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diet and NRF2 shape the
complex responses in the
murine gut microbiome and
hepatic metabolism
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Inorganic arsenic (iAs) exposure has been associated to various detrimental

effects such as development of metabolic syndrome and type 2 diabetes via

oxidative stress and induced prolonged activation of the NRF2 transcription

factor. Such effects can be aggravated by poor dietary habits. The role of gut

microbiota in promoting metabolic changes in response to arsenic has yet to

be precisely defined. To address the complexity of the interactions between

diet, NFE2L2/NRF2, and gut microbiota, we studied the chronic effects of iAs

exposure in wild-type (WT) and Nrf2-/- mice fed normal (ND) vs. high-fat diet

(HFD), on the gut microbial community in the context of hepatic metabolism.

We demonstrate that all treatments and interactions influenced bacteria and

metabolic profiles, with dietary differences causing a strong overlap of

responses between the datasets. By identifying five metabolites of known

microbial origin and following their fate across treatments, we provide

examples on how gut microbial products can participate in the development

of iAs and HFD-induced metabolic disease. Overall, our results underline the

importance of the microbial community in driving gut-liver-cross talk during

iAs and HFD exposure.
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Introduction

Environmental exposure to iAs, especially in drinking water,

represents a worldwide health risk. Among the detrimental

effects of chronic iAs exposure is a higher risk of developing

metabolic syndrome (MS) and type 2 diabetes (T2D). In adult

mice, sodium arsenite induced glucose intolerance without

changes in body weight (Paul et al., 2007). The same form of

chronic iAs exposure in adult mice potentiated the effects of

high-fat diet (HFD) on glucose intolerance (Paul et al., 2011).

Moreover, chronic exposure to elevated iAs during pregnancy in

mice led to increased body weight and adiposity, higher serum

cholesterol levels, hyper-leptinemia, and hyper-insulinemia in

the offspring extending into adulthood (Ditzel et al., 2016;

Rodriguez et al., 2016). Arsenic exposure has been observed to

induce prolonged activation of the nuclear factor erythroid 2

p45-related factor 2 (NFE2L2/NRF2) (Lau et al., 2013; Dodson

and Zhang, 2017), a transcription factor that regulates gene

expression through the interaction with the antioxidant response

element (ARE). NRF2 is known to control cellular mechanisms

of defense against oxidative and inflammatory stresses, and its

activation leads to the upregulation of protective enzymes that

play a critical role in the resolution of inflammation (Vasileva

et al., 2020). While activation of NRF2 by iAs has been generally

considered to be an adaptive mechanism to reduce cytotoxicity

associated with increased reactive oxygen species (ROS), chronic

and uncontrolled NRF2 activation has been postulated to

promote cancer progression, metastasis, and resistance to

therapy (Lau et al., 2008; Rojo de la Vega et al., 2016). We

recently demonstrated that iAs diabetogenicity is associated with

a prolonged non-canonical NRF2 activation via p62-mediated

sequestration of KEAP1 (Liu et al., 2021). This mechanism was

responsible for the increased carbohydrate flux through the

polyol pathway in the liver and led to a pro-diabetic shift in

glucose homeostasis.

Finally, there is a substantial body of literature that points to

gut microbiota as the trigger of low-grade “metabolic”

inflammation, promotion of metabolic syndrome and T2D

(Chassaing and Gewirtz, 2014; Scheithauer et al., 2020;

Gurung et al., 2020). Gut microbiota may play a central role in

promoting metabolic changes in response to iAs and poor, high-

fat, low-fiber diet, dominant in western societies. Indeed, HFD is

one of the most potent modifiers of gut microbiota and a driver

of chronic diseases in mice and humans (Daniel et al., 2014;

Carmody et al., 2015; Murphy et al., 2015). Exposure to

environmental pollutants, such as particulate matter and heavy

metals, are also known to alter the composition of the gut

microbiome, leading to disease (Bailey et al., 2020; Arun et al.,

2021). The main route of iAs intake is through the digestive trait

(Calatayud and Llopis, 2015). Thus, it is not suprprising that
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chronic iAs exposure in adult mice, or in mice exposed to iAs in

utero and early postnatal development, can significantly affect

gut microbial composition (Lu et al., 2014; Chi et al., 2017;

