisons. Evidence indicates that patterns of genetic diversity 
are closely linked to a pathogen’s ecological niche and evolutionary 
history, with gene frequency function relationships showing 
across species conservation (Hyun et al., 2022). In this context, 
the restricted genetic diversity of Mtb reflects its specialization 
for human-to-human transmission and limited environmental 
survivability, unlike L. pneumophila, which relies on broad genetic 
diversity for environmental adaptation, or S. enterica, which 
navigates a dual lifestyle between host and the environment. 
Thus, the Mtb pangenome architecture emerges as a distinct 
evolutionary strategy: a highly conserved genome with minimal 
accessory content, optimized for stable pathogenicity within a 
specific host range. This architecture contrasts with the dynamic 
and open pangenomes characteristic of a facultative intracellular 
bacterium, underscoring the unique evolutionary trajectory of 
Mtb. Nonetheless, the full extent and implications of this genomic 
structure remain to be researched. 

4 The open vs. closed pangenome 
controversy in M. tuberculosis 

A critical question in understanding Mtb genomic architecture 
is whether its pangenome follows an open or closed model, an issue 
with significant implications for microbial evolution, epidemiology, 
and the emergence of drug resistance. 

The classification of the Mtb pangenome as open or closed has 
been a subject of ongoing debate, representing one of the most 
contentious aspects of TB genomics. This controversy arises from 
dierences in analytical approaches, dataset composition, and the 
interpretation of mathematical models used to predict pangenome 
dynamics (Tettelin et al., 2008; Rouli et al., 2015; Marin et al., 2025). 
Pangenome openness is typically assessed through pangenome 
saturation curves, which plot the cumulative number of unique 
genes identified (y-axis) against the number of genomes analyzed 
(x-axis) (Tettelin et al., 2005). 

4.1 Evidence of an open pangenome 

An open pangenome is characterized by a substantial accessory 
gene pool and high inter-strain genomic diversity. In Mtb, 
this diversity arises predominantly through structural genomic 
alterations such as deletions, duplications, and rearrangements, 
rather than horizontal gene transfer (Periwal et al., 2015; Marin 
et al., 2025; Zakham et al., 2021). Mathematically, an open 
pangenome is inferred when gene accumulation curves continue 
to rise without plateauing, indicating ongoing gene discovery with 
the inclusion of additional genomes (Tettelin et al., 2005, 2008). 
A Heaps’ alpha value (α) < 1 further supports this model suggesting 
a non-saturating, theoretically unbounded pangenome (Espinoza 
et al., 2025). In contrast, a closed pangenome is defined by gene loss 
and deletion events rather than acquisition, with saturation curves 
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reaching a plateau, indicating that most genes have already been 
identified (Behruznia et al., 2025). 

Compelling evidence supports the open pangenome 
architecture in Mtb. Mathematical models based on saturation 
curves, derived from datasets encompassing 96 to 500 genomes, 
consistently reveal non-saturating trajectories, implying ongoing 
gene discovery (Periwal et al., 2015; Negrete-Paz et al., 2023). 
Empirical data corroborate these findings with geographically 
diverse strain collections exhibiting substantial accessory gene 
variation (Morey-León et al., 2025; Chekesa et al., 2024; Yang 
et al., 2018). Long-read sequencing technology has further 
revealed pangenomes containing up to 4,325 total genes, of which 
558 are accessory, highlighting a degree of genomic variability 
incompatible with a closed model (Espinoza et al., 2025). This 
diversity is driven by multiple mechanisms, including copy 
number variation, structural genome modeling, and lineage-
specific patterns of gene presence or absence, which collectively 
contribute to pangenome expansion (Bhalla and Nanda, 2024; Yang 
et al., 2018). The convergence of these mathematical inferences, 
empirical observations, and mechanistic insights from highly 
diverse strain datasets supports the classification of Mtb as 
possessing an open pangenome architecture. 

4.2 Evidence for a closed pangenome 

Despite growing support for an open pangenome in Mtb, 
a substantial body of literature suggests the opposite, a closed 
or nearly closed pangenomic structure. Such findings emerge 
from independent research groups employing varied analytical 
approaches and strain datasets yet consistently reporting limited 
genetic diversity and extensive genomic conservation (Behruznia 
et al., 2025; Zakham et al., 2021; Silva-Pereira et al., 2024). 
Biological characteristics intrinsic to Mtb support the closed 
pangenome model. Unlike many bacteria with open pangenomes 
maintained by active horizontal gene transfer, Mtb displays 
minimal to no evidence of such events, lacks plasmids, and 
exhibits a strong clonal population structure (Derbyshire and 
Gray, 2014). Consequently, gene acquisition plays a negligible 
role in shaping its genomic diversity; instead, gene loss is the 
predominant mechanism of genomic variation within the MTBC 
(Silva-Pereira et al., 2024; Costa et al., 2020). Mathematical 
analyses further reinforce this view. Pangenome curves generated 
from various datasets exhibit plateau formation, and power-law 
regression models yield coeÿcients supporting minimal potential 
for future expansion (Dar et al., 2020). Empirically, constrained 
pangenomic profiles have been reported in comprehensive analyses 
of 324 complete genomes spanning all major lineages with 
only modest accessory gene content identified (Behruznia et al., 
2025). Similarly, studies of 420 epidemiologically diverse strains 
identified only 85 novel genes beyond the reference genome, 
underscoring a limited capacity for genome expansion (Zhou 
et al., 2025). Additional support comes from showing that core 
genome sizes are relatively small (e.g., 1,166 conserved genes in 
human-adapted MTBC strains), and that observed diversification 
is largely driven by phylogenetic inheritance rather than acquisition 
processes (Zakham et al., 2021; Silva-Pereira et al., 2024). Machine 
learning approaches have further confirmed these patterns by 

detecting genomic signatures consistent with constrained rather 
than expansive, evolutionary dynamics (Kavvas et al., 2018). 
Moreover, some apparent signs of pangenome expansion in prior 
studies have been attributed to artifacts such as poor genome 
assembly quality or inconsistent gene annotation criteria (Marin 
et al., 2025), casting doubt on the robustness of some claims of 
continuous gene discovery. 

The classification of the Mtb pangenome as open or closed has 
profound biological and clinical implications. An open pangenome 
would imply that the species retains the capacity for continuous 
diversification. This scenario suggests greater adaptive potential, 
particularly in response to antibiotic pressure, as accessory 
genes or structural rearrangements could generate new resistance 
determinants or enhance tolerance mechanisms (Periwal et al., 
2015; Yang et al., 2018; Espinoza et al., 2025). Likewise, an 
open model would support the notion that virulence traits may 
continue to diversify across lineages, contributing to heterogeneous 
clinical phenotypes and potentially complicating vaccine or drug 
development strategies. From an evolutionary perspective, an 
open pangenome aligns with long-term adaptability, allowing Mtb 
to persist under fluctuating host and environmental pressures. 
In contrast, a closed pangenome underscores the remarkable 
evolutionary stability of the MTBC, where genomic innovation is 
limited and adaptation arises primarily through point mutations 
and gene loss rather than acquisition of novel functions (Silva-
Pereira et al., 2024). This model explains why drug resistance in this 
pathogen is almost exclusively mutation-driven, often involving 
well-characterized chromosomal targets. A closed pangenome also 
suggests that virulence factors are largely fixed, which may explain 
the conserved pathogenesis mechanisms across global lineages 
despite geographical and host diversity (Zakham et al., 2021; 
Dar et al., 2020). Ultimately, whether the Mtb pangenome is 
truly open or closed shapes our expectations for its long-term 
evolutionary trajectory, the mechanisms by which resistance and 
virulence emerge, and the strategies required for global TB control. 
Bridging methodological variation with biological interpretation is 
therefore critical to fully leverage pangenomics for both basic and 
translational research. 

