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Microbial communities of the
upper respiratory tract in mild
and severe COVID-19 patients:
a possible link with the
disease course

Julia S. Galeeva1*, Elizaveta V. Starikova1, Dmitry E. Fedorov1,
Alexander I. Manolov1, Alexander V. Pavlenko1,
Dmitry N. Konanov1, Danil V. Krivonos1, Vladislav V. Babenko2,
Ksenia M. Klimina2, Vladimir A. Veselovsky2,
Maxim D. Morozov2, Ilshat R. Gafurov3,
Raushaniya F. Gaifullina3, Vadim M. Govorun1

and Elena N. Ilina1*

1Research Institute for Systems Biology and Medicine, Department of Mathematical Biology and
Bioinformatics, Moscow, Russia, 2Lopukhin Federal Research and Clinical Center of Physical-
Chemical Medicine of Federal Medical Biological Agency, Department of Molecular Genetics of
Microorganisms, Moscow, Russia, 3Kazan Federal University, Department of Molecular Medicine and
Biology, Kazan, Russia
Themicrobiota of the respiratory tract remains a relatively poorly studied subject.

At the same time, it is involved in modulating the immune response to infectious

agents in the host organism, just like the intestinal microbiota. A relationship

between the composition of the respiratory microbiota and the likelihood of

development and the severity of COVID-19 may be assumed. In this study, we

applied the 16S rRNA metagenomic sequencing to analyze the oropharyngeal

swabs from 120 COVID-19 patients collected during the first and the second

waves of the COVID-19 epidemic in Russia. Differential abundance analysis with

respect to comorbidities suggested association of Neisseria oralis, Neisseria

mucosa, unidentified Veillonella spp., Lautropia mirabilis species with more

severe lung damage, and Streptococcus salivarius, Capnocytophaga sputigena

and Haemophilus parahaemolyticus with a milder course of the disease. We

hypothesize that the latter bacteria (or some of them) might be beneficial for the

respiratory tract and might be able to alleviate the course of the COVID-

19 disease.

KEYWORDS

COVID-19, 16S, human microbiome, oropharyngeal swabs, SARS-CoV-2, upper
respiratory tract
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1 Introduction

Commensal microorganisms of the respiratory tract affect the

body’s ability to withstand a threat of viral infections (Abt et al.,

2012; Lee et al., 2019). This might be due to the modulatory effect of

microbes on the immune system (Abt et al., 2012) or direct impact

of the microbial metabolites on the viral life cycle (Kamio

et al., 2015).

At the same time, certain bacteria can promote viral infections

(Bellinghausen et al., 2016), and secondary bacterial infections can

lead to serious complications and mortalities (Morens et al., 2008;

Lansbury et al., 2020). Viral infections in turn can influence the

bacterial community, sometimes promoting bacterial biofilm

formation and secondary infections (Hendricks et al., 2016;

Hendricks et al., 2021). The relationship between respiratory

microbiota and viral infections remains an important research

subject (Man et al., 2017; Hendricks et al., 2021).

Until recently, the microbiota of the upper respiratory tract was

poorly studied, especially in adults (Dubourg et al., 2019). This

situation is now changing due to the current COVID-19 pandemic.

Previous study has shown the dynamical nature of microbial

community types of the upper respiratory tract during COVID-19

infection (Xu et al., 2021). A number of studies described differences

between patients with COVID-19 and healthy people or differences

between patients with different levels of disease severity (Rosas-

Salazar et al., 2021; Soltani et al., 2021) among others, (see

(Yamamoto et al., 2021) for a short review). The results of

various studies are not always consistent. It might be due to the

phenotypic differences between subjects (e.g. comorbidities), as well

as seasonal and geographical factors and different techniques used

in data sampling and analysis.

When studying the current COVID-19 samples, researchers use

different approaches. In a study performed in Nashville, Tennesy

(Rosas-Salazar et al., 2021), the researchers examined 38 COVID-19

patients and 21 uninfected controls by 16S rRNA metagenomics.

They obtained amplicon sequence variants (ASVs) using DADA2

method and applied DESeq2 to infer ASVs associated with the

infection and also with high viral load. They have noted that ASVs

associated with COVID-19 disease and high viral load belonged to

Peptoniphilus lacrimalis, Campylobacter hominis, Prevotella copri,

and an Anaerococcus unclassified amplicon sequence variant. At the

same time, Corynebacterium unclassified, Staphylococcus

haemolyticus, Prevotella disiens, and two Corynebacterium_1

unclassified amplicon sequence variants were associated with

healthy status and low viral load during COVID-19.

