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Mycobacterium tuberculosis (Mtb) is among the most successful bacterial
pathogens, with multidrug-resistant strains posing significant challenges to
global tuberculosis control. Traditional single-genome analyses, while essential
for identifying strain-specific mutations, are limited in capturing the full
spectrum of genetic diversity related to virulence, drug susceptibility, and
transmission dynamics. Pangenomics examines the complete gene repertoire
across all sequenced representatives of a species and addresses these limitations
by enabling comprehensive, species-wide assessments of genetic variation.
In this review, we summarize current knowledge of the Mtb pangenome,
focusing on structural organization, methodological frameworks, and clinical
applications. The Mtb pangenome exhibits a highly conserved genetic structure,
with core genome estimates ranging from 1,166 to 3,767 genes, depending
on the analytical thresholds and methodological approaches. Significant
controversy regarding its classification as open or closed arises primarily from
differences in computational pipelines (Roary, BPGA, Panaroo), core genome
inclusion criteria (95%-100% presence), and dataset composition rather than
fundamental biological disagreement. Despite these methodological challenges,
pangenomic applications have demonstrated transformative potential in
molecular epidemiology, drug resistance prediction, and virulence profiling.
This perspective underscores a shift toward diversity-inclusive approaches, with
integration of machine learning and standardization of analytical protocols
identified as key priorities for future tuberculosis research and therapeutic
innovation.
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1 Introduction

Tuberculosis (TB), caused by the Mycobacterium tuberculosis complex (MTBC),
remains one of the leading global infectious diseases. According to the WHO Global
TB Report 2024, an estimated 10.8 million people developed TB in 2023. Although
mortality rates have declined compared to the previous 2 years, TB has once again
become the leading cause of death from a single infectious agent worldwide (World Health
Organization [WHO], 2024). TB is primarily transmitted through airborne particles and is
characterized as highly infectious and contagious, with a prolonged period of infectiousness

01 frontiersin.org


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1695567
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1695567&domain=pdf&date_stamp=2025-10-20
mailto:soledad.vazquez@umich.mx
mailto:gerardo.marrufo@umich.mx
https://doi.org/10.3389/fmicb.2025.1695567
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1695567/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Negrete-Paz et al.

2017).
transmission is crucial for outbreak control and for limiting the

(Martinez et al, Understanding the dynamics of
spread of the disease. While TB is distributed, it disproportionately
affects low-income regions, particularly high-burden countries in
Sub-Saharan Africa and South Asia (World Health Organization
[WHO], 2024).

malnutrition, and poor living conditions are strongly associated

Socioeconomic factors such as poverty,
with increased TB incidence (Lonnroth et al., 2009).

One of the most significant barriers to TB eradication and
a major impediment to successful TB treatment is the alarming
increase in multidrug-resistant (MDR) and extensively drug-
resistant (XDR) strains (Dheda et al., 2024). Drug-resistant TB
poses a critical threat to global public health, severely undermining
treatment effectiveness and contributing to the persistence of
the global epidemic (World Health Organization [WHO], 2024).
Worryingly, resistance has emerged even against newly developed
drugs (Zhou et al, 2025; Pym et al, 2016). This resistance is
primarily driven by spontaneous mutations, followed by selective
pressure that favors resistant strains (Gandhi et al, 2010).
Beyond drug resistance, TB presents another persistent challenge:
its remarkable ability to remain latent in human hosts. It is
estimated that approximately one quarter to one-third of the
global population (around two billion people) harbor latent TB.
Among these, only 5%-10% will develop active diseases during
their lifetime (World Health Organization [WHO], 2024). The
ability of Mycobacterium tuberculosis (Mtb) to persist in a dormant
state, combined with its propensity for developing drug tolerance
and resistance, contributes to TB relapses, a growing concern for
global elimination programs (Bhalla and Nanda, 2024).

Over the past three decades, molecular epidemiology has
significantly enhanced our understanding of TB transmission
dynamics and evolutionary biology, thereby informing public
health strategies 2015). Whole-
Genome Sequencing (WGS) has revolutionized TB research,

(Guerra-Assungdo et al,

offering unmatched genetic resolution compared to traditional
genotyping methods such as IS6110-RFLP, spoligotyping, and
MIRU-VNTR (Ng et al., 2024). These earlier methods, though
valuable, suffered from limitations including low discriminatory
power, labor-intensive protocols, and poor reproducibility when
applied to closely related strains (Guerra-Assuncio et al., 2015;
Couvin et al., 2025).

2 From single genome analysis to
pangenomics

The initial application of WGS in TB research focused primarily
on comparative analyses between individual clinical strains and
the H37Rv reference genome. This approach yielded insights
into strain-specific mutations, particularly those associated with
drug resistance and virulence (Cole et al, 1998; Zheng et al,
2008). However, despite its revolutionary impact, this genome-
centric methodology, presented intrinsic limitations in capturing
the broader genetic landscape and evolutionary dynamics of Mtb
population at regional and global scales. While single genome
analyses were instrumental in identifying key genetic determinants
of pathogenicity and resistance, they offered narrow primarily
strain-specific perspectives that reflected only a limited portion
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of the species’ overall genomic diversity. Each sequenced strain
constituted a temporal snapshot of the Mtb genome, and although
successive studies incrementally expanded our understanding of
its genetic repertoire, the limitations of single-genome analyses
became evident (Vernikos et al., 2015). Furthermore, comparative
studies restricted to pairwise alignments frequently failed to
capture larger-scale patterns of gene presence, absence, and
functional distribution that define the species (Vernikos et al., 2015;
Dunn et al., 2018).

The recognition of the limitations of traditional genomic
approaches has catalyzed a paradigm shift toward pangenomics.
This analytical framework encompasses the entire gene repertoire
of a bacterial species across all its sequenced representatives
(Tettelin et al., 2005). By integrating data from multiple genomes
simultaneously, pangenomics offers a comprehensive overview
of species-wide genetic content, revealing patterns of gene
conservation, acquisition, and loss that remain undetectable when
analyzing genomes in isolation, as a pairwise comparison with a
reference genome.

In the case of Mtb, the transition to pangenomic research
has proven particularly valuable due to the pathogen’s clinical
relevance and the increasing availability of high-quality genome
sequences from diverse geographical regions and evolutionary
lineages. This framework enables researchers to systematically
examine how genetic diversity correlates with phenotypic traits,
such as virulence, drug susceptibility, and host adaptation across
the MTBC. Furthermore, it provides critical insights into the
evolutionary forces shaping the genetic architecture of the species,
advancing both our fundamental understanding of TB biology
and its practical applications in diagnostics, treatment, and
epidemiological monitoring.

As our understanding of how genomic diversity affects
mycobacterial virulence and transmissibility continues to deepen
(Coscolla and Gagneux, 2014), this comprehensive genetic
perspective becomes increasingly vital. Thus, the pangenomic
approach represents not only a methodological advance but also
a fundamental reconceptualization of how Mtb is studied as a
genetically diverse pathogen with profound implications for global
public health.

3 The Mycobacterium tuberculosis
pangenome: definition and
conceptual framework

3.1 Pangenome architecture in
M. tuberculosis

The Mtb genome is known for its high degree of conservation,
exhibiting limited genetic variability across strains (Sreevatsan
et al., 1997). This genomic stability is largely attributed to the
organism’s clonal nature and the near absence of horizontal gene
transfer, which restricts opportunities for large scale genomic
diversification (Becq et al., 2007).