4.3 Methodological factors contributing 
to divergent pangenome classifications 

The ongoing debate over whether Mtb pangenome is open or 
closed is significantly influenced by methodological heterogeneity 
across studies. Divergent classifications are often not the result 
of biological inconsistency but rather stem from dierences in 
analytical tools, genome quality, sequencing platform, threshold 
criteria, and data set composition. Understanding these technical 
determinants is essential for reconciling interpretations and 
establishing a standardized framework for pangenomic analysis. 

4.3.1 Analytical tools and processing parameters 
A principal source of variation in pangenome architecture 

arises from the choice of computational tool used for pangenome 
construction. Software such as Roary (Page et al., 2015), BPGA 
(Chaudhari et al., 2016), and Panaroo (Tonkin-Hill et al., 2020) 
apply distinct algorithms for ortholog detection, gene clustering, 
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and similarity thresholding. Such dierences lead to substantially 
divergent estimates of pangenome size and composition even 
when applied to identical datasets. In Mtb, these tool-dependent 
biases manifest as distinct patterns: Roary’s conservative similarity 
thresholds tend to fragment repetitive gene families, artificially 
inflating accessory genome estimates, while BPGA’s clustering 
algorithms may inappropriately merge divergent PE/PPE family 
members, and Panaroo’s stringent error correction, though 
reducing false positives, can occasionally exclude genuine rare 
variants characteristic of highly clonal populations (Marin et al., 
2025; Behruznia et al., 2025). The heterogeneity observed in 
reported pangenome sizes (Table 1) illustrates the methodological 
dependence of M. tuberculosis pangenome estimates. To 
contextualize these dierences, Table 2 provides a comparative 
overview of the main pipelines, highlighting their strengths, 
limitations, and applicability to clonal pathogens. 

Another critical factor involves the criteria used to define the 
core genome. Thresholds for gene presence across strains vary 
considerably: some studies adopt strict 100% inclusion criteria 

(Zhou et al., 2025; Yang et al., 2018), while others use relaxed 
thresholds ranging from 95% to 99% presence across analyzed 
strains (Morey-León et al., 2025; Periwal et al., 2015; Behruznia 
et al., 2025). These disparities in threshold decisions have a 
profound impact on the classification of genes as core or accessory. 
For instance, Periwal et al. (2015) found that a 95% presence 
threshold maximized core genome representation of essential 
functions, whereas Morey-León et al. (2025) employed a 99% 
threshold to refine core gene inclusion. Adjusting the threshold 
from 95% to 100% can reclassify hundreds of genes, dramatically 
altering pangenome size and the inferred open or closed status 
(Periwal et al., 2015; Morey-León et al., 2025). 

These wide variation in Mtb core genome estimates across 
studies ranges from as few as 1,166 conserved genes in strictly 
human-adapted species (Zakham et al., 2021; Silva-Pereira 
et al., 2024) to over 3,767 genes in broader, more inclusive 
analyses (Espinoza et al., 2025; Morey-León et al., 2025). Such 
variability underscores the sensitivity of pangenome architecture to 
analytical parameters. 

TABLE 1 Summary of pangenome studies conducted on Mycobacterium tuberculosis complex (MTBC). 

Dataset size Core Accessory Open/closed Tools Application Reference 

96 MTBC 2,066 6,033 Open Prodigal, CD-HIT, BLAST Identification of essential core 

genes 
Periwal et al., 2015 

146 M. tuberculosis Not 
specified 

Not specified Not specified PANPASCO Molecular epidemiology Jandrasits et al., 2019 

88 M. tuberculosis 3,032 3,671 Near to close Roary Molecular epidemiology Morey-León et al., 2025 

3,104 1,426 BPGA 

233 MTBC 3,116 947 Closed PGAP Molecular epidemiology Silva-Pereira et al., 2024 

442 M. tuberculosis 2,754 Not specified Near to close BPGA Therapeutic target discovery and 

drug resistance 

Khan et al., 2024 

88 M. tuberculosis 3,104 936 Closed Panaroo Molecular epidemiology Morey-León et al., 2025 

110 M. tuberculosis 3,767 558 Open Panaroo Therapeutic target discovery and 

virulence 

Espinoza et al., 2025 

264 M. tuberculosis 3,241 2,109 Not specified Not specified Virulence and pathogenicity Bundhoo et al., 2024 

1,595 M. tuberculosis 2,803 Not specified Closed Machine learning Therapeutic target discovery and 

virulence 

Kavvas et al., 2018 

183 MTBC 1,166 5,870 Near to close BLASTP Molecular epidemiology Zakham et al., 2021 

121 M. tuberculosis 3,698 4,237 Open Spine, AGEnt, ClustAGE Virulence and pathogenicity Rufai et al., 2020 

47 M. tuberculosis 3,566 1,196 Open Prokka, Prodigal, BLASTP, 
GET_HOMOLOGUES, BPGA 

Molecular epidemiology Hurtado-Páez et al., 2023 

33 M. tuberculosis 3,679 2,086 Open PGAP, PanGP Virulence and pathogenicity Yang et al., 2018 

150 M. tuberculosis 1,251 Not specified Not specified BPGA Therapeutic target discovery and 

drug resistance 

Dar et al., 2020 

75 M. tuberculosis 3,270 1,667 Open BLASTP, GET_HOMOLOGUES, 
BPGA 

Molecular epidemiology Chekesa et al., 2024 

490 M. tuberculosis 2,231 3,729 Near to close Roary, Panaroo Virulence and pathogenicity Negrete-Paz et al., 2023 

2,184 M. tuberculosis 3,784 1,109 Open Panaroo Therapeutic target discovery and 

drug resistance 

Bhalla and Nanda, 2024 

151 M. tuberculosis 3,833 3,879 Not specified Panaroo, PpanGGolin, Roary, 
Pangene 

Methodological review Marin et al., 2025 

335 MTBC 3,639 1,008 Closed Panaroo, Pangraph Molecular epidemiology Behruznia et al., 2025 

420 M. tuberculosis 3,438 Not specified Closed Prokka, GET_HOMOLOGUES Molecular epidemiology Zhou et al., 2025 

MTBC, Mycobacterium tuberculosis complex. 
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TABLE 2 Comparative overview of major pangenome construction pipelines and their suitability for Mycobacterium tuberculosis. 