Chiocchetti et al., 2019; Wu et al., 2022). Conversely, the gut

microbiome is known to influence the fate, toxicity and mobility

of iAs species and metabolites, ultimately influencing the effects

of iAs on the host (Lu et al., 2013; Yang et al., 2021). Gut bacteria

also remain in a reciprocal relationship with NRF2. They lead to

the activation of hepatic NRF2 (Saeedi et al., 2020), whereas

deactivation of the NRF2 pathway in Nrf2-/- mice alters the

microbial composition in the gut, which suggests a complex

feedback affecting the regulatory activities performed by the

NRF2 pathway and the gut microbiome (Song et al., 2021).

However, our current knowledge about the role of iAs, high-

fat diet, or the role of NFE2L2/NRF2 largely comes from

reductionist approaches with isolated effects, even though their

interactions are likely responsible for the final phenotypic

outcomes in individual patients or in vulnerable communities.

In this study, we attempted the challenging task of integrating

the effects of iAs, normal (ND) and high-fat diet (HFD), and

NFE2L2/NRF2 genetic status on the gut microbial community in

the context of hepatic metabolism.
Methods

Animal experiments

Nrf2+/+ (wild type, WT) and Nrf2-/- mice were generated by

breeding Nrf2+/- mice in the C57BL/6J background and the

Littermates were used in the study. Eight-week-old mice (25-

27g) were randomly allocated to the Ctrl group, or iAs group,

HFD group and HFD+iAs group (n= 5 mice per group). Mice in

the Ctrl group received normal drinking water, while mice in the

iAs group received drinking water containing sodium arsenite

(25 ppm) for 20 weeks. Water with iAs was changed to a fresh

solution twice a week to ensure iAs stability. 25 ppm sodium

arsenite was chosen as it reflects the amount commonly used in

the literature to obtain diabetic phenotypes (Paul et al., 2008).

The mice in HFD group were fed with high fat diet (Research

Diets, D12492) containing 60% calories from fat, 20% from

protein and 20% from carbohydrates for 20 weeks, while the

mice in other normal diet groups received the normal chow

(Envigo Teklad Laboratory Diet, 2018) containing 18% calories

from fat, 24% from protein and 58% from carbohydrates. Fecal

samples from all 40 mice were collected one week before mice

were sacrificed. All mice were euthanized, and liver tissue was

collected at 20 weeks of treatment. Physiological data (body,

liver, spleen weight, body fat, blood volume, and glucose level),

was registered at the end of the 20-week study.
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Microbiome analyses

Genomic DNA was extracted from 0.25g of fecal matter,

using a FastDNA Spin Kit for Soils (MP Biomedicals, OH, USA),

following the manufacturer instructions. Extraction blanks were

included to control for potential contaminations during the

extraction and sequencing procedures. We amplified the V4

hypervariable region of the 16S rRNA gene by PCR using the

515-F (GTGCCAGCMGCCGCGGTAA) and the 806-R

(GGACTACHVGGGTWTCTAAT) primer pair (Caporaso

et al., 2012). The primers included Illumina adapters and an

error correcting 12-bp barcode, that, unique to each sample, was

used for demultiplexing. An Ultra-Clean PCR Clean-Up kit was

used to clean PCR products (MoBio Laboratories, Carlsbad, CA,

USA). Quant-iT PicoGreen dsDNA iAssay Kit was used for

product quantification (Invitrogen, Waltham, MA USA).

Purified DNA products were pooled together in equimolar

concentration and sequenced on a 2x150 bp Illumina MiSeq

platform (Illumina, San Diego, CA USA) at the Microbiome

Core Steele Children Center, University of Arizona, USA.

Demultiplexing was performed using idemp (https://github.

com/yhwu/idemp). Demultiplexed files were used to generate

amplicon sequence variants (ASVs) with the DADA2 pipeline

(Callahan et al., 2016). The reads were trimmed to 140 base pairs

and reads exceeding a maximum expected error of 2 or more

base pairs were removed. The resulting quality-filtered reads

were used to train the error model in DADA2. Paired-end reads

were merged, and chimera sequences removed. Taxonomic

identities were assigned using the Ribosomal Database Project

(RDP) classifier (Wang et al., 2007), on the SILVA nr version

132 database (Quast et al., 2012). Any ASVs that were assigned

to chloroplast, mitochondrial, or archaeal origin were removed.