The pangenome of MTBC is organized into distinct functional
compartments based on gene frequency distribution across strains.
The core genome, comprising genes present in all analyzed strains,
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encodes essential functions such as basic metabolism, cell wall
biosynthesis, and key cellular processes (Tettelin et al., 2005).
Recent estimates place the size of the Mtb core genome between
3,032 and 3,767 genes, reflecting a relatively conserved genetic
backbone required for viability and virulence (Espinoza et al,
2025; Morey-Leon et al., 2025). The soft-core genome includes
genes found in most strains (>95%), typically encompassing near
universal functions within the species (Periwal et al,, 2015). In
contrast, the accessory genome comprises genes present in a
subset of strains, often reflecting lineage-specific, geographically
restricted, or phenotype-associated traits, such as drug resistance
or virulence factors (Dar et al., 2020). Large-scale analyses of
clinical isolates underscore the core genome’s role as a blueprint
of essential pathogenic functions, offering key insights into
the genetic architecture necessary for infection establishment
and maintenance (Periwal et al, 2015). The highly conserved
foundation contrasts markedly with the accessory genome’s
variability, which contributes to lineage-specific adaptations and
regional epidemiological dynamics (Chekesa et al., 2024). Such
genomic duality highlights an evolutionary process wherein the
accessory genome serves as a reservoir of genetic innovation,
promoting adaptability to diverse host environments and selective
pressures, including the emergence of antimicrobial resistance and
enhanced virulence (Espinoza et al., 2025).

3.2 Comparative pangenomic context:
M. tuberculosis among intracellular
pathogens

To contextualize the distinctive features of the Mtb pangenome,
it is instructive to compare its genetic architecture with that of
other intracellular bacterial pathogens. Such comparative analyses
aid in revealing both convergent evolutionary patterns and species-
specific adaptations that delineate Mtb’s unique position within the
broader spectrum of intracellular pathogenesis. Pangenome size
and conservation levels vary widely among intracellular pathogens.
For instance, the facultative intracellular bacterium Salmonella
enterica possesses a core genome of approximately 2,800 genes
within a compact pangenome of ~10,000 gene families, indicating
genomic plasticity in contrast to its close relative E. coli, which
exhibits continuous expansion of its genetic repertoire (Jacobsen
et al., 2011). In contrast, Legionella pneumophila, demonstrates
a core genome of 1,979 genes, but markedly greater genetic
diversity reflecting its adaptation to diverse environmental niches
and extensive horizontal gene transfer (D’Auria et al, 2010).
Similarly, Listeria monocytogenes, another facultative intracellular
pathogen, shows moderate genetic diversity with lineage-specific
adaptations across its three major phylogenetic groups (den Bakker
et al., 2010). Within this comparative framework, Mtb stands out
by maintaining a larger and conserved core genome comprising
over 3,000 genes (Espinoza et al., 2025; Morey-Le6n et al., 2025;
Behruznia et al., 2025; Bundhoo et al., 2024) than other intracellular
pathogens such as Salmonella enterica (~2,800 genes), Legionella
pneumophila (1,979 genes), or Listeria spp. (2,032 core genes)
(Jacobsen et al.,, 2011; D’Auria et al, 2010; den Bakker et al.,
2010). This suggests that Mtb obligate pathogenic lifestyle demands
retention of a broader set of essential functions across all strains,
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allowing genomic variability and reduced tolerance for gene loss
compared to facultative pathogens, which rely on greater inter-
strain plasticity to adapt to variable environmental conditions.
These their
consequences become clearly evident through pangenomic
comparisons. Evidence indicates that patterns of genetic diversity

evolutionary  constraints and functional

are closely linked to a pathogen’s ecological niche and evolutionary
history, with gene frequency function relationships showing
across species conservation (Hyun et al., 2022). In this context,
the restricted genetic diversity of Mtb reflects its specialization
for human-to-human transmission and limited environmental
survivability, unlike L. pneumophila, which relies on broad genetic
diversity for environmental adaptation, or S. enterica, which
navigates a dual lifestyle between host and the environment.
Thus, the Mtb pangenome architecture emerges as a distinct
evolutionary strategy: a highly conserved genome with minimal
accessory content, optimized for stable pathogenicity within a
specific host range. This architecture contrasts with the dynamic
and open pangenomes characteristic of a facultative intracellular
bacterium, underscoring the unique evolutionary trajectory of
Mtb. Nonetheless, the full extent and implications of this genomic
structure remain to be researched.

4 The open vs. closed pangenome
controversy in M. tuberculosis

A critical question in understanding Mtb genomic architecture
is whether its pangenome follows an open or closed model, an issue
with significant implications for microbial evolution, epidemiology,
and the emergence of drug resistance.

The classification of the Mtb pangenome as open or closed has
been a subject of ongoing debate, representing one of the most
contentious aspects of TB genomics. This controversy arises from
differences in analytical approaches, dataset composition, and the
interpretation of mathematical models used to predict pangenome
dynamics (Tettelin et al., 2008; Rouli et al., 2015; Marin et al., 2025).
Pangenome openness is typically assessed through pangenome
saturation curves, which plot the cumulative number of unique
genes identified (y-axis) against the number of genomes analyzed
(x-axis) (Tettelin et al., 2005).

4.1 Evidence of an open pangenome

An open pangenome is characterized by a substantial accessory
gene pool and high inter-strain genomic diversity. In Mtb,
this diversity arises predominantly through structural genomic
alterations such as deletions, duplications, and rearrangements,
rather than horizontal gene transfer (Periwal et al., 2015; Marin
et al, 2025; Zakham et al, 2021). Mathematically, an open
pangenome is inferred when gene accumulation curves continue
to rise without plateauing, indicating ongoing gene discovery with
the inclusion of additional genomes (Tettelin et al., 2005, 2008).
A Heaps’ alpha value (o) < 1 further supports this model suggesting
a non-saturating, theoretically unbounded pangenome (Espinoza
etal,, 2025). In contrast, a closed pangenome is defined by gene loss
and deletion events rather than acquisition, with saturation curves
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reaching a plateau, indicating that most genes have already been
identified (Behruznia et al., 2025).

Compelling evidence supports the open pangenome
architecture in Mtb. Mathematical models based on saturation
curves, derived from datasets encompassing 96 to 500 genomes,
consistently reveal non-saturating trajectories, implying ongoing
gene discovery (Periwal et al., 2015; Negrete-Paz et al., 2023).
Empirical data corroborate these findings with geographically
diverse strain collections exhibiting substantial accessory gene
variation (Morey-Ledn et al., 2025; Chekesa et al., 2024; Yang
et al, 2018). Long-read sequencing technology has further
revealed pangenomes containing up to 4,325 total genes, of which
558 are accessory, highlighting a degree of genomic variability
incompatible with a closed model (Espinoza et al., 2025). This
diversity is driven by multiple mechanisms, including copy
number variation, structural genome modeling, and lineage-
specific patterns of gene presence or absence, which collectively
contribute to pangenome expansion (Bhalla and Nanda, 2024; Yang
et al,, 2018). The convergence of these mathematical inferences,
empirical observations, and mechanistic insights from highly
diverse strain datasets supports the classification of Mtb as

possessing an open pangenome architecture.

4.2 Evidence for a closed pangenome

Despite growing support for an open pangenome in Mtb,
a substantial body of literature suggests the opposite, a closed
or nearly closed pangenomic structure. Such findings emerge
from independent research groups employing varied analytical
approaches and strain datasets yet consistently reporting limited
genetic diversity and extensive genomic conservation (Behruznia
et al, 2025; Zakham et al., 2021; Silva-Pereira et al., 2024).
Biological characteristics intrinsic to Mtb support the closed
pangenome model. Unlike many bacteria with open pangenomes
maintained by active horizontal gene transfer, Mtb displays
minimal to no evidence of such events, lacks plasmids, and
exhibits a strong clonal population structure (Derbyshire and
Gray, 2014). Consequently, gene acquisition plays a negligible
role in shaping its genomic diversity; instead, gene loss is the
predominant mechanism of genomic variation within the MTBC
(Silva-Pereira et al, 2024; Costa et al., 2020). Mathematical
analyses further reinforce this view. Pangenome curves generated
from various datasets exhibit plateau formation, and power-law
regression models yield coefficients supporting minimal potential
for future expansion (Dar et al., 2020). Empirically, constrained
pangenomic profiles have been reported in comprehensive analyses
of 324 complete genomes spanning all major lineages with
only modest accessory gene content identified (Behruznia et al,
2025). Similarly, studies of 420 epidemiologically diverse strains
identified only 85 novel genes beyond the reference genome,
underscoring a limited capacity for genome expansion (Zhou
et al., 2025). Additional support comes from showing that core
genome sizes are relatively small (e.g., 1,166 conserved genes in
human-adapted MTBC strains), and that observed diversification
is largely driven by phylogenetic inheritance rather than acquisition
processes (Zakham et al., 2021; Silva-Pereira et al., 2024). Machine
learning approaches have further confirmed these patterns by
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detecting genomic signatures consistent with constrained rather
than expansive, evolutionary dynamics (Kavvas et al., 2018).
Moreover, some apparent signs of pangenome expansion in prior
studies have been attributed to artifacts such as poor genome
assembly quality or inconsistent gene annotation criteria (Marin
et al., 2025), casting doubt on the robustness of some claims of
continuous gene discovery.