Tool Approach/algorithm Strengths Limitations Suitability for 
M. tuberculosis 

Roary 

(Page et al., 2015) 
CD-HIT 

BLASTP clustering of orthologs 
Fast, scalable (>1,000 genomes) 

Widely adopted 

Strong community support 

Overestimates accessory genome by 

fragmenting paralogs 
Commonly used, but risk of inflating 

diversity 

BPGA 

(Chaudhari et al., 
2016) 

BLAST/USEARCH-based 

ortholog clustering 

Integrates functional annotation 

Flexible analyses 
May merge divergent paralogs 

Less optimized for clonal pathogens 
Useful for functional profiling 

Moderate accuracy in paralog-rich 

genomes 

Panaroo 

(Tonkin-Hill et al., 
2020) 

Graph-based gene clustering 

Error correction 

Reduces false positives 
Robust against assembly/annotation 

errors 
Ideal for clonal species 

Can exclude true rare variants 
Higher computational cost 

Highly suitable 

Minimizes artificial diversity in clonal 
MTBC 

PGAP 

(Zhao et al., 2012) 
OrthoMCL-based ortholog 

clustering / gene family 

assignment 

Sensitive orthology assignment 
Strong statistical rigor 

Computationally demanding 

Less scalable 

Useful for medium-sized datasets and 

reference-based comparisons 

PanX 

(Ding et al., 2018) 
Phylogenetic-aware graph 

clustering 

Integrates evolutionary context 
Interactive visualization of gene 

gain/loss 

Less eÿcient for very large datasets 
Limited adoption 

Suitable for evolutionary/phylogenetic 

interpretation of MTBC 

4.3.2 Genome quality and assembly standards 
Genome assembly quality is a fundamental determinant of 

pangenomic accuracy, with sequencing platform choice exerting 
a profound influence on pangenome estimates. Draft assemblies 
are prone to fragmentation, misassembly, and annotation artifacts, 
which can artificially inflate estimates of accessory genomes and 
obscure the accurate gene content (Zhou et al., 2025). Platform-
specific characteristics compound these challenges through distinct 
error profiles and assembly biases that dierentially impact 
pangenome inference. Short-read sequencing technologies, while 
oering high accuracy and throughput, systematically fragment 
repetitive genomic regions essential for accurate pangenome 
reconstruction. Illumina-based assemblies frequently break at 
PE/PPE gene clusters and IS6110 insertion sites, creating artificial 
gene truncations (Marin et al., 2025). These fragmentation artifacts 
are particularly problematic for Mtb pangenome studies, where 
repetitive sequences comprise a significant genomic content, yet are 
critical for accurate strain dierentiation. On the other side, long-
read sequencing platforms address many assembly limitations but 
introduce distinct biases aecting pangenome estimates. Oxford 
Nanopore technologies demonstrate superior performance for 
repetitive sequence resolution but exhibit higher indel error rates 
that can create false gene variants during annotation (Behruznia 
et al., 2025). PacBio SMRT sequencing oers improved accuracy for 
complex genomic architectures yet requires higher coverage depths 
to achieve comparable gene detection sensitivity. Coverage depth 
eects are particularly pronounced in pangenome studies, where 
insuÿcient sequencing depth can systematically underrepresent 
low-abundance genes or create false absence calls that skew core-
accessory genome classifications. 

Platform choice also influences downstream analytical 
pipelines through assembly contiguity eects. Highly fragmented 
short-read assemblies may require dierent clustering parameters 
compared to complete long-read assemblies, complicating 
comparative analyses across mixed-platform datasets (Marin 
et al., 2025). Analysis limited to complete high-quality genomes 
may underestimate pangenome diversity by excluding rare or 
lineage-specific genes lost during assembly curation. In contrast, 

inclusion of draft assemblies introduces systematic inflation 
through technical artifacts. 

4.3.3 Dataset composition and representativeness 
Beyond computational and technical factors, the composition 

and diversity of analyzed datasets also impact pangenome 
interpretation. Geographic sampling bias can skew accessory 
genome estimates by overrepresenting strain specific elements that 
do not reflect global patterns (Morey-León et al., 2025; Chekesa 
et al., 2024). Likewise, dataset size and phylogenetic breadth are 
crucial. Smaller or phylogenetically homogeneous datasets often 
support closed pangenome models due to limited genetic diversity, 
while larger, more diverse collections tend to reveal great accessory 
gene content and support an open architecture (Dar et al., 2020; 
Silva-Pereira et al., 2024). 

4.4 Biological factors affecting 
pangenome inference in M. tuberculosis 

The intrinsic biological characteristics of Mtb create unique 
challenges for accurate pangenome inference that extend beyond 
purely methodological considerations. The species’ clonal 
population structure and restricted genetic diversification 
mechanisms render pangenome estimates particularly vulnerable 
to technical artifacts, as genuine biological variation cannot be 
easily distinguished from methodological noise (Bolotin and 
Hershberg, 2015). Additionally, besides de bacterial variable 
number tandem repeat units (VNTR), the prevalence of 
specific repetitive sequences in the Mtb genome, including 
the direct repeats (DRs), the mycobacterial intersperse repetitive 
units (MIRUs), the PE/PPE gene families and IS6110 elements 
(Arnold, 2007; Delogu et al., 2017), systematically complicates 
clustering algorithms (Figure 1), while the predominance of 
gene loss over acquisition in Mtb evolution further constrains 
the biological context available for validating apparent genetic 
diversity (Yang et al., 2018; Silva-Pereira et al., 2024). This 
biological constraint amplifies the impact of technical decisions on 
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FIGURE 1 

Impact of repetitive sequences on reconstructing the Mycobacterium tuberculosis pangenome. The repetitive sequence features of M. tuberculosis 
include direct repeats (DR), Mycobacterial Interspersed Repetitive Units (MIRU), the insertion sequence 6110 (IS6110), and the PE/PPE gene family. 
Clustering algorithms struggle to accurately identify homologous sequences in these repetitive regions during pangenome reconstruction. These 
inaccuracies tend to falsely inflate the accessory genome (lower panel) compared to genomes without such repetitive sequences (upper panel). 
Each circle labeled “Mtb” represents genomes from different M. tuberculosis strains. Created in BioRender. Vázquez-Marrufo (2025) 
https://BioRender.com/kzarxxt. 

estimates of pangenome architecture. In species with active gene 
acquisition, spurious gene detection can often be identified 
through phylogenetic incongruence or atypical sequence 
characteristics. However, Mtb’s evolutionary history, which is 
primarily characterized by chromosomal rearrangements and 
deletions, provides no such comparative framework, making every 
apparent genetic variant potentially legitimate from a biological 
perspective. Consequently, methodological choices regarding 
clustering parameters, similarity thresholds, and quality control 
measures exert disproportionate influence on final pangenome 
estimates, as biological plausibility alone cannot serve as a filter for 
technical artifacts. 