In another study (Ren et al., 2021), the researchers performed

metatranscriptome sequencing of 588 oropharyngeal swab samples

collected from 192 COVID-19 patients. The authors found that

Streptococcus genus was enriched in recovered patients, whereas

potential pathogens, including Candida and Enterococcus, were

more abundant in patients that have died of infection. They also

noted that high abundance of Streptococcus and particularly of S.

parasanguinis at the moment of patient’s admission was a strong

predictor of fatality. Researchers in India (Devi et al., 2022) analyzed

198 nasopharyngeal and/or throat swabs from COVID-19 patients

using WGS sequencing. The patients were categorized into four
Frontiers in Microbiomes 02
groups based on disease severity and outcome: mild, moderate,

severe and lethal. The researchers discovered significant transcript

abundance of Achromobacter xylosoxidans and Bacillus cereus in the

lethal group, Leptotrichia buccalis in the severe, Veillonella parvula

in the moderate, and Actinomyces meyeri and Halomonas sp. in the

mild COVID-19 patients.

Respiratory microbiome has geographic and climatic

characteristics, so it is important to study its relationship with

COVID-19 disease in different regions. In order to avoid spurious

correlations, other diseases and patients’ habits should be also taken

into account when analyzing associations between microbiome

composition and the course of COVID-19 infection.

In our work, we describe the composition of the respiratory

microbiome in 120 inpatients with COVID-19. We performed the

16S rRNA metagenomic analysis of oropharyngeal swabs and

reconstructed metabolic pathways using the PICRUST2 tool to

find associations with the disease severity.

We aimed to identify microorganisms and KEGG pathways

associated with the course of the disease using differential

abundance testing with patients’ metadata as covariates. We

hypothesize that some of the identified microorganisms might

have a protective role in the respiratory tract given the wide

geographical and age ranges of COVID-19 patients involved in

this study along with the comorbidities considered, we believe that

the obtained results can be reproduced in further research.
2 Materials and methods

2.1 Samples and data collection

The oropharyngeal swabs of COVID-19 patients were collected

between the May of 2020 and March of 2021 in four cities of the

Russian Federation (Moscow, Nizhny Novgorod, Kazan and

Irkutsk) featuring the following medical centers: Kazan Federal

University, Federal State Budgetary Educational Institution of

Higher Education «Privolzhsky Research Medical University» of

the Ministry of Health of the Russian Federation, Federal State

Public Scientific Institution «Scientific Сentre for Family Health

and Human Reproduction Problems», Federal State Budgetary

Institution of Healthcare Hospital of the Russian Academy of

Sciences (Troitsk), Burnasyan Federal Medical Biophysical Center

of Federal Medical Biological Agency, City Clinical Hospital named

after S.I. Spasokukotsky of Moscow Healthcare Department,

Federal Research and Clinical Center of Specialized Medical Care

and Medical Technologies, Federal Biomedical Agency of the

Russian Federation (Galeeva et al., 2022).

The study included both inpatients and outpatients diagnosed

with COVID-19 who had a confirmed PCR test positive for SARS-

CoV-2. All the patients have signed informed consent to participate

in the study. The study did not include patients diagnosed

with cancer.

For each patient we gathered the following information:

computer tomography severity score (CT index), percent of lung

tissue affected, body temperature, oxygen saturation level,

respiratory rate, heart rate, systolic and diastolic blood pressure,
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consciousness and the need for additional oxygen supply. The

following metadata were collected based on questionnaires:

whether or not the patient has health disorders such as obesity,

diabetes, chronic obstructive pulmonary disease (COPD),

inflammatory bowel disease (IBD), arthritis, tuberculosis,

hypertension, coronary artery disease (CAD), chronic heart

failure, asthma.

Oropharyngeal swabs were collected from all participants in an

ambulatory or hospital setting using a dry rayon swab. After

collection, the samples were stored at -70 degrees Celsius.

Оutpatients’ swabs were collected on the day of the first visit to

the doctor. Inpatients’ swabs were collected on the day of the

admission (the first time point), and on the day of release (the

second time point).
2.2 16S rRNA sequencing

Nucleic acids were extracted using the MagMAX DNA Multi-

Sample Ultra 2.0 Kit and KingFisher™ Purification System

(Thermo Fisher Scientific, USA) according to the manufacturer’s

protocol. The DNA was subsequently quantified on Qubit 4

fluorometer by Quant-iT dsDNA BR Assay Kit (Thermo Fisher

Scientific, USA).