The classification of the Mtb pangenome as open or closed has
profound biological and clinical implications. An open pangenome
would imply that the species retains the capacity for continuous
diversification. This scenario suggests greater adaptive potential,
particularly in response to antibiotic pressure, as accessory
genes or structural rearrangements could generate new resistance
determinants or enhance tolerance mechanisms (Periwal et al.,
2015; Yang et al., 2018; Espinoza et al., 2025). Likewise, an
open model would support the notion that virulence traits may
continue to diversify across lineages, contributing to heterogeneous
clinical phenotypes and potentially complicating vaccine or drug
development strategies. From an evolutionary perspective, an
open pangenome aligns with long-term adaptability, allowing Mtb
to persist under fluctuating host and environmental pressures.
In contrast, a closed pangenome underscores the remarkable
evolutionary stability of the MTBC, where genomic innovation is
limited and adaptation arises primarily through point mutations
and gene loss rather than acquisition of novel functions (Silva-
Pereira et al., 2024). This model explains why drug resistance in this
pathogen is almost exclusively mutation-driven, often involving
well-characterized chromosomal targets. A closed pangenome also
suggests that virulence factors are largely fixed, which may explain
the conserved pathogenesis mechanisms across global lineages
despite geographical and host diversity (Zakham et al, 2021;
Dar et al, 2020). Ultimately, whether the Mtb pangenome is
truly open or closed shapes our expectations for its long-term
evolutionary trajectory, the mechanisms by which resistance and
virulence emerge, and the strategies required for global TB control.
Bridging methodological variation with biological interpretation is
therefore critical to fully leverage pangenomics for both basic and
translational research.

4.3 Methodological factors contributing
to divergent pangenome classifications

The ongoing debate over whether Mtb pangenome is open or
closed is significantly influenced by methodological heterogeneity
across studies. Divergent classifications are often not the result
of biological inconsistency but rather stem from differences in
analytical tools, genome quality, sequencing platform, threshold
criteria, and data set composition. Understanding these technical
determinants is essential for reconciling interpretations and
establishing a standardized framework for pangenomic analysis.

4.3.1 Analytical tools and processing parameters
A principal source of variation in pangenome architecture
arises from the choice of computational tool used for pangenome
construction. Software such as Roary (Page et al., 2015), BPGA
(Chaudhari et al., 2016), and Panaroo (Tonkin-Hill et al., 2020)
apply distinct algorithms for ortholog detection, gene clustering,
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and similarity thresholding. Such differences lead to substantially
divergent estimates of pangenome size and composition even
when applied to identical datasets. In Mtb, these tool-dependent
biases manifest as distinct patterns: Roary’s conservative similarity
thresholds tend to fragment repetitive gene families, artificially
inflating accessory genome estimates, while BPGA’s clustering
algorithms may inappropriately merge divergent PE/PPE family
members, and Panaroo’s stringent error correction, though
reducing false positives, can occasionally exclude genuine rare
variants characteristic of highly clonal populations (Marin et al.,
2025; Behruznia et al, 2025). The heterogeneity observed in
reported pangenome sizes (Table 1) illustrates the methodological
dependence of M. tuberculosis pangenome estimates. To
contextualize these differences, Table 2 provides a comparative
overview of the main pipelines, highlighting their strengths,
limitations, and applicability to clonal pathogens.

Another critical factor involves the criteria used to define the
core genome. Thresholds for gene presence across strains vary

considerably: some studies adopt strict 100% inclusion criteria

10.3389/fmicb.2025.1695567

(Zhou et al., 2025; Yang et al., 2018), while others use relaxed
thresholds ranging from 95% to 99% presence across analyzed
strains (Morey-Ledn et al., 2025; Periwal et al., 2015; Behruznia
et al, 2025). These disparities in threshold decisions have a
profound impact on the classification of genes as core or accessory.
For instance, Periwal et al. (2015) found that a 95% presence
threshold maximized core genome representation of essential
functions, whereas Morey-Leén et al. (2025) employed a 99%
threshold to refine core gene inclusion. Adjusting the threshold
from 95% to 100% can reclassify hundreds of genes, dramatically
altering pangenome size and the inferred open or closed status
(Periwal et al., 2015; Morey-Leon et al., 2025).

These wide variation in Mtb core genome estimates across
studies ranges from as few as 1,166 conserved genes in strictly
human-adapted species (Zakham et al, 2021; Silva-Pereira
et al, 2024) to over 3,767 genes in broader, more inclusive
analyses (Espinoza et al., 2025; Morey-Ledn et al., 2025). Such
variability underscores the sensitivity of pangenome architecture to
analytical parameters.

TABLE1 Summary of pangenome studies conducted on Mycobacterium tuberculosis complex (MTBC).

Dataset size Core ‘ Accessory |Open/close Tools ‘ Application Reference
96 MTBC 2,066 6,033 Open Prodigal, CD-HIT, BLAST Identification of essential core Periwal et al., 2015
genes
146 M. tuberculosis Not Not specified Not specified PANPASCO Molecular epidemiology Jandrasits et al., 2019
specified
88 M. tuberculosis 3,032 3,671 Near to close Roary Molecular epidemiology Morey-Leén et al., 2025
3,104 1,426 BPGA
233 MTBC 3,116 947 Closed PGAP Molecular epidemiology Silva-Pereira et al., 2024
442 M. tuberculosis 2,754 Not specified Near to close BPGA Therapeutic target discovery and Khan et al., 2024
drug resistance
88 M. tuberculosis 3,104 936 Closed Panaroo Molecular epidemiology Morey-Le6n et al., 2025
110 M. tuberculosis 3,767 558 Open Panaroo Therapeutic target discovery and | Espinoza et al,, 2025
virulence
264 M. tuberculosis 3,241 2,109 Not specified Not specified Virulence and pathogenicity Bundhoo et al., 2024
1,595 M. tuberculosis 2,803 Not specified Closed Machine learning Therapeutic target discovery and Kavvas et al., 2018
virulence
183 MTBC 1,166 5,870 Near to close BLASTP Molecular epidemiology Zakham et al., 2021
121 M. tuberculosis 3,698 4,237 Open Spine, AGEnt, ClustAGE Virulence and pathogenicity Rufai et al., 2020
47 M. tuberculosis 3,566 1,196 Open Prokka, Prodigal, BLASTP, Molecular epidemiology Hurtado-Pdez et al., 2023
GET_HOMOLOGUES, BPGA
33 M. tuberculosis 3,679 2,086 Open PGAP, PanGP Virulence and pathogenicity Yang et al., 2018
150 M. tuberculosis 1,251 Not specified Not specified BPGA Therapeutic target discovery and Dar et al,, 2020
drug resistance
75 M. tuberculosis 3,270 1,667 Open BLASTP, GET_HOMOLOGUES, Molecular epidemiology Chekesa et al., 2024
BPGA
490 M. tuberculosis 2,231 3,729 Near to close Roary, Panaroo Virulence and pathogenicity Negrete-Paz et al., 2023
2,184 M. tuberculosis 3,784 1,109 Open Panaroo Therapeutic target discovery and | Bhalla and Nanda, 2024
drug resistance
151 M. tuberculosis 3,833 3,879 Not specified Panaroo, PpanGGolin, Roary, Methodological review Marin et al,, 2025
Pangene
335 MTBC 3,639 1,008 Closed Panaroo, Pangraph Molecular epidemiology Behruznia et al., 2025
420 M. tuberculosis 3,438 Not specified Closed Prokka, GET_HOMOLOGUES Molecular epidemiology Zhou et al,, 2025

MTBC, Mycobacterium tuberculosis complex.