In summary, the classification of the Mtb pangenome is 
highly sensitive to both biological constraints and methodological 
heterogeneity. The species’ intrinsic characteristics, including 
clonal structure, repetitive sequences, and reductive evolution, 
create a genomic context where technical artifacts are diÿcult 
to distinguish from genuine variation. Compounding these 
biological factors, dierences in computational tools, parameter 
thresholds, genome quality, and dataset composition can each 
independently and often synergistically aect the interpretation 
of pangenome structure. These combined sources of biological 
and methodological variability underscore the urgent need 
for standardized protocols that account for species-specific 
characteristics to ensure reproducibility and comparability across 

studies. The following section outlines systematic approaches for 
robust pangenome construction that address these challenges. 

5 Pangenome construction: from 
raw data to biological insights 

Pangenome construction in bacterial genomics has evolved 
along two principal methodological paradigms: clustering-based 
and graph-based approaches. Clustering -based methods identify 
homologous gene families across genome assemblies and classify 
them into presence-absence matrices, facilitating large scale 
comparative analyses with computational eÿciency and categorical 
distinction of core and accessory genes. However, these approaches 
traditionally focus exclusively on protein-coding sequences, 
potentially overlooking regulatory elements, non-coding RNAs, 
and intergenic regions that contribute to phenotypic diversity 
and evolutionary adaptation (Vernikos et al., 2015). In contrast, 
graph-based methods model the pangenome as an interconnected 
network, preserving structural variation, allelic diversity, and 
synteny across both coding and non-coding genomic content. This 
paradigm oers high resolution for detecting complex evolutionary 
events such as inversions, duplications, and recombination 
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features often missed by binary matrix approaches (Tonkin-
Hill et al., 2020; Garrison et al., 2018; Hickey et al., 2020). 
The inclusion of non-coding content through whole-genome 
approaches reveals substantially higher genomic diversity, with 
recent studies reporting approximately 22% variable genomic 
content when intergenic regions and partial gene deletions are 
included, compared to approximately 10% accessory content 
identified through protein coding analysis (Behruznia et al., 
2025). The choice between analyzing exclusively coding sequences 
versus including non-coding genomic content has implications 
for Mtb pangenome construction, where genetic diversity is 
primarily driven by large sequence polymorphisms and regions 
of dierence that often encompass both coding and regulatory 
sequences, as previously stated. Protein coding-based analyses 
may fragment these evolutionary units, potentially underestimate 
the functional impact of structural variants or missing regulatory 
mutations that influence gene expression without altering protein 
sequences. This methodological limitation can lead to systematic 
underrepresentation of lineage-specific adaptations, as regulatory 
variations in promoter regions of core genes remain undetected 
despite their potential phenotypic consequences (Behruznia et al., 
2025). Conversely, including non-coding content provides a more 
comprehensive view of genomic diversity but introduces analytical 
challenges in establishing appropriate similarity thresholds for 
intergenic regions and distinguishing genuine regulatory variation 
from sequencing artifacts. The selection between paradigms 
depends on research objectives and analytical priorities: clustering-
based methods oer eÿciency for large-scale population genetics, 
functional gene surveys, and studies where structural variants 
manifest as clear gene presence/absence patterns, while graph-
based approaches provide enhanced resolution for detailed 
structural characterization, particularly when analyzing complex 
rearrangements, partial deletions, or regulatory modifications that 
span multiple genomic elements (Garrison et al., 2018; Tonkin-
Hill et al., 2020). Despite the enhanced resolution of graph-
based models for certain structural analyses, clustering-based 
strategies remain the standard in bacterial pangenomics due to their 
scalability, established analytical pipelines, and compatibility with 
statistical frameworks (Tettelin et al., 2005; Rouli et al., 2015). Given 
their prevalence, the following sections outline the standardized 
workflow, species-specific considerations, and gene prediction 
methodologies that underpin clustering-based Mtb pangenome 
construction. 

5.1 General workflow overview 

Clustering-based pangenome construction follows a 
standardized computational pipeline comprising: (i) genome 
collection and quality assessment, (ii) gene prediction and 
annotation, (iii) homology detection and clustering, (iv) presence-
absence matrix generation, and (v) statistical and functional 
characterization (Medini et al., 2005). Homologous gene families 
are identified across genome assemblies and classified into 
core, accessory, and unique gene sets according to frequency 
distribution thresholds (Tettelin et al., 2005). This framework 
enables quantification of genomic diversity and functional 
partitioning at the species level. 

5.2 Dataset requirements and 
species-specific considerations 

Robust pangenome construction of Mtb requires stringent 
dataset quality and thoughtful phylogenetic representation due 
to its highly clonal nature and restricted gene flow. Assemblies 
should fall within the expected genome size range (4.2–4.5 Mb) 
with N50 values > 100 kb, and contamination levels < 1% as 
assessed by tools such as CheckM. Complete genome assemblies 
are strongly preferred as draft assemblies compromise orthology 
detection (Zhou et al., 2025). If draft genomes are used, stringent 
filters must be applied, including a minimum contig length of 
≥1 kb, a maximum contig number of <200, and a completeness 
of ≥95% to maintain analytical integrity (Parks et al., 2015). 

Moreover, the pronounced phylogeographic structure 
characteristic of Mtb populations necessitates carefully designed 
sampling strategies to capture the full spectrum of global 
genetic diversity. Robust pangenome analyses should incorporate 
representatives from all major phylogenetic lineages, as each 
lineage carries distinct genetic signatures and evolutionary 
adaptations that enrich the species’ overall diversity. Ensuring 
balanced lineage representation is essential to avoid sampling bias 
that could distort estimates of core and accessory genome content 
in favor of overrepresented groups. Geographic diversity is equally 
crucial, as regional strain populations often possess unique genetic 
traits shaped by local transmission patterns and selective pressures 
(Chekesa et al., 2024). 

5.3 Gene prediction and annotation for 
bacterial pangenomics 

Achieving consistent gene identification across diverse genome 
assemblies remains a core challenge in bacterial pangenomics. 
Variations in gene calling algorithms and parameter settings 
can significantly aect downstream homology detection and 
ultimately shape inferred pangenome architecture. Contemporary 
studies primarily rely on four widely used gene prediction tools-
Prodigal, Glimmer, GeneMarkS-2, and the more recent Balrog, 
each employing distinct algorithmic strategies tailored to specific 
bacterial features (Dimonaco et al., 2022; Horsfield et al., 2023). 
Among these, Prodigal (PROkaryotic DYnamic programming 
Gene-finding ALgorithm) has become the most widely adopted 
choice in bacterial pangenomics due to its speed, accuracy, and 
robust performance across diverse GC content ranges (Hyatt 
et al., 2010). Unlike traditional Hidden Markov Model approaches, 
Prodigal utilizes log-likelihood scoring and dynamic programming 
algorithms to ensure rapid and precise gene prediction. Its 
widespread adoption is evidenced in its integration into major 
annotation pipelines such as Prokka, and numerous pangenome 
construction tools (Seemann, 2014). In contrast, Glimmer uses 
interpolated Markov models to distinguish coding regions, oering 
complementary predictions particularly useful in complex genomic 
contexts, albeit at a higher computational cost (Delcher et al., 2007). 
GeneMarkS-2, employing species-specific inhomogeneous Markov 
chains, is advantageous for organisms with well-characterized 
phylogenies but similarly demands more computational resources 
(Lomsadze et al., 2018). Crucially, no single predictor performs 
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optimally across all bacterial species. Performance varies with GC 
content, genome organization, and phylogenetic background, and 
tool choice can significantly influence the results (Dimonaco et al., 
2022). This variability has important implications for pangenome 
studies, as comprehensive benchmarking studies have revealed 
that tool selection can impact pangenome architecture estimates, 
necessitating a careful evaluation of prediction accuracy for the 
specific bacterial groups under investigation. 