We also removed samples with less than 10,000 sequences,

leaving a total of 39 samples.
Metabolomics

Metabolomic analyses were performed as described (Liu

et al., 2021). Briefly, liver tissue from 20-week-old mice was

collected, frozen in liquid nitrogen, and subsequently shipped to

Metabolom (Morrisville, NC, USA), for further analyses.

Methanol precipitation and centrifugation was used to remove

proteins. The final extract was analyzed using ultrahigh

performance l iquid chromatography-tandem mass

spectroscopy (UPLC-MS/MS). Peak identification, validation,

and scaling (median equal to 1) were performed by

Metabolon. Data was multiplied by a factor 10000 and then

log2 transformed to achieve homoscedasticity. Among the

metabolites measured, five were selected to be used as

indicators of the activity of the gut-liver axis: (1) 3-indoxyl
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sulfate is a liver metabolite of indole, a gut bacteria produced

metabolite (Zgoda-Pols et al., 2011; Huć et al., 2018). (2)

Imidazole propionate is a gut microbial product that, once

absorbed through the portal vein into the liver, enters

systematic circulation and contributes to type 2 diabetes

parthenogenesis (Koh et al., 2018). (3) Trimethylamine N-

ox ide (TMAO) is der ived from the ox idat ion of

trimethylamine (TMA), a bacterial metabolite of choline. TMA

is absorbed in the intestine and delivered in the liver, where it is

metabolized into TMAO (Arias et al., 2020). (4) Deoxycholate is

a secondary bile acid, with putative mediative cancerogenic

effects and (5) N,N,N-trimethyl-5-aminovalerate (TMAVA) a

microbial product which has been reported to promote liver

steatosis in mice consuming a high fat (Zhao et al., 2020).
Statistical analyses

Most statistical analyses were implemented in R (T.R.D.

Core, 2020) using vegan for multivariate statistics (Oksanen

et al., 2018). Alpha diversity metrics (ASV richness, Shannon

diversity) were calculated on rarefied data (81,000 sequences)

to reduce biases due to differential sequence counts.

Differences in richness and diversity among treatments were

tested using a 3-way ANOVA with interactions included in the

models. To evaluate the effects of the treatments on microbial

community profiles, Bray-Curtis dissimilarities were

calculated on CSS scaled ASV tables. Permutational analysis

of variance (PERMANOVA) was used to calculate

compositional differences among treatments, including

interactions among variables (Anderson, 2001; Paulson

et al., 2013). To evaluate the effect of the treatments on mice

liver metabolic profiles, Euclidean distances were calculated,

and PERMANOVA was used to assess differences among

treatments. To identify differentially abundant ASVs, we

used the R package DESeq2 (Love et al., 2014), with a P <

0.05 after FDR correction. Variation partitioning analysis was

used to evaluate the effect of the treatments in driving the

observed correlations (Peres-Neto et al., 2006). In this case,

Euclidean distances between metabolic profiles were used as

response variables, while the first ten axes of the NMDS

ordination were used as representative of the microbial

community. Metabolite differential abundance between

conditions were tested fitting linear regressions with

interactions included in the models (P < 0.05 after FDR

correction). Correlations between indicator metabolites and

phylotypes (50 most abundant) were calculated using

Spearman correlations (P < 0.05 after FDR correction).

Additional statistical analyses of non-microbiome data were

performed with GraphPad Prism 9 software, as described in

figure legends.
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Results

Phenotypic analyses

PERMANOVA was calculated on Euclidean distances based

on the phenotypic characteristics (weight gain from the start till

the end of the study, average calorie consumption, and blood

glucose, and liver, spleen, kidney, and abdominal fat pad weights

data collected at the time of euthanasia). The measured

phenotypical characteristics were significantly affected by diet

and genotype, while iAs intake did not show any statistically

significant effect alone. iAs intake was only significant when

interacting with diet (Supplementary Table S1). Predictably,

HFD led to increased caloric intake and increased baseline

glucose levels in each experimental group (Supplementary

Figure S1A). Body weight gain was consistently elevated in

HFD-fed mice compared to mice fed control diet, but the gain

in response to HFD was significantly lower in iAs-exposed mice

regardless of their genotype (Supplementary Figure S1A). HFD

diet led to increased liver, spleen, and abdominal fat pad, but not

kidney weights (Supplementary Figure S1B). In Nrf2-/- mice, iAs

blunted the effects of HFD on liver weight. iAs exposure also

significantly blunted the effects of HFD on abdominal fat pad

weight regardless of the genotype and a similar effect was

observed for the spleen weight, although without reaching a

statistical significance (Supplementary Figure S1B). Kidney

weight was not affected by any of the experimental variables.
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Taxonomic composition and richness of
fecal microbiota