Frontiers in Microbiology

05

frontiersin.org



https://doi.org/10.3389/fmicb.2025.1695567
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

Negrete-Paz et al.

10.3389/fmicb.2025.1695567

TABLE 2 Comparative overview of major pangenome construction pipelines and their suitability for Mycobacterium tuberculosis.

Approach/algorithm Strengths Limitations Suitability for
M. tuberculos

Fast, scalable (>1,000 genomes)

CD-HIT
BLASTP clustering of orthologs

Roary

(Page et al,, 2015) Widely adopted

Strong community support

Overestimates accessory genome by | Commonly used, but risk of inflating

fragmenting paralogs diversity

(Zhao et al., 2012) clustering / gene family

assignment

BPGA BLAST/USEARCH-based Integrates functional annotation May merge divergent paralogs Useful for functional profiling
(Chaudharij et al., ortholog clustering Flexible analyses Less optimized for clonal pathogens | Moderate accuracy in paralog-rich

2016) genomes

Panaroo Graph-based gene clustering Reduces false positives Can exclude true rare variants Highly suitable

(Tonkin-Hill et al., Error correction Robust against assembly/annotation Higher computational cost Minimizes artificial diversity in clonal

2020) errors MTBC

Ideal for clonal species
PGAP OrthoMCL-based ortholog Sensitive orthology assignment Computationally demanding Useful for medium-sized datasets and

Strong statistical rigor

Less scalable reference-based comparisons

PanX
(Ding et al., 2018)

Phylogenetic-aware graph
clustering
gain/loss

Integrates evolutionary context
Interactive visualization of gene

Suitable for evolutionary/phylogenetic
interpretation of MTBC

Less efficient for very large datasets
Limited adoption

4.3.2 Genome quality and assembly standards

Genome assembly quality is a fundamental determinant of
pangenomic accuracy, with sequencing platform choice exerting
a profound influence on pangenome estimates. Draft assemblies
are prone to fragmentation, misassembly, and annotation artifacts,
which can artificially inflate estimates of accessory genomes and
obscure the accurate gene content (Zhou et al., 2025). Platform-
specific characteristics compound these challenges through distinct
error profiles and assembly biases that differentially impact
pangenome inference. Short-read sequencing technologies, while
offering high accuracy and throughput, systematically fragment
repetitive genomic regions essential for accurate pangenome
reconstruction. Illumina-based assemblies frequently break at
PE/PPE gene clusters and IS6110 insertion sites, creating artificial
gene truncations (Marin et al., 2025). These fragmentation artifacts
are particularly problematic for Mtb pangenome studies, where
repetitive sequences comprise a significant genomic content, yet are
critical for accurate strain differentiation. On the other side, long-
read sequencing platforms address many assembly limitations but
introduce distinct biases affecting pangenome estimates. Oxford
Nanopore technologies demonstrate superior performance for
repetitive sequence resolution but exhibit higher indel error rates
that can create false gene variants during annotation (Behruznia
etal, 2025). PacBio SMRT sequencing offers improved accuracy for
complex genomic architectures yet requires higher coverage depths
to achieve comparable gene detection sensitivity. Coverage depth
effects are particularly pronounced in pangenome studies, where
insufficient sequencing depth can systematically underrepresent
low-abundance genes or create false absence calls that skew core-
accessory genome classifications.

Platform choice also influences downstream analytical
pipelines through assembly contiguity effects. Highly fragmented
short-read assemblies may require different clustering parameters
compared to complete long-read assemblies, complicating
comparative analyses across mixed-platform datasets (Marin
et al, 2025). Analysis limited to complete high-quality genomes
may underestimate pangenome diversity by excluding rare or
lineage-specific genes lost during assembly curation. In contrast,
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inclusion of draft assemblies introduces systematic inflation
through technical artifacts.

4.3.3 Dataset composition and representativeness

Beyond computational and technical factors, the composition
and diversity of analyzed datasets also impact pangenome
interpretation. Geographic sampling bias can skew accessory
genome estimates by overrepresenting strain specific elements that
do not reflect global patterns (Morey-Leon et al., 2025; Chekesa
et al., 2024). Likewise, dataset size and phylogenetic breadth are
crucial. Smaller or phylogenetically homogeneous datasets often
support closed pangenome models due to limited genetic diversity,
while larger, more diverse collections tend to reveal great accessory
gene content and support an open architecture (Dar et al., 2020;
Silva-Pereira et al., 2024).

4.4 Biological factors affecting
pangenome inference in M. tuberculosis

The intrinsic biological characteristics of Mtb create unique
challenges for accurate pangenome inference that extend beyond
The species’
restricted genetic diversification

purely methodological considerations. clonal

population structure and
mechanisms render pangenome estimates particularly vulnerable
to technical artifacts, as genuine biological variation cannot be
easily distinguished from methodological noise (Bolotin and
Hershberg, 2015). Additionally, besides de bacterial variable
number tandem repeat units (VNTR), the prevalence of
specific repetitive sequences in the Mtb genome, including
the direct repeats (DRs), the mycobacterial intersperse repetitive
units (MIRUs), the PE/PPE gene families and IS6110 elements
(Arnold, 2007; Delogu et al, 2017), systematically complicates
clustering algorithms (Figure 1), while the predominance of
gene loss over acquisition in Mtb evolution further constrains
the biological context available for validating apparent genetic
diversity (Yang et al, 2018; Silva-Pereira et al, 2024). This
biological constraint amplifies the impact of technical decisions on
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FIGURE 1

Impact of repetitive sequences on reconstructing the Mycobacterium tuberculosis pangenome. The repetitive sequence features of M. tuberculosis
include direct repeats (DR), Mycobacterial Interspersed Repetitive Units (MIRU), the insertion sequence 6110 (I1S6110), and the PE/PPE gene family.
Clustering algorithms struggle to accurately identify homologous sequences in these repetitive regions during pangenome reconstruction. These
inaccuracies tend to falsely inflate the accessory genome (lower panel) compared to genomes without such repetitive sequences (upper panel).
Each circle labeled "Mtb" represents genomes from different M. tuberculosis strains. Created in BioRender. Vazquez-Marrufo (2025)

https://BioRender.com/kzarxxt.

estimates of pangenome architecture. In species with active gene
acquisition, spurious gene detection can often be identified
through  phylogenetic atypical sequence
characteristics. However, Mtb’s evolutionary history, which is

incongruence or

primarily characterized by chromosomal rearrangements and
deletions, provides no such comparative framework, making every
apparent genetic variant potentially legitimate from a biological
perspective. Consequently, methodological choices regarding
clustering parameters, similarity thresholds, and quality control
measures exert disproportionate influence on final pangenome
estimates, as biological plausibility alone cannot serve as a filter for
technical artifacts.

In summary, the classification of the Mtb pangenome is
highly sensitive to both biological constraints and methodological
heterogeneity. The species’ intrinsic characteristics, including
clonal structure, repetitive sequences, and reductive evolution,
create a genomic context where technical artifacts are difficult
to distinguish from genuine variation. Compounding these
biological factors, differences in computational tools, parameter
thresholds, genome quality, and dataset composition can each
independently and often synergistically affect the interpretation
of pangenome structure. These combined sources of biological
and methodological variability underscore the urgent need
for standardized protocols that account for species-specific
characteristics to ensure reproducibility and comparability across
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studies. The following section outlines systematic approaches for
robust pangenome construction that address these challenges.