Beyond gene calling, annotation consistency encompasses 
standardized functional assignment and database consistency. 
Prokka exemplifies a widely adopted pipeline that combines 
Prodigal for gene prediction with a hierarchical annotation 
strategy. This strategy involves BLAST+ searches against curated 
databases (UniProtKB, RefSeq) followed by HMMER3 searches 
against protein family databases (Pfam, TIGRFAMs) (Seemann, 
2014). This hierarchical strategy enables rapid annotation while 
maintaining functional accuracy across diverse bacterial genomes, 
creating a standardized framework essential for downstream 
pangenomic analyses. 

5.4 Homology detection and clustering 

Once consistent genes are established, the next major challenge 
is accurate homology detection. This task has driven the 
development of increasingly sophisticated clustering algorithms, 
designed to balance sensitivity, scalability, and biological accuracy. 
Standard BLAST searches typically employ e-value thresholds 
≤1e-5 (0.00001) to infer significant homology, with coverage 
requirements often set between 50% and 80% of the shorter 
sequence to ensure biologically meaningful alignments (Tettelin 
et al., 2005). Early approaches relied heavily on BLAST-based all-
vs.-all comparisons, which oered high sensitivity but became 
computationally limited with the exponential growth of genomic 
datasets (Altschul et al., 1990; Tonkin-Hill et al., 2020). To 
address this, faster clustering tools emerged and prompted a 
paradigm shift toward heuristic algorithms that traded some 
sensitivity for substantial gains in performance. The introduction 
of rapid clustering algorithms marked a key breakthrough in 
scalability. CD-HIT, for example, pioneered the use of word-based 
filtering strategies and greedy incremental clustering, processing 
sequences by decreasing length and grouping them via eÿcient 
word counting rather than expensive pairwise alignments (Fu 
et al., 2012). Similarly, USEARCH introduced further algorithmic 
optimizations and indexing strategies that enhanced computational 
eÿciency while maintaining reasonable clustering accuracy (Edgar, 
2010). These approaches successfully enabled the analysis of 
datasets comprising millions of sequences, though their speed 
advantages came at the cost of reduced sensitivity for detecting 
distant homologs. Recognizing the limitations of simple sequence 
similarity in distinguishing biologically meaningful orthology 
from recent gene duplication events led to the development of 
more advanced graph-based approaches. OrthoMCL exemplifies 
this transition, combining conventional similarity searches with 
Markov clustering to resolve complex homology relationships, 
particularly valuable for organisms with intricate evolutionary 
histories (Li et al., 2003). While more biologically accurate, this 
method requires substantially greater computational resources. 

The contemporary frontier in sequence clustering has been 
defined by algorithms that achieve a combination of BLAST-
level sensitivity with heuristic-level speed. MMseqs2 represents 
this new generation, employing indexing strategies and optimized 
alignment algorithms that enable linear-time clustering of massive 
protein datasets without compromising sensitivity (Steinegger and 
Söding, 2017). However, even advanced clustering algorithms face 
challenges when applied to Mtb genomes due to their highly 
repetitive architecture. PE/PPE multigene families present complex 
clustering decisions due to conserved N-terminal domains that 
can confound similarity-based detection, potentially leading to 
inappropriate merging of functionally distinct family members 
or artificial fragmentation of genuine orthologs. IS6110 insertion 
sequences introduce additional complexity through variable copy 
numbers between strains. These repetitive elements require careful 
optimization of clustering parameters: conservative thresholds 
may artificially inflate accessory genome estimates by fragmenting 
related sequences, while permissive thresholds risk masking 
genuine functional diversity within gene families (Espinoza et al., 
2025). This example illustrates broader principles governing 
selection among algorithmic paradigms, which require careful 
consideration of the evolutionary characteristics underlying each 
bacterial system under study. 

Highly conserved species like Mtb benefit from rapid 
clustering approaches that can eÿciently process large datasets. 
At the same time, more divergent bacterial groups demand the 
enhanced sensitivity provided by orthology-aware or graph-
based methodologies (Vernikos et al., 2015). Furthermore, the 
optimization of similarity thresholds and clustering parameters 
must reflect the specific evolutionary pressures shaping each 
bacterial lineage, as inappropriate parameter selection can 
either artificially fragment genuine gene families or inappropriately 
merge functionally distinct groups. The particular similarity criteria 
employed during homology detection fundamentally determine 
pangenome architecture estimates in Mtb. Clustering algorithms 
establish boundaries between orthologous and paralogous 
relationships through sequence identity thresholds, coverage 
requirements, and alignment parameters, directly influencing 
gene family partitioning. These methodological decisions create 
measurable consequences in MTBC pangenome studies: relaxed 
alignment thresholds (such as Panaroo’s default 70% identity 
for diverse gene families) can inappropriately group partially 
deleted genes with complete ones, while stringent criteria (≥90% 
identity with ≥75% coverage, as used for H37Rv validation) may 
fragment genuine orthologs, fundamentally altering estimates of 
core and accessory genome content (Behruznia et al., 2025; Marin 
et al., 2025). The mathematical relationship between clustering 
parameters and gene family boundaries thus creates a direct link 
between methodological choices and biological interpretations of 
pangenome structure. 

5.5 Matrix generation and statistical 
characterization 

The culmination of the pangenomic construction process 
requires the systematic transformation of homologous gene clusters 
into quantitative data structures suitable for statistical analysis. 
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This step is more than a technical transformation; it constitutes 
the conceptual bridge between raw computational information 
and meaningful biological interpretations that underpin our 
understanding of bacterial evolution. The generation of presence-
absence matrices constitutes the methodological core of this 
transformation. These matrices represent genomes as rows and 
gene families as columns, with binary indicators (1 or 0) denoting 
the presence or absence of each genetic element in each genome 
(Medini et al., 2005). However, this apparent binary simplicity 
masks considerable complexity arising from both biological 
and technical realities of genomic analysis. Fragmented genes, 
ambiguous clustering assignments, and variations in assembly 
quality introduce challenges that require sophisticated quality 
control frameworks to ensure the resulting matrices reflect genuine 
biological variation rather than technical artifacts (Tonkin-Hill 
et al., 2020). Contemporary pangenome pipelines have developed 
extensive pre- and post-processing scripts for quality control, 
including diagnostic plots for contamination detection and gene 
count validation to address these systematic sources of error 
(Tonkin-Hill et al., 2020). 