The library preparation was done according to 16S

Metagenomic Sequencing Library Preparation Illumina protocol.

Briefly, the extracted DNA was amplified using the 341F and 801R

primers, which are complementary to the V3-V4 region of 16S

rRNA gene and contain 5’-illumina adapter sequences. During the

next step, individual amplicons were PCR–indexed and pooled.

DNA libraries were sequenced on a MiSeq instrument (Illumina,

USA) using the Miseq reagent kit v3 (Illumina, USA).
2.3 16s rRNA data processing

Leftover adapters were removed using Trimmomatic v0.36

(Bolger et al., 2014; Devi et al., 2022), and quality filtering of reads

was performed with filterAndTrim function from DADA2 package

(Callahan et al., 2016). Denoising, merging and chimera removal was

carried out with DADA2 v1.24.0 software with following parameters:

learnErrors: nbases=1e+09, randomize=TRUE, MAX_CONSIST=2,

dada : poo l = TRUE , merg ePa i r s : m inOve r l ap=18 ,

removeBimeraDenovo: allowOneOff=FALSE, method=“consensus”.

Taxonomy annotation was carried out against the SILVA v138

reference database (Pruesse et al., 2007).

Potential contaminants were removed with the “frequency”

method using the package decontam (Davis et al., 2018) version

1.10.0. In total the 1600 samples were decontaminated (504 samples

from this project and 1086 samples from other projects with similar

objects for analysis) to better identify contaminant sequences.

Following decontamination, we introduced the variable

“contamination” to indicate the proportion of sequences

identified as contaminants and subsequently removed from the

analysis, with the following levels: low (0-5%), middle (5-20%), high

(20% and higher).
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The resulting dataset contained 6235 ASVs, with 4482 ASVs for

the target dataset. The mean number of reads per sample was 16101.

Samples with <1,000 reads were removed.

PICRUSt2 v2.5.1 tool was used to predict functional

abundances from 16S data and a reference genome database with

stratified output. PICRUSt2 identified 7491 metabolic pathways

which were filtered down to the 3663 most abundant pathways for

downstream analysis.

The general scheme of sample processing is shown on

Supplementary Figure 1.
2.4 Statistical analysis

Statistical analysis of the microbiome was performed in R

(v.4.0.5) using vegan (Dixon, 2003) and phyloseq (McMurdie

et al., 2013) packages.

We applied core_members function from the microbiome

package with the following criteria (detection=5 prevalence=5/

100) to filter out the low-represented ASVs and obtained 290 ASVs.

For further statistical analysis 290 ASVs were agglomerated into

146 ASVs on the phylogenetic tree using tip_glom function with

h=0.05 (cophenetic distance) from the phyloseq package.

The diversity composition of the bacterial microbiome was

evaluated using a-diversity (Shannon index) using plot_richness

function from the phyloseq package.

Associations of taxa with host parameters were identified by using

permutational multivariate analysis of variance (PERMANOVA).

PERMANOVA with 1000 permutation tests was run on UniFrac

distance by using adonis function from the vegan package.

Differential abundance analysis at the ASV level was performed

to identify ASVs differentially abundant in mild and severe groups

of patients using the DESeq2 package (Varet et al., 2016) in R and

Songbird utility (Varet et al., 2016; Morton et al., 2019) in Python.

When using the DESeq2 tool, statistical significance of

log2FoldChange was assessed using the default Wald test with

Benjamin-Hochberg p-value correction. Cut-off for all significant

tests was set at p.adjusted < 0.05 and Log2FoldChange >= 1.5.

Songbird was also used to determine differential rankings of

microbes between mild and severe groups. The intersection in the

differentially represented ASVs between these two instruments was

chosen for further analysis.

To estimate the statistical significance of the distribution of

differentially abundant ASVs between first and second time points

in the groups of severe and mild patients, the Wilcoxon rank sum

test was applied.

Differentially abundant pathways in mild and severe groups of

patients were determined by the Songbird package.
3 Results

3.1 Study cohort

In final, the 174 samples from 120 COVID-19 inpatients were

involved (Supplementary Figure 1). For 54 patients both samples
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collected on admission to the hospital and on discharge from the

hospital were available. The included samples were collected during

the decay of the first wave and the entire period of the second wave

of COVID-19 incidence in Moscow and Irkutsk (Figure 1A).