The total richness (number of ASVs) was 1,529. The average

richness per sample, after rarefaction, was 315 ( ± 65) ASVs. At

the phylum level, microbial communities were dominated by

Firmicutes (61%), Bacteroidetes (29.9%), Proteobacteria (3.1%),

Verrucomicrobia (2.3%) and Tenericutes (1.9%). Diet was the

only factor with a significant effect on richness (Table 1). For

Shannon diversity, statistically significant differences were

detected between different diets, iAs exposure, and genotypes

(Table 1). The interaction between all three factors was also

found to be significant (Table 1), while the other two interactions

were not. All treatments and all interactions showed a significant

effect on microbial community compositional similarities, with

diet being the strongest predictor, followed by genotype and by

the interaction of all three variables (Table 1; Figure 1C). HFD,

but not iAs exposure or NFE2L2/NRF2 status significantly

reduced microbial diversity expressed as the number of ASVs

(Figure 1A). However, Shannon’s index, which accounts for both

abundance and evenness of the species present, was reduced by

each of the three experimental variables (Figure 1A).

Interestingly, while iAs intake in ND wild-type mice modestly

increased alpha diversity (Shannon H’ index), deletion of NRF2

led to a reciprocal effect, thus indicating that NRF2, at least to

some extent, protected the gut microbiota from the dysbiotic

effects of iAs (Figure 1B). All treatments led to a reduced
TABLE 1 ANOVA and PERMANOVA results for microbiome and metabolome profiles.

Single variate

Richness Shannon H’ Firmicutes/Bacteroidetes ratio

Ind. Var. Df Sumsq F P Df Sumsq F P Df Sumsq F P

Genotype 1 2857 2.44 0.13 1 0.39 13.67 <0.001 1 8.71 5.14 O.03

Diet 1 115781 99.07 <0.001 1 1.56 53.71 <0.001 1 43.01 25.37 <0.001

As 1 129 0.11 0.74 1 0.22 7.731 0.009 1 8.47 4.99 0.03

Genotype : Diet 1 651 0.56 0.46 1 0.081 0.278 0.6 1 0.08 0.48 0.83

Genotype : As 1 46 46 0.84 1 0.592 2.036 0.16 1 0.47 0.28 0.6

Diet : As intake 1 3672 3.142 0.086 1 0.005 0.165 0.69 1 0.53 0.311 0.58

Genotype : Diet:As int. 1 588 0.503 0.48 1 0.18 6.199 0.018 1 0.86 0.5 0.48

Multivariate

Microbiome Liver metabolites

Ind. Var. Df F R2 P Df F R2 P

Genotype 1 24.47 0.15 <0.001 1 4.02 0.06 0.009

Diet 1 58.25 0.35 <0.001 1 25.9 0.37 <0.001

As 1 11.87 0.07 <0.001 1 1.80 0.03 0.1

Genotype : Diet 1 12.36 0.07 <0.001 1 1.93 0.03 0.085

Genotype : As 1 8.82 0.05 <0.001 1 3.06 0.04 0.022

Diet : As intake 1 9.42 0.06 <0.001 1 1.61 0.02 0.149

Genotype : Diet:As int 1 8.76 0.05 <0.001 1 1.39 0.02 0.206
front
Values in bold are significant (P < 0.05).
iersin.org
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Firmicutes/Bacteroides ratio (Table 1), while interactions were

non-significant (Figure 1D; Table 1).
Differential abundance analysis of
microbiome data