The subsequent statistical characterization process reveals 
fundamental patterns of genomic organization through the 
classification of gene families according to their frequency 
distributions. The definition of the core genome, previously 
conceptualized as genes present in all analyzed strains, has 
evolved toward a spectrum of criteria recognizing the technical 
and biological realities of modern pangenomic analysis. The 
selection of presence thresholds for defining the core genome 
represents one of the most critical and controversial decisions in 
pangenome analysis. While the strict definition of 100% presence 
oers mathematical certainty, it frequently underestimates essential 
gene content due to technical limitations, including incomplete 
assemblies, annotation errors, or genuine but rare gene losses 
(Matthews et al., 2024). This rigidity has led to widespread 
adoption of more flexible thresholds, typically ranging from 
95% to 99% presence, each with distinct implications for the 
resulting pangenome architecture. The 95% threshold, widely 
utilized in bacterial pangenome studies, maximizes capture of 
functionally essential genes while accommodating minor technical 
variations (Zhang et al., 2023). Studies have demonstrated that 
this threshold optimally represents essential gene content in 
various bacterial species, capturing critical genetic elements that 
might be erroneously excluded by stricter criteria (Segerman, 
2012; Zhang et al., 2023). Conversely, 99% thresholds oer 
a compromise between inclusivity and conservation, proving 
particularly appropriate for species with high-quality sequencing 
and assembly (Page et al., 2015). The transition between 
these thresholds can result in reclassification of hundreds of 
genes, dramatically altering core genome size estimates and, 
consequently, inferences regarding species genomic plasticity, with 
some studies showing core genome estimates varying by factors 
of three or more depending on threshold selection (Matthews 
et al., 2024). This threshold sensitivity extends beyond the 
core genome toward characterization of the accessory genome. 
The introduction of “soft-core” (genes present in 95%–99% of 
strains) and “shell” (genes with intermediate frequencies) concepts 
provides more nuanced resolution of pangenome architecture, 
recognizing that gene frequency distributions form a continuum 
rather than discrete categories (Page et al., 2015). This graduated 

perspective reveals patterns of gene conservation reflecting 
dierential selective pressures, complex evolutionary histories, 
and lineage-specific adaptations across multiple resolution levels 
of pangenome analysis (Hyun et al., 2022). The implications 
of these methodological decisions transcend mere technical 
categorization. In species such as Mtb, where genetic diversity 
is inherently limited, threshold selection can determine whether 
the pangenome appears highly conserved or moderately variable. 
A 100% threshold might suggest a core genome of merely 
1,166 genes (Zakham et al., 2021), while a 95% threshold 
could expand this estimate to over 3,700 genes (Espinoza et al., 
2025), representing a greater than three-fold dierence that 
fundamentally alters our understanding of the pathogen’s essential 
biology. Similar patterns have been observed across multiple 
bacterial species where threshold choice dramatically impacts core 
genome size estimates (Park et al., 2019). Beyond categorical 
classification, modern statistical characterization of pangenomes 
incorporates sophisticated quantitative analyses revealing emergent 
properties of bacterial evolution. Power-law regression models 
facilitate the prediction of potential pangenome expansion, 
while rarefaction analyses assess the suÿciency of genomic 
sampling (Parmigiani et al., 2024). The integration of these 
analytical elements into a coherent framework requires not 
only technical rigor but also a deep understanding of the 
underlying biology. Presence-absence matrices, far from being 
mere computational abstractions, encode complex evolutionary 
histories where each binary entry represents millions of years 
of selective pressure, genetic drift, and adaptation (Maistrenko 
et al., 2020). Their careful statistical analysis, informed by 
appropriate methodological decisions, constitutes the foundation 
upon which we build our understanding of bacterial diversity and 
evolutionary potential. 

5.6 Functional analysis and biological 
interpretation of Mycobacterium 
tuberculosis pangenome 

Beyond the technical construction of the pangenome, its 
actual value lies in translating genomic data into biological 
meaning. Functional interpretation bridges the gap between 
raw genetic information and the broader questions that drive 
TB research: How does genetic variation influence drug 
resistance? What genes define virulence or host adaptation? 
Which components are essential for pathogen survival? By 
integrating gene frequency patterns with functional annotation, 
pangenome studies move from describing genetic architecture 
to uncovering the mechanisms that shape Mtb evolution and 
clinical behavior. This level of analysis enables the identification 
of conserved core functions, high-priority therapeutic targets, 
and lineage-specific traits relevant to transmission and disease 
progression. The following section will explore how the biological 
interpretation of the Mtb pangenome has led to transformative 
applications in molecular epidemiology, resistance prediction, 
and virulence research–demonstrating how this comprehensive 
genomic framework is redefining our strategies for understanding 
and controlling TB. 
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FIGURE 2 

Pangenome applications in Mycobacterium tuberculosis studies. Pangenome analysis facilitates the assessment of pathogenicity and virulence by 
identifying a strain’s capacity to cause pulmonary infections or to infect other organs. It serves as a valuable tool for discovering antibiotic resistance 
and therapeutic targets within the M. tuberculosis pangenome, which encompasses DNA, RNA, and proteins. Epidemiological analysis utilizing 
pangenome aids in tracing transmission routes and understanding relationships between strains of varying origins. As the analysis progresses with 
the inclusion of more strain genomes (Mtb-1, Mtb-2, . . ., Mtb-n), the accessory genome may expand, uncovering strain-specific adaptations. 
Created in BioRender. Vázquez-Marrufo (2025) https://BioRender.com/kzarxxt. 

6 Applications and objectives of 
M. tuberculosis pangenome studies 

The comprehensive characterization of genetic diversity 
through pangenome approaches has proven particularly eective 
for Mtb despite the species’ unique evolutionary constraints. In the 
absence of horizontal gene transfer, pangenome analyses capture 
genetic diversity by detecting gene presence/absence patterns 
resulting from characteristic evolutionary mechanisms. Single 
nucleotide polymorphisms creating frameshifts or premature 
stop codons, complete gene deletions, and large sequence 
polymorphisms translate into detectable coding sequence 
variations that clustering algorithms classify as absent or 
lineage-specific genes, eectively capturing the predominantly 
deletion-driven diversification characteristic of clonal bacterial 
species (Silva-Pereira et al., 2024; Behruznia et al., 2025). 

This capacity to translate structural genomic changes into 
analyzable patterns of gene content has yielded transformative 
insights that are reshaping our understanding of TB biology, 
epidemiology, and clinical management (Figure 2). While early 
genomic studies focused on individual reference strains such as 

H37Rv, pangenome studies capture the full spectrum of genetic 
variation present across the global Mtb population, revealing 
previously hidden layers of complexity essential for understanding 
the pathogen’s success as a global health threat (Zhou et al., 2025). 
These applications extend across multiple domains of TB research 
and public health practice, from enhancing our ability to identify 
novel therapeutic targets to addressing the evolving challenges 
posed by MDR and XDR TB strains (World Health Organization 
[WHO], 2024; Dheda et al., 2024). 

The following sections examine the key applications 
and objectives of Mtb pangenome studies, demonstrating 
how this approach is contributing to advances across the 
spectrum of TB research. 