5 Pangenome construction: from
raw data to biological insights

Pangenome construction in bacterial genomics has evolved
along two principal methodological paradigms: clustering-based
and graph-based approaches. Clustering -based methods identify
homologous gene families across genome assemblies and classify
them into presence-absence matrices, facilitating large scale
comparative analyses with computational efficiency and categorical
distinction of core and accessory genes. However, these approaches
traditionally focus exclusively on protein-coding sequences,
potentially overlooking regulatory elements, non-coding RNAs,
and intergenic regions that contribute to phenotypic diversity
and evolutionary adaptation (Vernikos et al., 2015). In contrast,
graph-based methods model the pangenome as an interconnected
network, preserving structural variation, allelic diversity, and
synteny across both coding and non-coding genomic content. This
paradigm offers high resolution for detecting complex evolutionary
events such as inversions, duplications, and recombination
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features often missed by binary matrix approaches (Tonkin-
Hill et al, 2020; Garrison et al, 2018; Hickey et al., 2020).
The inclusion of non-coding content through whole-genome
approaches reveals substantially higher genomic diversity, with
recent studies reporting approximately 22% variable genomic
content when intergenic regions and partial gene deletions are
included, compared to approximately 10% accessory content
identified through protein coding analysis (Behruznia et al,
2025). The choice between analyzing exclusively coding sequences
versus including non-coding genomic content has implications
for Mtb pangenome construction, where genetic diversity is
primarily driven by large sequence polymorphisms and regions
of difference that often encompass both coding and regulatory
sequences, as previously stated. Protein coding-based analyses
may fragment these evolutionary units, potentially underestimate
the functional impact of structural variants or missing regulatory
mutations that influence gene expression without altering protein
sequences. This methodological limitation can lead to systematic
underrepresentation of lineage-specific adaptations, as regulatory
variations in promoter regions of core genes remain undetected
despite their potential phenotypic consequences (Behruznia et al.,
2025). Conversely, including non-coding content provides a more
comprehensive view of genomic diversity but introduces analytical
challenges in establishing appropriate similarity thresholds for
intergenic regions and distinguishing genuine regulatory variation
from sequencing artifacts. The selection between paradigms
depends on research objectives and analytical priorities: clustering-
based methods offer efficiency for large-scale population genetics,
functional gene surveys, and studies where structural variants
manifest as clear gene presence/absence patterns, while graph-
based approaches provide enhanced resolution for detailed
structural characterization, particularly when analyzing complex
rearrangements, partial deletions, or regulatory modifications that
span multiple genomic elements (Garrison et al., 2018; Tonkin-
Hill et al., 2020). Despite the enhanced resolution of graph-
based models for certain structural analyses, clustering-based
strategies remain the standard in bacterial pangenomics due to their
scalability, established analytical pipelines, and compatibility with
statistical frameworks (Tettelin et al., 2005; Rouli et al., 2015). Given
their prevalence, the following sections outline the standardized
workflow, species-specific considerations, and gene prediction
methodologies that underpin clustering-based Mtb pangenome
construction.

5.1 General workflow overview

Clustering-based  pangenome construction follows a
standardized computational pipeline comprising: (i) genome
collection and quality assessment, (ii) gene prediction and
annotation, (iii) homology detection and clustering, (iv) presence-
absence matrix generation, and (v) statistical and functional
characterization (Medini et al., 2005). Homologous gene families
are identified across genome assemblies and classified into
core, accessory, and unique gene sets according to frequency
distribution thresholds (Tettelin et al., 2005). This framework
enables quantification of genomic diversity and functional

partitioning at the species level.
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5.2 Dataset requirements and
species-specific considerations

Robust pangenome construction of Mtb requires stringent
dataset quality and thoughtful phylogenetic representation due
to its highly clonal nature and restricted gene flow. Assemblies
should fall within the expected genome size range (4.2-4.5 Mb)
with N50 values > 100 kb, and contamination levels < 1% as
assessed by tools such as CheckM. Complete genome assemblies
are strongly preferred as draft assemblies compromise orthology
detection (Zhou et al., 2025). If draft genomes are used, stringent
filters must be applied, including a minimum contig length of
>1 kb, a maximum contig number of <200, and a completeness
of >95% to maintain analytical integrity (Parks et al., 2015).

Moreover, the pronounced phylogeographic structure
characteristic of Mtb populations necessitates carefully designed
sampling strategies to capture the full spectrum of global
genetic diversity. Robust pangenome analyses should incorporate
representatives from all major phylogenetic lineages, as each
lineage carries distinct genetic signatures and evolutionary
adaptations that enrich the species’ overall diversity. Ensuring
balanced lineage representation is essential to avoid sampling bias
that could distort estimates of core and accessory genome content
in favor of overrepresented groups. Geographic diversity is equally
crucial, as regional strain populations often possess unique genetic
traits shaped by local transmission patterns and selective pressures
(Chekesa et al., 2024).

5.3 Gene prediction and annotation for
bacterial pangenomics

Achieving consistent gene identification across diverse genome
assemblies remains a core challenge in bacterial pangenomics.
Variations in gene calling algorithms and parameter settings
can significantly affect downstream homology detection and
ultimately shape inferred pangenome architecture. Contemporary
studies primarily rely on four widely used gene prediction tools-
Prodigal, Glimmer, GeneMarkS-2, and the more recent Balrog,
each employing distinct algorithmic strategies tailored to specific
bacterial features (Dimonaco et al., 2022; Horsfield et al., 2023).
Among these, Prodigal (PROkaryotic DYnamic programming
Gene-finding ALgorithm) has become the most widely adopted
choice in bacterial pangenomics due to its speed, accuracy, and
robust performance across diverse GC content ranges (Hyatt
etal., 2010). Unlike traditional Hidden Markov Model approaches,
Prodigal utilizes log-likelihood scoring and dynamic programming
algorithms to ensure rapid and precise gene prediction. Its
widespread adoption is evidenced in its integration into major
annotation pipelines such as Prokka, and numerous pangenome
construction tools (Seemann, 2014). In contrast, Glimmer uses
interpolated Markov models to distinguish coding regions, offering
complementary predictions particularly useful in complex genomic
contexts, albeit at a higher computational cost (Delcher et al., 2007).
GeneMarkS-2, employing species-specific inhomogeneous Markov
chains, is advantageous for organisms with well-characterized
phylogenies but similarly demands more computational resources
(Lomsadze et al.,, 2018). Crucially, no single predictor performs
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optimally across all bacterial species. Performance varies with GC
content, genome organization, and phylogenetic background, and
tool choice can significantly influence the results (Dimonaco et al.,
2022). This variability has important implications for pangenome
studies, as comprehensive benchmarking studies have revealed
that tool selection can impact pangenome architecture estimates,
necessitating a careful evaluation of prediction accuracy for the
specific bacterial groups under investigation.

Beyond gene calling, annotation consistency encompasses
standardized functional assignment and database consistency.
Prokka exemplifies a widely adopted pipeline that combines
Prodigal for gene prediction with a hierarchical annotation
strategy. This strategy involves BLAST+ searches against curated
databases (UniProtKB, RefSeq) followed by HMMERS3 searches
against protein family databases (Pfam, TIGRFAMs) (Seemann,
2014). This hierarchical strategy enables rapid annotation while
maintaining functional accuracy across diverse bacterial genomes,
creating a standardized framework essential for downstream
pangenomic analyses.