DESeq2 identified that 261 ASVs were changed by diet

treatment, 134 by genotype, and 84 by iAs exposure. The

interaction between genotype and iAs significantly influenced

the abundance of 142 ASVs, between genotype and diet
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influenced 147 ASVs, between iAs and diet 101 ASVs and all

three factors interacting 115 ASVs (Figure 2A; a complete list in

Supplementary Tables S2). Among the most abundant ASVs

affected by all three experimental variables was ASV1

Lactobacillus (Figure 2B), which showed an increase with all

three disturbances. Akkermansia muciniphila, a gut bacterium

associated with probiotic properties (Cani and de Vos, 2017),

increased in Nrf2-/- mice and in iAs-exposed mice, but not in

mice fed with a high fat diet (Figure 2B). Other ASVs such as

ASV19 Alistipes, a genus associated to dysbiosis and

inflammation (Parker et al., 2020), was found to increase in
B

C D

A

FIGURE 1

Influence of diet, iAs exposure and NFE2L2/NRF2 status on general indices of microbial diversity. (A) Boxplots showing differences in richness
and Shannon diversity across treatments. (B) Shannon H’ is influenced by the interaction between diet, genotype, and arsenic. (C) NMDS
ordination based on microbiome composition. (D) Differences in Firmicutes to Bacteroidetes ratios across treatments (*P < 0.05, **P < 0.01,
***P < 0.001).
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high fat diets and Nrf2-/- mice, but decreased with iAs exposure

(Figure 2B). Among the ASVs found influenced by the

interactive effects (Figure 2C), we found members of groups

often associated with a variety of host health outcomes.
Differential abundance analysis of liver
metabolites

A total of 738 metabolites were detected. Linear regressions

was then used to identify metabolites which measured

concentration varies significantly across treatments. Diet

significantly changed 449 metabolites, genotype - 173
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metabolites, and iAs - 123 metabolites. Interaction between

diet and genotype significantly influenced the concentration of

52 metabolites, between diet and iAs intake - of 61 metabolites,

between genotype and iAs - of 105 metabolites. Figures 3A–C

shows 10 metabolites most strongly influenced by each

condition. The interaction between all three factors

significantly influenced the concentration of 43 metabolites.

Examples of these interactions are presented in Figures 3D–G

and a complete list of the altered metabolites and their

associations with individual or composite experimental

variables is reported in Supplementary Tables S3. We

identified carbohydrates involved in glycogen metabolism

(maltose, maltotriose, maltotetraose, maltopentatose) and 4-
B

C

A

FIGURE 2

Influence of diet, iAs exposure and NFE2L2/NRF2 status on gut microbiota: differential abundance analysis. (A) DESeq2 results of the 50 most
abundant ASVs found affected by either a treatment or an interaction between treatments. Cells are colored according to the amplitude of the
fold change in relationship to the treatment and with the controls as reference, empty cells mean non-significant effects. ASVs are grouped into
a tree based on their sequence similarity using a neighbor-joining clustering method. (B) Examples of phylotypes being influenced by the three
different treatments. (C) Examples of phylotypes being influenced by the interaction between treatments. (*P < 0.05, **P < 0.01, ***P < 0.001).
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cholesten-3-one, an oxidation product of cholesterol, associated

with high fat diet. In Nrf2-/- mice, we found a higher

accumulation of argininate, which was observed to interfere

with anti-oxidant cellular defenses of rats (Delwing-de Lima

et al., 2017).

To provide a more two-dimensional glimpse of the hepatic

metabolites altered in individual treatment groups, hepatic

metabolites were sorted by their abundance across all samples

in the study, and log-normalized values were analyzed by

ANOVA followed by Tukey’s HSD pairwise comparison.

Figure 4 depicts twenty most abundant metabolites whose

abundance was influenced by the treatments in a statistically

significant manner. This group is comprised of amino acids,

phospholipids, phosphoethanolamines, lipids, a nucleotide, and

a phytochemical alkaloid. Interestingly, most of these

metabolites (marked by an asterisk in Figure 4) were also

found by an independent untargeted metabolic screen of fecal

samples from treatment-naïve mice (data not shown), thus

suggesting that they may have originated from the diet and/or

microbial metabolism. With a few exceptions, iAs alone did not

affect either of those metabolites regardless of the genotype and

the observed changes were driven primarily by diet. The two
Frontiers in Microbiomes 07
exceptions were 1,2-dilinoleoyl-GPE (18:2/18:2) and 1-linoleoyl-