These 120 patients were between 18 and 85 years old, 62 females

and 58 males. Among them the 51 (51/120, 42.5%) possessed CT1

severity score on admission to the hospital, the 46 (46/120, 38.3%) -

CT2, the 20 (20/120, 16.7%) - CT3 and the three (3/120, 2.5%) -

CT4 (Figure 1A). CT-based severity classification system reflects the

extent of COVID-associated lung abnormalities seen on the CT

scans, from up to 25% (CT1) to 50% (CT2), 75% (CT3) and up to

100% (CT4) (Morozov et al., 2020).

For further comparison analysis all 120 patients were divided

into two groups - patients with mild COVID (51 subjects with CT1

severity score) and patients with moderate/severe COVID (69

patients with CT2, CT3 and CT4 severity score). The last one was

named “severe” group.

We analyzed the distribution of some comorbidities in the

groups of patients with mild and severe COVID-19. Figure 1B

shows that compared with the mild group, patients with severe

disease are more likely to be diagnosed with hypertension (60.9%

versus 45.1%) as well as diabetes (20.3% versus 11.8%).
3.2 Taxonomic composition of
oropharyngeal microbiome of SARS-CoV-2
infected patients

146 ASVs corresponding to 36 families with a mean of 16101

reads per sample. The microbial composition of samples from 120

patients with mild to severe COVID-19 is composed of such

dominant family as Campylobacteraceae, Lactobacillaceae,

Gemellaceae, Neisseriaceae, Veillonellaceae, Streptococcaceae and
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Prevotellaceae (Supplementary Figure 2).The taxonomic profile at

ASV level is shown in Supplementary Figure 3.
3.3 No significant differences in alpha-
diversity between mild and severe groups
of patients infected Covid-19

To evaluate alterations in the microbiota community structure

between each group, the microbial alpha diversity was measured by

Shannon metric as shown in Figure 2. The results show that there

are no differences in alpha diversity indices between mild and severe

groups of patients (Figure 2A).

When comparing patient groups based on CT scans of lung

abnormalities, patients with a CT4 score showed decreased alpha

diversity compared to patients with CT1, CT2, and CT3 (Figure 2B).
3.4 Testing the association between the
oropharyngeal microbiome of patients
infected SARS-CoV-2 and covariates

For testing the association between the microbiome and such

covariates as batch, contamination, age, city, severity of lung

damage based on CT scan, season of sample collection, the need

of additional O2, hypertension, CAD, diabetes and obesity, we

applied PERMANOVA analysis (Figure 3).

These covariates explained 26% of microbiome taxonomic

composition with the largest contribution coming from batch (7%),

contamination (4%), age (3%), season of sample collection (2%) and

the need of additional O2. Statistically significant contributions were

made by such covariates as batch, contamination, the need of

additional O2 and coronary artery disease (CAD).
A

B

FIGURE 1

Study cohort overview. (A) Distribution of patients by age, sex, city of sampling, season of sampling and CT score for hospital patients included in the
study. (B) The clinical characteristics of inpatients are shown: the need for additional oxygen supply as well as the presence of hypertension,
coronary artery disease (CAD), diabetes, obesity as a concomitant disease.
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3.5 Microbial associations of disease
severity with respect to age, sex, city,
season of the sampling, sequencing batch
and comorbidities

In order to search for the potential effect of oropharyngeal

microbiome composition on the severity of COVID-19, we took

into account the following metadata: age, sex and comorbidities of

the patient, city and season of the sampling, and sequencing batch.

We analyzed the differentially abundant genera between patients

with mild (n=51) and more severe (n=69) levels of lung damage

using the DESeq2 (Figure 4A) and Songbird methods (Figure 4B).

Further, we selected ASVs associated with mild and severe disease

courses of COVID-19 that overlap between outputs of these

two tools.

We observed an overrepresentation of ASV7, ASV71 and

ASV190 in samples from patients with mild lung damage (CT1).

These ASVs belong to Streptococcus, Capnocytophaga, and

Actinobacillus genera, respectively. When aligning ASV sequences

on nt database using BLASTN, we have identified ASV7 as

Streptococcus salivarius, ASV71 as Capnocytophaga sputigena, and

ASV190_Actinobacillus as Haemophilus parahaemolyticus with

100% identity (Supplementary Table 1).

We found four ASVs from Neisseria, Veillonella, and Lautropia

genera that were associated with severe lung damage (CT2-4),
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namely, ASV44 corresponding to Neisseria mucosa, ASV193

corresponding to uncultured bacterium from Veillonella genus,

ASV150 corresponding to both Neisseria oralis (identity =

99.77%) and Neisseria sp (identity = 100%), and ASV174

corresponding to Lautropia mirabilis (identity = 99.6%) and

uncultured bacterium from Lautropia genus (identity =100%)

(Supplementary Table 1).