5.4 Homology detection and clustering

Once consistent genes are established, the next major challenge
is accurate homology detection. This task has driven the
development of increasingly sophisticated clustering algorithms,
designed to balance sensitivity, scalability, and biological accuracy.
Standard BLAST searches typically employ e-value thresholds
<le-5 (0.00001) to infer significant homology, with coverage
requirements often set between 50% and 80% of the shorter
sequence to ensure biologically meaningful alignments (Tettelin
et al., 2005). Early approaches relied heavily on BLAST-based all-
vs.-all comparisons, which offered high sensitivity but became
computationally limited with the exponential growth of genomic
datasets (Altschul et al, 1990; Tonkin-Hill et al., 2020). To
address this, faster clustering tools emerged and prompted a
paradigm shift toward heuristic algorithms that traded some
sensitivity for substantial gains in performance. The introduction
of rapid clustering algorithms marked a key breakthrough in
scalability. CD-HIT, for example, pioneered the use of word-based
filtering strategies and greedy incremental clustering, processing
sequences by decreasing length and grouping them via efficient
word counting rather than expensive pairwise alignments (Fu
et al,, 2012). Similarly, USEARCH introduced further algorithmic
optimizations and indexing strategies that enhanced computational
efficiency while maintaining reasonable clustering accuracy (Edgar,
2010). These approaches successfully enabled the analysis of
datasets comprising millions of sequences, though their speed
advantages came at the cost of reduced sensitivity for detecting
distant homologs. Recognizing the limitations of simple sequence
similarity in distinguishing biologically meaningful orthology
from recent gene duplication events led to the development of
more advanced graph-based approaches. OrthoMCL exemplifies
this transition, combining conventional similarity searches with
Markov clustering to resolve complex homology relationships,
particularly valuable for organisms with intricate evolutionary
histories (Li et al., 2003). While more biologically accurate, this
method requires substantially greater computational resources.
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The contemporary frontier in sequence clustering has been
defined by algorithms that achieve a combination of BLAST-
level sensitivity with heuristic-level speed. MMseqs2 represents
this new generation, employing indexing strategies and optimized
alignment algorithms that enable linear-time clustering of massive
protein datasets without compromising sensitivity (Steinegger and
Soding, 2017). However, even advanced clustering algorithms face
challenges when applied to Mtb genomes due to their highly
repetitive architecture. PE/PPE multigene families present complex
clustering decisions due to conserved N-terminal domains that
can confound similarity-based detection, potentially leading to
inappropriate merging of functionally distinct family members
or artificial fragmentation of genuine orthologs. 1S6110 insertion
sequences introduce additional complexity through variable copy
numbers between strains. These repetitive elements require careful
optimization of clustering parameters: conservative thresholds
may artificially inflate accessory genome estimates by fragmenting
related sequences, while permissive thresholds risk masking
genuine functional diversity within gene families (Espinoza et al.,
2025). This example illustrates broader principles governing
selection among algorithmic paradigms, which require careful
consideration of the evolutionary characteristics underlying each
bacterial system under study.

Highly conserved species like Mtb benefit from rapid
clustering approaches that can efficiently process large datasets.
At the same time, more divergent bacterial groups demand the
enhanced sensitivity provided by orthology-aware or graph-
based methodologies (Vernikos et al., 2015). Furthermore, the
optimization of similarity thresholds and clustering parameters
must reflect the specific evolutionary pressures shaping each
bacterial lineage, as inappropriate parameter selection can
either artificially fragment genuine gene families or inappropriately
merge functionally distinct groups. The particular similarity criteria
employed during homology detection fundamentally determine
pangenome architecture estimates in Mtb. Clustering algorithms
establish boundaries between orthologous and paralogous
relationships through sequence identity thresholds, coverage
requirements, and alignment parameters, directly influencing
gene family partitioning. These methodological decisions create
measurable consequences in MTBC pangenome studies: relaxed
alignment thresholds (such as Panaroo’s default 70% identity
for diverse gene families) can inappropriately group partially
deleted genes with complete ones, while stringent criteria (>90%
identity with >75% coverage, as used for H37Rv validation) may
fragment genuine orthologs, fundamentally altering estimates of
core and accessory genome content (Behruznia et al., 2025; Marin
et al., 2025). The mathematical relationship between clustering
parameters and gene family boundaries thus creates a direct link
between methodological choices and biological interpretations of
pangenome structure.

5.5 Matrix generation and statistical

characterization

The culmination of the pangenomic construction process
requires the systematic transformation of homologous gene clusters
into quantitative data structures suitable for statistical analysis.
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This step is more than a technical transformation; it constitutes
the conceptual bridge between raw computational information
and meaningful biological interpretations that underpin our
understanding of bacterial evolution. The generation of presence-
absence matrices constitutes the methodological core of this
transformation. These matrices represent genomes as rows and
gene families as columns, with binary indicators (1 or 0) denoting
the presence or absence of each genetic element in each genome
(Medini et al., 2005). However, this apparent binary simplicity
masks considerable complexity arising from both biological
and technical realities of genomic analysis. Fragmented genes,
ambiguous clustering assignments, and variations in assembly
quality introduce challenges that require sophisticated quality
control frameworks to ensure the resulting matrices reflect genuine
biological variation rather than technical artifacts (Tonkin-Hill
et al., 2020). Contemporary pangenome pipelines have developed
extensive pre- and post-processing scripts for quality control,
including diagnostic plots for contamination detection and gene
count validation to address these systematic sources of error
(Tonkin-Hill et al., 2020).

The subsequent statistical characterization process reveals
fundamental patterns of genomic organization through the
classification of gene families according to their frequency
distributions. The definition of the core genome, previously
conceptualized as genes present in all analyzed strains, has
evolved toward a spectrum of criteria recognizing the technical
and biological realities of modern pangenomic analysis. The
selection of presence thresholds for defining the core genome
represents one of the most critical and controversial decisions in
pangenome analysis. While the strict definition of 100% presence
offers mathematical certainty, it frequently underestimates essential
gene content due to technical limitations, including incomplete
assemblies, annotation errors, or genuine but rare gene losses
(Matthews et al., 2024). This rigidity has led to widespread
adoption of more flexible thresholds, typically ranging from
95% to 99% presence, each with distinct implications for the
resulting pangenome architecture. The 95% threshold, widely
utilized in bacterial pangenome studies, maximizes capture of
functionally essential genes while accommodating minor technical
variations (Zhang et al,, 2023). Studies have demonstrated that
this threshold optimally represents essential gene content in
various bacterial species, capturing critical genetic elements that
might be erroneously excluded by stricter criteria (Segerman,
2012; Zhang et al., 2023). Conversely, 99% thresholds offer
a compromise between inclusivity and conservation, proving
particularly appropriate for species with high-quality sequencing
and assembly (Page et al, 2015). The transition between
these thresholds can result in reclassification of hundreds of
genes, dramatically altering core genome size estimates and,
consequently, inferences regarding species genomic plasticity, with
some studies showing core genome estimates varying by factors
of three or more depending on threshold selection (Matthews
et al, 2024). This threshold sensitivity extends beyond the
core genome toward characterization of the accessory genome.
The introduction of “soft-core” (genes present in 95%-99% of
strains) and “shell” (genes with intermediate frequencies) concepts
provides more nuanced resolution of pangenome architecture,
recognizing that gene frequency distributions form a continuum
rather than discrete categories (Page et al., 2015). This graduated
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perspective reveals patterns of gene conservation reflecting
differential selective pressures, complex evolutionary histories,
and lineage-specific adaptations across multiple resolution levels
of pangenome analysis (Hyun et al, 2022). The implications
of these methodological decisions transcend mere technical
categorization. In species such as Mtb, where genetic diversity
is inherently limited, threshold selection can determine whether
the pangenome appears highly conserved or moderately variable.
A 100% threshold might suggest a core genome of merely
1,166 genes (Zakham et al, 2021), while a 95% threshold
could expand this estimate to over 3,700 genes (Espinoza et al,
2025), representing a greater than three-fold difference that
fundamentally alters our understanding of the pathogen’s essential
biology. Similar patterns have been observed across multiple
bacterial species where threshold choice dramatically impacts core
genome size estimates (Park et al, 2019). Beyond categorical
classification, modern statistical characterization of pangenomes
incorporates sophisticated quantitative analyses revealing emergent
properties of bacterial evolution. Power-law regression models
facilitate the prediction of potential pangenome expansion,
while rarefaction analyses assess the sufficiency of genomic
sampling (Parmigiani et al, 2024). The integration of these
analytical elements into a coherent framework requires not
only technical rigor but also a deep understanding of the
underlying biology. Presence-absence matrices, far from being
mere computational abstractions, encode complex evolutionary
histories where each binary entry represents millions of years
of selective pressure, genetic drift, and adaptation (Maistrenko
et al, 2020). Their careful statistical analysis, informed by
appropriate methodological decisions, constitutes the foundation
upon which we build our understanding of bacterial diversity and
evolutionary potential.