GPE (18:2) which were significantly induced by iAs only in

Nrf2-/- mice. L-tryptophan (Trp)-kynurenine pathway, also

implicated in glycemic control, was represented by

kynurenine, kynurenate, and anthralinate. These three likely

represent the sum of their production by gut microbiota, and

intestinal and hepatic Trp metabolism. The levels of all three

were significantly lower in HFD groups (Figure 4).
Relationship between fecal microbiome
and liver metabolome

According to PERMANOVA analysis, diet was the strongest

predictor of metabolite composition, followed by genotype and

by the interaction between genotype and arsenic intake (Table 1,

Figure 5A). Gut microbiota dissimilarities and liver metabolites

distances were highly correlated (Figure 5B). Clustering patterns

indicate how the correlation between the two matrices was

mainly driven by their responses to diet. ASVs and metabolites

belonging to cluster “A” generally show a lower abundance in

high fat diet and in opposition to those in cluster “B”, while
B C

D E F
G

A

FIGURE 3

The effects and interaction of diet, iAs exposure, and genotype (NFE2L2/NRF2 status) on hepatic metabolites. (A-C) Boxplots showing ten (five
increasing and five decreasing) most affected metabolites (up- or down-regulated by a respective treatment, as compared to controls).
(D-G) Examples of metabolites significantly influenced by the interaction between treatments.
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cluster “C” included ASVs and metabolites which did not

strongly react to differences in diet (Figures 5D, E). Variation

partitioning analyses also indicated a strong overlap between the

metabolite composition and gut microbial community distances

as a response to different treatments (40% co-variation), but

further identified 6% of metabolite variation as explained by the

gut microbiome independently of the treatments. 1% of the

variation induced by treatments did not overlap with differences

in the microbial community (Figure 5C).

Besides 3-indoxyl sulfate, all the other selected markers of

the microbially mediated gut liver axis activity showed to be

significantly affected by either a treatment or an interaction

(Figure 6A). Imidazole propionate, besides being influenced by
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iAs, was also influenced by the interaction between diet and

genotype. Deoxycholate was reduced in HFD; N,N,N-trimethyl-

5-aminovalerate (TMAVA) was also decreased with HFD, while

trimethylamine N-oxide (TMAO) was increased. TMAVA was

also influenced by all interactions acting simultaneously, while

TMAO was also influenced by the interaction between diet and

genotype. We then analyzed how these five selected metabolites

correlate to members of the gut microbial community

(Figure 6B). Given that deoxycholate, TMAVA and TMAO

responded to different diets, they also correlated with

microbial groups that responded to this treatment. For

example, deoxycholate and TMAVA both decreased with HFD

and showed negative correlations with ASV1-Lactobacillus.
FIGURE 4

The effects and diet, iAs exposure, and NFE2L2/NRF2 status on the most abundant hepatic metabolites. Hepatic metabolites were sorted by
their abundance across all samples in the study, and log-normalized values were analyzed by ANOVA. Twenty most abundant metabolites
whose concentration was influenced by the treatments (defined by one-way ANOVA; p-adj < 0.05 after FDR correction) were selected for
presentation across experimental groups. Within each graph, different letters next to boxes represent statistically significant differences between
groups, according to post-hoc tests for pairwise significance corrections using Tukey’s HSD contrasts (P < 0.05 as significant). Asterisks next to
the metabolite name indicates that it was also identified among fecal metabolites of untreated healthy wild-type mice.
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TMAVA and TMAO also showed significant and contrasting

correlations with richness. 3-indoxyl sulfate did not show

correlation to any ASV. Imidazole propionate showed a

positive association with ASV10 D. newyorkensis.
Discussion

Arsenic occurs naturally in soil, plants and water and long-

term exposure to elevated levels of environmental arsenic has

been associated with cancer, heart disease, and other disorders.