We then traced the dynamics of the relative abundance of ASVs

that were associated with both mild and severe (Figures 5A, B)

patient groups whose samples were collected at the first and second

time points (n=54). Taxonomic composition of 54 patients is shown

in Supplementary Figure 4).

Among the ASVs that were differentially over-represented in

the group of severe patients, the relative abundance of ASV150

(Neisseria sp/Neisseria oralis) was statistically significantly

overrepresented in the mild patients at the second time point

while the relative abundance of ASV44 (Neisseria mucosa)

underrepresented (Figure 5A). ASV174 (Lautropia genus/

Lautropia mirabilis) was statistically significantly overrepresented

at the second time point of severe and mild patients. ASV193

(Veillonella genus) is overrepresented at the second time point of

severe patients.

Regarding the ASVs associated with the mild course of the disease,

the relative abundance of ASV71 (identified as Capnocytophaga

sputigena) was significantly overrepresented at the second time point
A B

FIGURE 2

Box-plots illustrate alpha diversity by Sannon index in bacterial microbiomes of 120 inpatients. (A) samples from mild (n=51), severe (n=69) groups
(B) samples from patients with different CT scores (CT1 = 59; CT2 = 46; CT3 = 20; CT4 = 3). Median values and interquartile ranges have been
indicated in the plots.
FIGURE 3

The variance in microbiome composition explained by metadata factors. Asterisks indicate the level of significance with the following thresholds:
(*) = 0.05, (***) = 0.001.
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in patients from the severe group (Figure 5B). ASV190_Actinobacillus

(identified as Haemophilus parahaemolyticus) was statistically

significantly overrepresented at the second time point of mild and

severe patients (Figure 5B).
3.6 Differentially abundant pathways in
mild and severe groups of patients

Functional diversity of bacterial community composition was

revealed by PICRUSt2 assignment of KEGG orthology (KO) groups

to KEGG pathways. In pharyngeal samples a total of 7491 different

KO’s were identified. We then investigated metabolic pathways that

were differentially abundant in the microbiome of mild and severe

groups of COVID-19 patients using Songbird utility. We considered

metadata such as batch, age, patient gender, city, sampling season,

and comorbidities as covariates. The top pathways associated with

microbiome of severe patients were dominated by secretory systems

associated with DNA uptake and natural competence represented
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by K03197_VirB2, K03198_VirB3, K03201_VirB6, K03203_VirB8

and K18133_porB, K02672_pilW respectively (Figure 6).

To find the ASVs that contribute significantly to the metabolic

pathways associated with microbiome of severe patients, a stratification

analysis was performed using PICRUSt2. According to the results of

the analysis of ASV33, ASV44, ASV82, ASV129, which belong to the

Neisseria, and ASV130 from the Lautropia genera, contribute most to

the representation of metabolic pathways associated with the severe

course of the disease (Supplementary Figure 5).
4 Discussion

In our study, we applied the 16S rRNAmetagenomic analysis to

compare the taxonomic composition of the upper respiratory tract

microbiota of COVID-19 patients at the time of admission to the

hospital. Clinical samples from the current investigation were

handled and sequenced with the similar ones from the other

projects (Supplementary Figure 1).

Characterizing microbial communities from low-biomass

samples like oropharyngeal swabs can be challenging due to the

risk of contamination from exogenous DNA during sample

collection and processing, which affects assay results (Salter et al.,

2014). In our study, we used the decontam tool, but there are also a

number of other recommendations and approaches for controlling

contaminant sequences in low-biomass communities (Eisenhofer

et al., 2019; Claassen-Weitz et al., 2020). We decontaminated the

array of sequences from multiple projects simultaneously, enabling

a more comprehensive cleaning of the array from contaminated

sequences. We also excluded the identified contaminant sequences

and introduced the variable “contamination” in the sample to

account for this effect in the models. Our analysis focused solely

on samples with complete metadata, including age, city, severity of

lung damage based on CT scan, the season of sample collection,

additional O2 requirements, hypertension, CAD, diabetes, and

obesity. We employed these variables as covariates in our

statistical analysis, although this approach did reduce our sample

size, it ultimately allowed for a more robust statistical analysis.

Finally, the 174 samples from 120 COVID-19 inpatients were left

for analysis.