6.1 Molecular epidemiology 

Pangenome analysis has enhanced molecular epidemiological 
investigations of TB by providing a comprehensive genomic 
context for understanding lineage-specific characteristics and 
regional strain diversity. The comprehensive genetic repertoire 
captured through pangenome studies enables researchers to 
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identify lineage-specific markers and transmission patterns, 
complementing existing molecular typing approaches (Zhou 
et al., 2025). While traditional molecular typing methods, such as 
spoligotyping and MIRU-VNTR, provide robust discrimination for 
strain dierentiation, pangenome approaches oer supplementary 
insights, particularly valuable for understanding the genetic basis 
of broader epidemiological patterns, such as lineage-specific 
geographic distributions, regional genetic adaptations, and 
population-level genetic signatures. Building on this foundation, 
specialized computational methods have been developed. The 
introduction of methods like PANPASCO exemplifies this 
advancement, using pangenome-based read mapping against 
reference genomes from major lineages to classify strains and 
identify population-level genetic patterns, facilitating lineage-
specific epidemiological analysis (Jandrasits et al., 2019). Also, 
pangenomic approaches have uncovered critical genomic features, 
such as deletions in accessory genes associated with increased 
virulence in specific lineages, particularly the modern Beijing 
sub-lineage, which may contribute to higher transmissibility 
and drug resistance (Rufai et al., 2020). Moreover, by analyzing 
accessory genome components, it is possible to identify unique 
genetic signatures associated with specific geographical regions, 
population groups, or detect lineage-specific genes that correlate 
with particular epidemiological patterns or host adaptations 
(Chekesa et al., 2024). Pangenome association studies have 
extended this concept by directly correlating genetic variation 
with disease prevalence, exemplified by the identification of 
lineage-4 genes associated with TB patterns in specific Colombian 
populations (Hurtado-Páez et al., 2023). Collectively, these 
regional pangenomic approaches have consistently identified 
geographical patterns in accessory genome content and lineage-
specific genetic signatures, demonstrating the value of population 
genetic characterization for understanding regional Mtb diversity 
(Morey-León et al., 2025). 

6.2 Drug resistance characterization and 
therapeutic target discovery 

Pangenome analysis has revolutionized the understanding 
of antimicrobial resistance in Mtb by providing comprehensive 
insights into both resistance mechanisms and novel therapeutic 
opportunities. This approach extends far beyond the analysis 
of well-characterized core resistance genes to encompass the 
entire genetic repertoire that may contribute to drug resistance 
phenotypes and therapeutic vulnerability. By analyzing the 
collective genetic diversity of resistant strains, it has been 
possible to identify novel resistance mechanisms, compensatory 
mutations, and epistatic interactions that influence treatment 
outcomes and resistance evolution (Kavvas et al., 2018). The 
integration of machine learning and structural analysis with 
pangenome data has significantly advanced the identification 
of genetic signatures of antimicrobial resistance and the 
prediction of resistance phenotypes from genomic sequences. 
These computational approaches have revealed complex epistatic 
interactions that contribute to resistance development and 
provided mechanistic insights into how resistance mutations 
aect protein function and bacterial fitness. Specifically, Kavvas 

et al. (2018) developed a computational platform that combines 
machine learning with genetic interaction analysis and 3D 
structural mutation mapping to identify antimicrobial resistance 
signatures in Mtb, revealing 97 epistatic interactions across 10 
resistance classes and providing detailed structural insights into 
resistance mechanisms. 

Advancing these machine learning approaches further, 
recent developments have addressed a fundamental limitation 
in molecular drug susceptibility testing: the reliance on single 
reference genomes that may miss resistance variants. Bahk et al. 
(2024) developed a pan-lineage reference genome (“MtbRf”) 
by systematically assembling previously unmapped reads 
from 3,614 Mtb genomes across major lineages, recovering 
genetic content absent from the standard H37Rv reference. This 
comprehensive reference genome improved drug susceptibility 
prediction accuracy by capturing resistance-associated variants 
that were previously undetectable using traditional single-
strain references. The integration of these additional genetic 
sequences with machine learning algorithms demonstrated 
enhanced predictive performance across eight major anti-
tuberculosis drugs, highlighting how pangenomic approaches can 
overcome the inherent bias of reference genome-based resistance 
detection methods. 

Leveraging the comprehensive genetic landscape provided 
by pangenome studies, researchers have systematically identified 
essential genes within the core genome that represent high-priority 
therapeutic targets. The analysis of gene essentiality across diverse 
Mtb strains provides valuable insights into which genetic elements 
are indispensable for survival and pathogenesis, making them 
attractive candidates for drug development (Periwal et al., 2015; 
Dar et al., 2020). Recent advances have demonstrated the power 
of integrating pangenome analysis with subtractive proteomics 
and computational drug design, successfully identifying promising 
therapeutic targets such as isocitrate lyase and pantothenate 
synthetase, along with potential lead compounds including 
dihydroergotamine and abiraterone acetate (Khan et al., 2024). 
This systematic approach ensures that potential drug targets are 
assessed in the context of the complete genetic diversity observed 
among clinical isolates. The clinical translation of pangenomic 
insights has been further enhanced by advances in long-read 
sequencing technologies, which also improve diagnostic accuracy 
for drug-resistant strain identification by capturing structural 
variants and repetitive elements that remain undetectable through 
short-read approaches (Carandang et al., 2025). The combination 
of pangenome-informed variant databases with these sequencing 
platforms enables clinically actionable results, particularly in 
multidrug-resistant contexts where precise genetic characterization 
is critical for treatment decisions. 

Beyond core genome targets, the accessory genome 
components revealed through pangenome analysis harbor genes 
encoding strain-specific virulence factors or metabolic pathways 
that could serve as targeted therapeutic opportunities. This 
expanded target space enables the development of personalized 
treatment strategies based on the genetic profile of individual 
clinical isolates, potentially improving treatment eÿcacy and 
reducing the likelihood of resistance development (Espinoza 
et al., 2025). Such personalized approaches represent a significant 
advancement over traditional one-size-fits-all treatment regimens. 
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6.3 Virulence and pathogenicity studies 