5.6 Functional analysis and biological
interpretation of Mycobacterium
tuberculosis pangenome

Beyond the technical construction of the pangenome, its
actual value lies in translating genomic data into biological
meaning. Functional interpretation bridges the gap between
raw genetic information and the broader questions that drive
TB research: How does genetic variation influence drug
resistance? What genes define virulence or host adaptation?
Which components are essential for pathogen survival? By
integrating gene frequency patterns with functional annotation,
pangenome studies move from describing genetic architecture
to uncovering the mechanisms that shape Mtb evolution and
clinical behavior. This level of analysis enables the identification
of conserved core functions, high-priority therapeutic targets,
and lineage-specific traits relevant to transmission and disease
progression. The following section will explore how the biological
interpretation of the Mtb pangenome has led to transformative
applications in molecular epidemiology, resistance prediction,
and virulence research-demonstrating how this comprehensive
genomic framework is redefining our strategies for understanding
and controlling TB.
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6 Applications and objectives of
M. tuberculosis pangenome studies

The comprehensive characterization of genetic diversity
through pangenome approaches has proven particularly effective
for Mtb despite the species’ unique evolutionary constraints. In the
absence of horizontal gene transfer, pangenome analyses capture
genetic diversity by detecting gene presence/absence patterns
resulting from characteristic evolutionary mechanisms. Single
nucleotide polymorphisms creating frameshifts or premature
stop codons, complete gene deletions, and large sequence
polymorphisms translate into detectable coding sequence
variations that clustering algorithms classify as absent or
lineage-specific genes, effectively capturing the predominantly
deletion-driven diversification characteristic of clonal bacterial
species (Silva-Pereira et al., 2024; Behruznia et al., 2025).

This capacity to translate structural genomic changes into
analyzable patterns of gene content has yielded transformative
insights that are reshaping our understanding of TB biology,
epidemiology, and clinical management (Figure 2). While early

genomic studies focused on individual reference strains such as
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H37Rv, pangenome studies capture the full spectrum of genetic
variation present across the global Mtb population, revealing
previously hidden layers of complexity essential for understanding
the pathogen’s success as a global health threat (Zhou et al., 2025).
These applications extend across multiple domains of TB research
and public health practice, from enhancing our ability to identify
novel therapeutic targets to addressing the evolving challenges
posed by MDR and XDR TB strains (World Health Organization
[WHO], 2024; Dheda et al., 2024).

The following sections examine the key applications
and objectives of Mtb pangenome studies, demonstrating
how this approach is contributing to advances across the

spectrum of TB research.

6.1 Molecular epidemiology

Pangenome analysis has enhanced molecular epidemiological
investigations of TB by providing a comprehensive genomic
context for understanding lineage-specific characteristics and
regional strain diversity. The comprehensive genetic repertoire
captured through pangenome studies enables researchers to
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identify lineage-specific markers and transmission patterns,
complementing existing molecular typing approaches (Zhou
et al., 2025). While traditional molecular typing methods, such as
spoligotyping and MIRU-VNTR, provide robust discrimination for
strain differentiation, pangenome approaches offer supplementary
insights, particularly valuable for understanding the genetic basis
of broader epidemiological patterns, such as lineage-specific
geographic distributions, regional genetic adaptations, and
population-level genetic signatures. Building on this foundation,
specialized computational methods have been developed. The
introduction of methods like PANPASCO exemplifies this
advancement, using pangenome-based read mapping against
reference genomes from major lineages to classify strains and
identify population-level genetic patterns, facilitating lineage-
specific epidemiological analysis (Jandrasits et al, 2019). Also,
pangenomic approaches have uncovered critical genomic features,
such as deletions in accessory genes associated with increased
virulence in specific lineages, particularly the modern Beijing
sub-lineage, which may contribute to higher transmissibility
and drug resistance (Rufai et al., 2020). Moreover, by analyzing
accessory genome components, it is possible to identify unique
genetic signatures associated with specific geographical regions,
population groups, or detect lineage-specific genes that correlate
with particular epidemiological patterns or host adaptations
(Chekesa et al, 2024). Pangenome association studies have
extended this concept by directly correlating genetic variation
with disease prevalence, exemplified by the identification of
lineage-4 genes associated with TB patterns in specific Colombian
populations (Hurtado-Pdez et al, 2023). Collectively, these
regional pangenomic approaches have consistently identified
geographical patterns in accessory genome content and lineage-
specific genetic signatures, demonstrating the value of population
genetic characterization for understanding regional Mtb diversity
(Morey-Leon et al., 2025).

6.2 Drug resistance characterization and
therapeutic target discovery

Pangenome analysis has revolutionized the understanding
of antimicrobial resistance in Mtb by providing comprehensive
insights into both resistance mechanisms and novel therapeutic
opportunities. This approach extends far beyond the analysis
of well-characterized core resistance genes to encompass the
entire genetic repertoire that may contribute to drug resistance
phenotypes and therapeutic vulnerability. By analyzing the
collective genetic diversity of resistant strains, it has been
possible to identify novel resistance mechanisms, compensatory
mutations, and epistatic interactions that influence treatment
outcomes and resistance evolution (Kavvas et al, 2018). The
integration of machine learning and structural analysis with
pangenome data has significantly advanced the identification
of genetic signatures of antimicrobial resistance and the
prediction of resistance phenotypes from genomic sequences.
These computational approaches have revealed complex epistatic
interactions that contribute to resistance development and
provided mechanistic insights into how resistance mutations
affect protein function and bacterial fitness. Specifically, Kavvas
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et al. (2018) developed a computational platform that combines
machine learning with genetic interaction analysis and 3D
structural mutation mapping to identify antimicrobial resistance
signatures in Mtb, revealing 97 epistatic interactions across 10
resistance classes and providing detailed structural insights into
resistance mechanisms.

Advancing these machine learning approaches further,
recent developments have addressed a fundamental limitation
in molecular drug susceptibility testing: the reliance on single
reference genomes that may miss resistance variants. Bahk et al.
(2024) developed a pan-lineage reference genome (“MtbRf”)
by
from 3,614 Mtb genomes across major lineages, recovering

systematically assembling previously unmapped reads
genetic content absent from the standard H37Rv reference. This
comprehensive reference genome improved drug susceptibility
prediction accuracy by capturing resistance-associated variants
that were previously undetectable using traditional single-
strain references. The integration of these additional genetic
sequences with machine learning algorithms demonstrated
enhanced predictive performance across eight major anti-
tuberculosis drugs, highlighting how pangenomic approaches can
overcome the inherent bias of reference genome-based resistance
detection methods.

Leveraging the comprehensive genetic landscape provided
by pangenome studies, researchers have systematically identified
essential genes within the core genome that represent high-priority
therapeutic targets. The analysis of gene essentiality across diverse
Mtb strains provides valuable insights into which genetic elements
are indispensable for survival and pathogenesis, making them
attractive candidates for drug development (Periwal et al., 2015;
Dar et al.,, 2020). Recent advances have demonstrated the power
of integrating pangenome analysis with subtractive proteomics
and computational drug design, successfully identifying promising
therapeutic targets such as isocitrate lyase and pantothenate
synthetase, along with potential lead compounds including
dihydroergotamine and abiraterone acetate (Khan et al., 2024).
This systematic approach ensures that potential drug targets are
assessed in the context of the complete genetic diversity observed
among clinical isolates. The clinical translation of pangenomic
insights has been further enhanced by advances in long-read
sequencing technologies, which also improve diagnostic accuracy
for drug-resistant strain identification by capturing structural
variants and repetitive elements that remain undetectable through
short-read approaches (Carandang et al., 2025). The combination
of pangenome-informed variant databases with these sequencing
platforms enables clinically actionable results, particularly in
multidrug-resistant contexts where precise genetic characterization
is critical for treatment decisions.
the
components revealed through pangenome analysis harbor genes