All the patients were divided into mild and severe groups

according to their CT severity score (CT 1, 2, 3, or 4), which

reflected the lung damage level at the time of hospitalization. This

approach allowed us to consider the observed pneumonia as a

community-acquired one and to avoid the finding of hospital-

associated pathogens in the metagenomic samples.

We deliberately did not consider the option of comparing the

oropharyngeal microbiome of healthy and diseased groups, as it was

already performed in multiple studies (Xiong et al., 2021), (Iebba

et al., 2021; Ren et al., 2021). It occurs that SARS-CoV-2 can also be

found among healthy people that can be asymptomatic carriers of

the virus. So, using asymptomatic (“healthy”) people as a control

group can introduce biases into the analysis. Moreover, according to

the principle of Anna Karenina, which has recently been frequently

discussed in the context of metagenomic research, the microbiome
A

B

FIGURE 4

The differentially abundant taxa testing associations. (A) Bacteria on
the ASV level that differ in abundance in inpatients with severe (CT >=
2) and mild (CT = 1) levels of lung damage. The analysis was carried
out using the DeSeq2 method. Bacteria which are more abundant in
more severe patients are shown in bars pointing to the right, in lighter
patients - to the left. Asterisks indicate the level of significance with
the following thresholds: (*) = 0.1, (**) = 0.05, (***) = 0.01. (B) Top
ASV that are associated with COVID-19 severity as analyzed by the
songbird utility. ASVs associated with a milder course of covid have
lower differential values, with a more severe one - larger ones. The 10
most associated (in one direction and the other) ASVs have been
selected, their phylum is marked in color and shape.
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of healthy people is less variable and more homogeneous than the

microbiota of people with different diseases (Ma, 2020). Therefore,

we decided to compare the upper respiratory tract microbiota

between patients with different disease severity of SARS-CoV-2.

The oropharyngeal swabs were collected from COVID-19

patients during the first and the second waves of the epidemic,

which were dominated by the “Wuhan’’ variant of SARS-CoV-2

(Awadasseid et al., 2021). Some papers discuss the effect of

seasonality on the upper respiratory tract microbiota (Camarinha-

Silva et al., 2012; Schoos et al., 2020; Zhao et al., 2022). In our study,

the period of sample collection affected all seasons, which allows us
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to use seasonality as a covariate (Figure 1). The taxonomic

composition of oropharyngeal swabs of COVID-19 patients is

consistent with the results of studies about human oropharyngeal

microbiota (Zaura et al., 2009; Bach et al., 2020). The taxonomic

profile of our samples were found to be homogeneous, as confirmed

by the heatmaps of Supplementary Figure 3 and Supplementary

Figure 4, where we observed the absence of clear clustering by such

parameters as sex, age, city, seasonality, and batch effect.

Strikingly, the compared patient groups did not differ in the

need for supplemental oxygen despite differences in the severity of

lung damage. They also did not differ in the suffer of obesity, known
FIGURE 6

Predicted functionality that is associated with COVID-19 severity as analyzed by the songbird utility. Features associated with a milder course of
COVID-19 have lower differential values, with a more severe one - larger ones. The 10 most associated (in one direction and the other) features
have been selected, their association group is marked in color.
A

B

FIGURE 5

The dynamics of the relative abundance (CLR normalized) of ASVs that were associated with both mild and severe groups between 1 and second
time point. (A) The dynamics of ASVs that were differentially over-represented in the group of severe patients between 1 and 2 time point in severe
and mild groups (B) The dynamics of ASVs that were differentially over-represented in the group of mild patients between 1 and 2 time point in
severe and mild groups.
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to be a potential predictor of severe COVID-19 (Simonnet et al.,

2020; Wang et al., 2022). Meanwhile, we observed the higher

prevalence of hypertension and diabetes in the severe patient

group. However, there is no conclusive evidence yet that

hypertension is more common in patients with COVID-19 or

that it might increase the risk of SARS-CoV-2 infection. Although

hypertension is common among severe COVID-19 patients, it is

more likely to be attributed to the vulnerability of middle-aged and

older individuals to SARS-CoV-2 infection, according to this

literature review (Shibata et al., 2020).

When comparing the alpha diversity of the upper respiratory

tract microbiota of mild and severe patients, we observed no

significant differences between these two groups. This is

consistent with the results of (Hernández-Terán et al., 2021), but

at the same time contradicts the results of the following study (Shilts

et al., 2021), where the difference in the alpha diversity between

patients with mild and severe disease was significant. The greatest

difference was observed between CT4 and CT1-3 groups, where

patients with СT4 had the lowest alpha diversity indices.