The application of pangenomic approaches to virulence 
research has revealed critical insights into the genetic determinants 
underlying strain-specific dierences in Mtb pathogenicity 
that remain undetectable to single-genome studies, addressing 
fundamental questions about why certain strains cause pulmonary 
(PTB) versus extrapulmonary disease (EPTB), exhibit enhanced 
transmissibility, or display distinct host adaptation patterns across 
diverse clinical contexts. Negrete-Paz et al. (2023) reported the 
use of pangenome reconstruction as a tool to reveal genomic 
features associated with strain clinical phenotypes. The analysis 
reported distinct genetic signatures associated with dierent 
clinical manifestations of the disease, with many of these signatures 
involving members of specialized gene families that have emerged 
as key players in TB pathogenesis (Negrete-Paz et al., 2023). 
Among the most prominent of these genetic determinants are the 
PE/PPE multigene families, comprising approximately 10% of the 
Mtb genome with 176 open reading frames (Akhter et al., 2012). 
These proteins, characterized by conserved proline-glutamate 
(PE) or proline-glutamate (PPE) motifs at their N-terminus, 
represent one of the most intriguing aspects of the Mtb genome, 
with various lines of evidence implicating selected family members 
in mycobacterial virulence (Fishbein et al., 2015). Pangenomic 
analyses have revealed that 81 core PE/PPE, virulence factor, and 
antigen genes are related to the thick, lipid-rich cell envelope 
phenotype of Mtb, including seven genes involved in maintaining 
cell wall integrity and cell morphotype, 16 genes for host-cell 
entry, and 32 genes associated with Mtb hypervirulence (Yang 
et al., 2018). Additionally, 112 core PE/PPE, virulence factor, 
and antigen genes are related to intracellular survival phenotype, 
encompassing 21 genes involved in stress response,18 genes 
aecting the antimicrobial activity of the phagosome, and 16 
genes involved in nutrient absorption (Yang et al., 2018). This 
systematic characterization reveals the genetic basis underlying 
strain-specific pathogenic potential, providing insights that may 
help explain clinical diversity and prompting more sophisticated 
evolutionary analyses to understand the selective pressures shaping 
Mtb pathogenicity. 

Building upon these pangenomic insights, Bundhoo et al. 
(2024) conducted a comprehensive molecular evolutionary analysis 
of core genes among 264 Mtb strains, determining the estimated 
rates of molecular evolution of select biological processes and 
molecular functions using the dN/dS ratio–a measure that 
compares the rate of amino acid-changing mutations to silent 
mutations, indicating evolutionary pressure on genes (Bundhoo 
et al., 2024). This evolutionary approach has been complemented 
by advanced pangenomic methodologies that challenge traditional 
notions of gene essentiality. A recent study demonstrated 
that 74% of core genes were deemed non-essential in vitro, 
with 38% supporting pathogen survival in vivo, suggesting the 
need to broaden current perspectives on gene essentiality and 
highlighting how strain-specific genetic profiles may influence 
treatment responses and clinical outcomes in diverse patient 
populations (Espinoza et al., 2025). While these findings have 
reshaped our understanding of core genome functionality, 
complementary analyses of the accessory genome components 
have provided critical insights into lineage-specific virulence 

mechanisms and adaptive strategies. Pangenomic analysis of 
modern Beijing sublineages revealed specific deletions in accessory 
genome sequences, including the complete deletion of CRISPR-
associated endoribonuclease cas1 (Rv2817c), cas2 (Rv2816c), and 
CRISPR type III-a/m tube-associated proteins, suggesting that 
specific lineages have evolved distinct genetic architectures that 
may contribute to their enhanced transmissibility and drug 
resistance characteristics. 

6.4 Future perspectives and challenges 

While pangenome studies have yielded significant insights 
into Mtb genetic diversity and resistance mechanisms, 
translating these findings into practical applications requires 
addressing key methodological and implementation challenges. 
The standardization of analytical methodologies represents 
a fundamental priority, requiring coordinated eorts that 
acknowledge both technical and practical realities. A pragmatic 
approach involves developing standardized benchmark 
datasets with well-characterized clinical isolates representing 
major lineages and resistance profiles, enabling systematic 
comparison of existing tools rather than enforcing single 
methodological approaches (Marin et al., 2025; Behruznia 
et al., 2025). Such initiatives could enhance reproducibility 
and comparability across research groups while addressing 
the methodological controversies highlighted throughout 
this review. The integration of pangenomic approaches into 
tuberculosis surveillance systems presents implementation 
challenges that vary significantly across dierent resource 
settings. While pangenomic analysis could enhance molecular 
epidemiological investigations and resistance monitoring in 
high-resource contexts, implementation in high-burden settings 
faces substantial barriers, including limited computational 
infrastructure, a shortage of trained personnel, and competing 
priorities for basic diagnostic capacity. Regional reference 
laboratories with pangenomic capabilities serving multiple 
countries, coupled with capacity-building partnerships, may 
represent a more feasible implementation strategy that 
acknowledges these resource disparities. The integration of 
pangenome data with complementary omics approaches 
oers promising avenues for understanding the functional 
significance of genetic diversity, yet presents challenges in 
data harmonization, computational scalability, and biological 
interpretation. Recent advances in machine learning applied 
to pangenomic data have produced increasingly accurate 
models for predicting drug resistance, with some approaches 
approaching the accuracy of traditional phenotypic testing 
while providing results in shorter timeframes (Kavvas 
et al., 2018; Bahk et al., 2024). However, demonstrating 
that such multi-layered approaches provide clinically 
actionable insights that justify their additional complexity 
compared to existing molecular diagnostic tools remains an 
ongoing challenge. 

Several developments suggest a positive trajectory for 
the field. Emerging computational tools designed specifically 
for clonal pathogens like Mtb are addressing methodological 
limitations, while international collaborative initiatives continue 
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to establish data sharing standards that facilitate cooperation. The 
expansion of global genome databases through initiatives like 
the CRyPTIC consortium provides increasingly comprehensive 
representations of Mtb genetic diversity. Cloud-computing 
platforms are beginning to democratize access to sophisticated 
analytical capabilities, potentially addressing infrastructure 
limitations in resource-constrained settings. Nevertheless, the 
clinical translation of pangenomic approaches requires rigorous 
validation through prospective studies demonstrating improved 
treatment outcomes. While preliminary evidence suggests potential 
for personalized treatment strategies based on genetic diversity 
information, further validation studies are needed to demonstrate 
the clinical utility and cost-eectiveness of pangenome-informed 
diagnostic and therapeutic approaches. Success in realizing 
the transformative potential of pangenomics for tuberculosis 
control will ultimately depend on sustained collaboration between 
research institutions, public health organizations, and clinical 
practitioners developing practical, validated tools that address 
clinical needs. The convergence of methodological advances, 
expanding databases, and international collaborative frameworks 
positions pangenomics for substantial contributions to global 
tuberculosis control eorts. 

7 Conclusion 

Mycobacterium tuberculosis pangenome represents a 
transformative framework for elucidating the genetic diversity 
underlying one of humanity’s most persistent pathogens. This 
review has explored the structural organization of the Mtb 
pangenome, the ongoing methodological debates regarding its 
classification as open or closed, and the systematic approaches 
required for robust pangenome construction. The expansion of 
pangenomic applications across molecular epidemiology, drug 
resistance characterization, and virulence studies underscores a 
paradigmatic shift from reference-centric to diversity-inclusive 
approaches in TB research. Although substantial challenges 
remain-particularly in standardizing analytical methodologies and 
integrating multi-omics datasets- the pangenomic perspective 
oers unprecedented insights into strain-specific adaptations, 
resistance mechanisms, and therapeutic targets that remain 
undetectable through single-genome analyses. Looking ahead, 
the convergence of pangenomic data with advanced machine 
learning approaches and functional validation strategies holds 
the potential studies will likely unlock new opportunities 
for TB treatment, enhanced surveillance systems, and novel 
therapeutic interventions in the ongoing battle against this 
global health threat. 
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