Beyond core genome targets, accessory genome
encoding strain-specific virulence factors or metabolic pathways
that could serve as targeted therapeutic opportunities. This
expanded target space enables the development of personalized
treatment strategies based on the genetic profile of individual
clinical isolates, potentially improving treatment efficacy and
reducing the likelihood of resistance development (Espinoza
et al., 2025). Such personalized approaches represent a significant

advancement over traditional one-size-fits-all treatment regimens.
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6.3 Virulence and pathogenicity studies

The application of pangenomic approaches to virulence
research has revealed critical insights into the genetic determinants
underlying strain-specific differences in Mtb pathogenicity
that remain undetectable to single-genome studies, addressing
fundamental questions about why certain strains cause pulmonary
(PTB) versus extrapulmonary disease (EPTB), exhibit enhanced
transmissibility, or display distinct host adaptation patterns across
diverse clinical contexts. Negrete-Paz et al. (2023) reported the
use of pangenome reconstruction as a tool to reveal genomic
features associated with strain clinical phenotypes. The analysis
reported distinct genetic signatures associated with different
clinical manifestations of the disease, with many of these signatures
involving members of specialized gene families that have emerged
as key players in TB pathogenesis (Negrete-Paz et al,, 2023).
Among the most prominent of these genetic determinants are the
PE/PPE multigene families, comprising approximately 10% of the
Mtb genome with 176 open reading frames (Akhter et al., 2012).
These proteins, characterized by conserved proline-glutamate
(PE) or proline-glutamate (PPE) motifs at their N-terminus,
represent one of the most intriguing aspects of the Mtb genome,
with various lines of evidence implicating selected family members
in mycobacterial virulence (Fishbein et al, 2015). Pangenomic
analyses have revealed that 81 core PE/PPE, virulence factor, and
antigen genes are related to the thick, lipid-rich cell envelope
phenotype of Mtb, including seven genes involved in maintaining
cell wall integrity and cell morphotype, 16 genes for host-cell
entry, and 32 genes associated with Mtb hypervirulence (Yang
et al, 2018). Additionally, 112 core PE/PPE, virulence factor,
and antigen genes are related to intracellular survival phenotype,
encompassing 21 genes involved in stress response,18 genes
affecting the antimicrobial activity of the phagosome, and 16
genes involved in nutrient absorption (Yang et al., 2018). This
systematic characterization reveals the genetic basis underlying
strain-specific pathogenic potential, providing insights that may
help explain clinical diversity and prompting more sophisticated
evolutionary analyses to understand the selective pressures shaping
Mtb pathogenicity.

Building upon these pangenomic insights, Bundhoo et al
(2024) conducted a comprehensive molecular evolutionary analysis
of core genes among 264 Mtb strains, determining the estimated
rates of molecular evolution of select biological processes and
molecular functions using the dN/dS ratio-a measure that
compares the rate of amino acid-changing mutations to silent
mutations, indicating evolutionary pressure on genes (Bundhoo
et al., 2024). This evolutionary approach has been complemented
by advanced pangenomic methodologies that challenge traditional
notions of gene essentiality. A recent study demonstrated
that 74% of core genes were deemed non-essential in vitro,
with 38% supporting pathogen survival in vivo, suggesting the
need to broaden current perspectives on gene essentiality and
highlighting how strain-specific genetic profiles may influence
treatment responses and clinical outcomes in diverse patient
populations (Espinoza et al., 2025). While these findings have
reshaped our understanding of core genome functionality,
complementary analyses of the accessory genome components
have provided critical insights into lineage-specific virulence
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mechanisms and adaptive strategies. Pangenomic analysis of
modern Beijing sublineages revealed specific deletions in accessory
genome sequences, including the complete deletion of CRISPR-
associated endoribonuclease casl (Rv2817c), cas2 (Rv2816c¢), and
CRISPR type III-a/m tube-associated proteins, suggesting that
specific lineages have evolved distinct genetic architectures that
may contribute to their enhanced transmissibility and drug
resistance characteristics.

6.4 Future perspectives and challenges

While pangenome studies have yielded significant insights
Mtb genetic
translating these findings into practical applications requires

into diversity and resistance mechanisms,
addressing key methodological and implementation challenges.
The standardization of analytical methodologies represents
a fundamental priority, requiring coordinated efforts that
acknowledge both technical and practical realities. A pragmatic
approach  involves developing standardized benchmark
datasets with well-characterized clinical isolates representing
major lineages and resistance profiles, enabling systematic
comparison of existing tools rather than enforcing single
2025;

2025). Such initiatives could enhance reproducibility

methodological approaches (Marin et al, Behruznia

et al,
and comparability across research groups while addressing
the highlighted

this review. The integration of pangenomic approaches into

methodological ~ controversies throughout

tuberculosis  surveillance systems presents implementation
challenges that vary significantly across different resource
settings. While pangenomic analysis could enhance molecular
epidemiological investigations and resistance monitoring in
high-resource contexts, implementation in high-burden settings
faces substantial barriers, including limited computational
infrastructure, a shortage of trained personnel, and competing
priorities for basic diagnostic capacity. Regional reference
laboratories with pangenomic capabilities serving multiple

countries, coupled with capacity-building partnerships, may

represent a more feasible implementation strategy that
acknowledges these resource disparities. The integration of
pangenome data with complementary omics approaches

offers promising avenues for understanding the functional
significance of genetic diversity, yet presents challenges in
data harmonization, computational scalability, and biological
interpretation. Recent advances in machine learning applied
to pangenomic data have produced increasingly accurate
models for predicting drug resistance, with some approaches
approaching the accuracy of traditional phenotypic testing

while providing results in shorter timeframes (Kavvas
et al, 2018; Bahk et al, 2024). However, demonstrating
that such multi-layered approaches provide clinically

actionable insights that justify their additional complexity
compared to existing molecular diagnostic tools remains an
ongoing challenge.

Several developments suggest a positive trajectory for
the field. Emerging computational tools designed specifically
for clonal pathogens like Mtb are addressing methodological
limitations, while international collaborative initiatives continue
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to establish data sharing standards that facilitate cooperation. The
expansion of global genome databases through initiatives like
the CRyPTIC consortium provides increasingly comprehensive
representations of Mtb genetic diversity. Cloud-computing
platforms are beginning to democratize access to sophisticated
analytical capabilities, potentially addressing infrastructure
limitations in resource-constrained settings. Nevertheless, the
clinical translation of pangenomic approaches requires rigorous
validation through prospective studies demonstrating improved
treatment outcomes. While preliminary evidence suggests potential
for personalized treatment strategies based on genetic diversity
information, further validation studies are needed to demonstrate
the clinical utility and cost-effectiveness of pangenome-informed
diagnostic and therapeutic approaches. Success in realizing
the transformative potential of pangenomics for tuberculosis
control will ultimately depend on sustained collaboration between
research institutions, public health organizations, and clinical
practitioners developing practical, validated tools that address
clinical needs. The convergence of methodological advances,
expanding databases, and international collaborative frameworks
positions pangenomics for substantial contributions to global

tuberculosis control efforts.

7 Conclusion

Mpycobacterium  tuberculosis ~ pangenome represents a
transformative framework for elucidating the genetic diversity
underlying one of humanity’s most persistent pathogens. This
review has explored the structural organization of the Mtb
pangenome, the ongoing methodological debates regarding its
classification as open or closed, and the systematic approaches
required for robust pangenome construction. The expansion of
pangenomic applications across molecular epidemiology, drug
resistance characterization, and virulence studies underscores a
paradigmatic shift from reference-centric to diversity-inclusive
approaches in TB research. Although substantial challenges
remain-particularly in standardizing analytical methodologies and
integrating multi-omics datasets- the pangenomic perspective
offers unprecedented insights into strain-specific adaptations,
resistance mechanisms, and therapeutic targets that remain
undetectable through single-genome analyses. Looking ahead,
the convergence of pangenomic data with advanced machine
learning approaches and functional validation strategies holds
the potential studies will likely unlock new opportunities
for TB treatment, enhanced surveillance systems, and novel
therapeutic interventions in the ongoing battle against this
global health threat.
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