Theoretically, this strong decrease in microbiota diversity could

be related to inflammation in the airways and more frequent

medication treatment of patients with severe pneumonia (Hong

et al., 2021). Nevertheless, due to the restricted number of samples

(n = 3) and the lack of information on drug treatment, we can

neither confirm nor deny this assumption.

SARS-CoV-2 infection strongly affects the human immune

system, causing a cytokine storm (Jose et al., 2020), activation of

monocytes and macrophages, which in turn affects the human

upper respiratory tract microbiome (Merad et al., 2020). COVID-19

can cause changes in the airway epithelium, increase local

inflammation, and promote adhesion of respiratory pathogens. In

our study, we identified bacterial drivers of patients with mild (CT1)

and more severe (CT >= 2) lung damages, taking into account the

metadata described above as covariates.

We found that ASVs identified as Streptococcus salivarius,

Capnocytophaga sputigena, and Haemophilus parahaemolyticus

were significantly more prevalent in patients with mild lung

damage. These three bacteria belong to genera that are widely

distributed in the human oropharyngeal microbiome.

Haemophilus parahaemolyticus is considered as a natural

oropharyngeal commensal in humans, which can be pathogenic

in certain cases. In a number of studies (Ren et al., 2021; Soffritti

et al., 2021) that compared the microbiomes of healthy people and

patients infected with SARS-CoV-2 virus, the genus Haemophilus

and in particular Haemophilus parahaemolyticus species was

associated with the healthy subjects.

Capnocytophaga is a commensal genus that is a part of the

normal bacterial flora of the human oral microbiome.

Capnocytophaga spp. and Capnocytophaga sputigena in particular

often act as opportunistic pathogens associated with poor oral

hygiene and periodontitis. At the same time, they occur in groups

of healthy people and are closely associated with other bacteria

(Idate et al., 2020; Jolivet-Gougeon et al., 2021; Ma et al., 2022). In

the article (Soffritti et al., 2021) have reported an increased

abundance of Capnocytophaga sputigena in SARS-CoV-2 patients

as compared to healthy controls. In addition, Capnocytophaga spp.
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and other oral opportunists have been found in the BALF of the

COVID-19 patients (Bassis et al., 2015; Bao et al., 2020; Wu

et al., 2020).

Streptococcus salivarius is also a part of the commensal

microflora of the upper respiratory tract. At the same time, some

strains of this species are able to regulate the acid-alkaline balance of

the oral cavity through the production of alkali. This property can

have an antagonistic effect on a number of opportunistic species like

Streptococcus pyogenes, Streptococcus pneumoniae, Moraxella

catarrhalis and Haemophilus influenzae that prefer a more acidic

environment and can cause a number of respiratory infections

(Aebi, 2011; Zupancic et al., 2017; Abranches et al., 2018; Di Pierro,

2020; Wen et al., 2020).

Speaking about the patients with severe lung damage (CT2-4),

we found Neisseria, Veillonella and Lautropia genera to be

overrepresented in their oropharyngeal samples. All the three

genera are widespread in the human oropharynx and belong to

the commensal microflora (Zaura et al., 2009; Bach et al., 2020).

The Neisseria genus is one of the most common genera in the

human oropharynx. Non-pathogenic Neisseria may have protective

properties against some pathogens by producing secondary

antimicrobial metabolites (Aho et al., 2020; Baerentsen et al.,

2022). Some Neisseria species are also important for the

development of a T-cell-independent polyclonal IgM response

(Dorey et al . , 2019). Many studies that compare the

oropharyngeal microbiome of SARS-CoV-2-infected patients and

healthy controls show a significant decrease in the representation of

the genus Neisseria in the group of infected individuals (Li et al.,

2022). The high abundance of nonpathogenic Neisseria in the

oropharyngeal microbiome of SARS-CoV-2-infected patients is

considered as a predictor of successful recovery (de Castilhos

et al., 2022).

In our study, we observe overrepresentation ofNeisseria mucosa

and Neisseria oralis species in the group of severe patients. Our

results are similar to the work where Neisseria mucosa was found to

be associated with COVID-19 (Soffritti et al., 2021). Interestingly,

we observed an opposite dynamic in the relative abundance of

Neisseria oralis and Neisseria mucosa between the first and second

time points in the mild group of patients, which may reflect a

change of species at the same ecological niche. Moreover, Picrust2

analysis showed these species contribute significantly to the

differentially represented metabolic pathways of the Type IV

secretion system associated with the severe course of the disease.