More recently, it has been suggested that it can act as a metabolic

“disruptor” and that the metabolic risks imposed by chronic

arsenic exposure, and its ability to promote the development of

glucose intolerance and type 2 diabetes, may be underestimated

(Kirkley et al., 2018).
Frontiers in Microbiomes 09
Isolated and combined effects of arsenic
exposure, high fat diet and Nrf2 gene
knockout on the gut microbial
community of mice

All three treatments induced a perturbation in the gut

microbial community, causing a reduction of diversity and

shifts in community composition. A reduction in microbial

diversity is generally associated to a loss of functionality of the

community, potentially leading to the development of metabolic

diseases (Huttenhower et al., 2012). All three treatments also

induced a lower Firmicutes/Bacteroidetes ratio; this has been

previously described as a marker of gut dysbiosis in obese

patients, although its effective utility has been questioned

(Magne et al., 2020). Diet was the treatment inducing the

strongest effect on microbial communities, which is in
B C

D E

A

FIGURE 5

The interaction between gut microbiota and liver metabolites in the context of diet and genotype (NFE2L2/NRF2 status). (A) PCA based on
Euclidean distances between liver metabolites. (B) Relationship between Bray-Curtis dissimilarities in microbial communities and Euclidean
distances of liver metabolomes. (C) Venn diagram representing variation in liver metabolomes in relationship to different treatments (bottom
circle) and gut microbial community (upper circle). The percent of variation explained by that set of predictors equals the sum of the numbers in
each circle. Numbers in overlaps are equals to the variance jointly explained by them. (D) Clustered heatmap of spearman correlations between
metabolites (x axis) and the 200 most abundant ASVs across the study (y axis). Within the heatmap three clusters (A-C) are formed according to
the response of ASVs and metabolites to diet. (E) Boxplots of z-scores of ASVs and metabolites clustered in A, B and C, showing a common
response to diet. *** indicates P < 0.001
frontiersin.org

https://doi.org/10.3389/frmbi.2022.1041188
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Schiro et al. 10.3389/frmbi.2022.1041188
accordance with previous studies point to diet as one of the main

determinants of the composition of the gut microbiome in mice

and other hosts (Daniel et al., 2014; Singh et al., 2017).

Differences in genotype produced a significant variation in the

gut microbial community, confirming the results that Nrf2 gene

activity can impact gut microbial composition (Song et al.,

2021). Arsenic intake had also an effect on microbial

composition, as previous studies also observed in mice (Lu

et al., 2014; Chi et al., 2017). All tested interactions also

showed a significant effect on microbial composition,

indicating that the gut community responded differently to the

experimental variables when these were acting simultaneously

or independently.

The differential abundance analysis showed how all three

factors can influence phylotypes with potential implications for

host health. ASV1 Lactobacillus, the most abundant ASV

detected, was observed to significantly increase its abundance

with all three disturbances. Strains of Lactobacillus are known as

possible probiotics, and associated to reductions in body weight

in obese patients (Crovesy et al., 2017) but also increase with

high fat diets (Daniel et al., 2014). Surprisingly, A. muciniphila,

showed a higher abundance in KO and iAs- treated mice.

A. muciniphila has been described as a protective symbiont,

which abundance was observed to be inversely correlated to the

occurrence of several diseases (Cani and de Vos, 2017; Geerlings

et al., 2018). Alistipes dysbiosis has been also related to the host’s
Frontiers in Microbiomes 10
health, and described as both beneficial and harmful (Parker

et al., 2020). Among phylotypes significantly affected by the

interactions between treatments, we found members of

Lachnospiraceae, which role in relationship to host’s health

has been described as controversial (Vacca et al., 2020).
Correlation of microbial community
shifts with hepatic metabolism

We investigated how these changes relate to host liver

metabolism, by comparing changes in the gut microbial

community to the abundance of hepatic metabolites. We

observed that the two matrices show a strong overlap, with

diet leading the correlation between the two datasets. This was

expected, given that diet is known to strongly affect both gut

microbiota and liver metabolism. We showed how microbial

metabolites contribute to the differences in the metabolic activity

of the host, and that these differences can potentially contribute

to the etiology of metabolic diseases. With complex data sets like

ours, the reader may best benefit by interrogating our data (in

the Supplement or through data repository) for taxa/metabolites

of their interest. Due to manuscript limitations, we limited our

in-depth analyses to example targets that best reflect the effects

of the experimental design. Analysis of the twenty most

abundant liver metabolites significantly affected by our
B

A

FIGURE 6

Hepatic microbially derived metabolites in the liver in the context of diet, iAs exposure, and genotype (NFE2L2/NRF2 status). (A) Responses of
selected microbially derived metabolites to different treatments as identified by linear models (*P < 0.05, **P < 0.01, ***P < 0.001 after FDR
correction). (B) Spearman correlation matrix between the 50 most abundant ASVs and the five selected microbially derived metabolites. Only
significant correlations are shown (P < 0.05 after FDR correction).
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experimental variables identified molecules also present in fecal

murine samples, suggesting their microbial and/or dietary

origin. Although it was evident that high-fat diet was the

dominant and often the only modulator of their abundance,

two phosphoethanolamines, 1-linoleoyl-GPE (18:2) (LysoPE,

HMDB11507) and 1 ,2-di l inoleoyl-GPE (18:2/18 :2)

(HMDB0009093), were increased by iAs in Nrf2-/- but not in

WT mice, thus suggesting that Nrf2 modulates liver

phosphoethanolamine metabolism in response to chronic iAs

exposure. This observation may deserve more scrutiny in the

future since there is experimental evidence of an association

between phosphatidylethanolamines and insulin sensitivity

(Chang et al., 2019). L-tryptophan (Trp)-kynurenine pathway,

also implicated in glycemic control, was represented by

kynurenine, kynurenate, and anthralinate. These three likely

represent the sum of their production by gut microbiota, and

intestinal and hepatic Trp metabolism. The levels of kynurenic

and anthralinic acids were significantly lower in HFD groups.

This correlated with decreased kynurenine, suggesting that the

supply of kynurenine, a Trp metabolite, was the primary reason

rather than impaired kynurenine metabolism. This observation

is in line with the reported contribution of kynurenate (KYNA)

to lipid homeostasis. KYNA activates Gpr35 signaling to

suppresses weight gain and improve glucose tolerance and

adipose tissue inflammation in HFD-fed animals (Agudelo

et al., 2018), and decreased KYNA may contribute to impaired

glucose tolerance in response to high-fat diet in our

experimental setup. However, based on our data, it is unlikely

to account for the reported effects of iAs on glucose metabolism

(Liu et al., 2021) since iAs or Nrf2 knockout did not modulate

the response to HFD.

Multiple linear regression with interactions analysis pointed

to additional examples of hepatic metabolites with interactions

between iAs exposure, diet, and Nrf2 status. E.g., imidazole

propionate, a microbial metabolite of histidine, increased in

mice fed with iAs and with the interaction between diet and

genotype. Imidazole propionate is known to activate p38g
MAPK signaling pathway, and impair insulin signaling by

promoting p62 phosphorylation and activation of mechanistic

target of rapamycin complex 1 (mTORC1) (Koh et al., 2018).

Imidazole propionate was elevated in patients with prediabetes

and diabetes with Bacteroides 2 enterotype, which has previously

been associated with obesity, and has been proposed to

contribute to type 2 diabetes by modulating host inflammation

and metabolism (Molinaro et al., 2020). This may indicate that a

similar mechanism may be involved in the etiology of type-2

diabetes via associated with poor diet and iAs exposure.

TMAVA and TMAO are microbial metabolites known to

contribute to metabolic dysfunction and conditions like liver

steatosis, inflammation, and oxidative stress (Arias et al., 2020;

Zhao et al., 2020), and were also observed to respond differently

to our treatments, although their contrasting behavior is

unexpected, since they were both previously associated with
Frontiers in Microbiomes 11
liver damage and steatosis (Tripathi et al., 2018; Zhao

et al., 2020).
Summary

All in all, these results show how the gut microbial activity can

be perturbated by co-interacting disturbances. All treatments and

interactions caused shifts of host gut microbial community,

differentially influencing the abundance of bacteria known to

affect host’s health. Differences in microbial activity translate

into variations of metabolic activity of the liver, underlining the

importance of the microbial community in driving gut-liver-cross

talk. Our results also suggest how interactions between gut

microbes, diet, and arsenic intake can contribute to the

development of metabolic diseases. Further in-depth analysis

using a wider combination of multi-omics techniques can help

develop a better mechanistic understanding of the relationship

between the gut microbiome and host metabolism. Such

knowledge can contribute to the development of therapeutic

approaches for the treatment of various metabolic diseases.
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