The type IV secretion system VirB/VirD4 is a major virulence

determinant for subversion of human endothelial cell (HEC)

function. (Schmid et al., 2004; Costa et al., 2021). According to

the literature, the contribution of non-pathogenic Neisseria spp. to

the prevalence of metabolic pathways associated with the type IV

secretion system indicates that these genes, including virulence

genes, are necessary for them to survive in the niche, but not for

pathogenicity (Calder et al., 2020). Such genes are common to

commensal and pathogenic Neisseria species and are necessary for

the adhesion and invasion of bacterial cells to host cells and play an

important role in the struggle for colonization within a given genus

(Wörmann et al., 2016; Calder et al., 2020). In addition, members of

the Neisseria genus are naturally competent, which increases the
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adaptability of the genus to changing environmental conditions

such as inflammatory processes in the host organism and the use of

antibiotics(Snyder et al., 2007; Goytia et al., 2021).

According to several studies, the members of the genus

Veillonella strongly predominate in the oral microbiota of

patients with Covid-19 compared to healthy controls (Iebba et al.,

2021; Ma et al., 2021; Soffritti et al., 2021). Similar to

Capnocytophaga spp., some Veillonella species associated with

periodontitis have been overrepresented not only in the oral

microbiome, but also in the BALF of the COVID-19 patients with

pneumonia (Wu et al., 2020).

Lautropia mirabilis is normally isolated from human dental

plaque and also from a supragingival or subgingival biofilm (Ikeda

et al., 2020). To date, we have not found any information on the

relationship of Lautropia mirabilis with COVID-19.

There are many studies worldwide describing the features of

respiratory biotope in COVID-19 patients. Nevertheless, our study

has several important strengths, such as the inclusion of patients

from more than one geographic region, whose oropharyngeal swabs

were collected during all seasons. In further comparison analysis we

included only hospitalized patients whose swabs were taken at

admission; therefore, we were more likely to capture the early

upper respiratory tract microbiome associated with the

development of severe COVID-19 rather than the one acquired

after a hospital stay. We also had an opportunity to analyze samples

collected from the same patients on the day of release. To our

knowledge, this is the first study of the upper respiratory tract

microbiome of COVID-19 patients from Russia.

However, we are aware of the objective limitations of our study

leading to the sequencing batches (Wang et al., 2020; de Goffau et al.,

2021). During this study we did everything to avoid it at sample

processing level - all samples were processed the same way and

sequenced simultaneously. To account for batch effects, we

incorporated a categorical variable (batch) when calculating

differential abundance of taxa and functions. Instead of using batch

correction or adjustment methods, we chose this approach because our

primary variable of interest (severity) was evenly distributed across

batches, and we wanted to explicitly include this information in the

model as recommended in the literature (Nygaard et al., 2016).

Anyway, the samples were collected in different medical institutions,

by different staff, using different consumables. Unfortunately, we were

unable to control the sample acquisition procedure at this stage due to

the height of the pandemic and the limitations involved. We suspect

that this factor may have had the most significant impact, but it is not

feasible to trace its effect.

Although experimental validation is needed, in our study we

hypothesize that environmental and host-related factors could be

affecting the respiratory microbiota prior to viral infection,

potentially compromising the immune response of the host against

disease. Also, the upper respiratory tract microbiome acts as a reservoir

of opportunistic pathogens, which descend to the lower parts of the

respiratory tract causing the elevated inflammation and lung damage.

According to our data, we could suspect Veillonella acting this way. As

far as nonpathogenicNeisseria are concerned, their over-representation

in a group of severe COVID-19 patients can be considered as a

predictor for further successful recovery in accordance with
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(de Castilhos et al., 2022). We can also assume that the microbiome

of patients from the severe group recovers more slowly than from the

mild one. It is evidenced by an increased relative abundance of

opportunistic microorganisms, such as Veilonella sp., against an

increased relative abundance of commensal flora, such as

Capnocytophaga sputigena and Haemophilus parahaemolyticus, at the

time of discharge from hospital.

It is worth mentioning that the comparative analysis of the

relative abundances of certain bacteria in the oropharyngeal

microbiome of mild and severe COVID-19 patients is rather

ambiguous due to the complexity of the mechanisms leading to

the observed trends. We believe that the findings of this work

contribute to our understanding of the role of the upper respiratory

tract microbiome in the development of COVID-19. Anyway,

further studies that would shed light on the specific mechanisms

through which the bacteria from respiratory microbiota are

involved in host response against viral infections are required.
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