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Taxonomic composition and
carbohydrate-active enzyme
content in microbial enrichments
from pulp mill anaerobic
granules after cultivation on
lignocellulosic substrates
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Metagenomes of lignocellulose-degrading microbial communities are reservoirs

of carbohydrate-active enzymes relevant to biomass processing. Whereas

several metagenomes of natural digestive systems have been sequenced, the

current study analyses metagenomes originating from an industrial anaerobic

digester that processes effluent from a cellulose pulp mill. Both 16S ribosomal

DNA andmetagenome sequences were obtained following anaerobic cultivation

of the digester inoculum on cellulose and pretreated (steam exploded) poplar

wood chips. The community composition and profile of predicted carbohydrate-

active enzymes were then analyzed in detail. Recognized lignocellulose

degraders were abundant in the resulting cultures, including populations

belonging to Clostridiales and Bacteroidales orders. Poorly defined taxonomic

lineages previously identified in other lignocellulose-degrading communities

were also detected, including the uncultivated Firmicutes lineage OPB54

which represented nearly 10% of the cellulose-fed enrichment even though it

was not detected in the bioreactor inoculum. In total, 3580 genes encoding

carbohydrate-active enzymes were identified through metagenome

sequencing. Similar to earlier enrichments of animal digestive systems, the

profile encoded by the bioreactor inoculum following enrichment on

pretreated wood was distinguished from the cellulose counterpart by a higher
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occurrence of enzymes predicted to act on pectin. The majority (> 93%) of

carbohydrate-active enzymes predicted to act on plant polysaccharides were

identified in the metagenome assembled genomes, permitting taxonomic

assignment. The taxonomic assignment revealed that only a small selection of

organisms directly participates in plant polysaccharide deconstruction and

supports the rest of the community.
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Introduction

Wood and agricultural fibre comprise cellulose, hemicelluloses

and lignins (i.e., lignocellulose) and represent major resources for

the production of renewable fuels, chemicals and materials.

Biological deconstruction of lignocellulose is catalyzed by the

concerted action of carbohydrate-active enzymes (CAZymes) and

metagenomes of lignocellulose-degrading communities are an

especially rich source of CAZymes that could be used for

lignocellulose processing (Terrapon et al., 2018; Garron and

Henrissat, 2019; Drula et al., 2022).

Metagenomic studies aimed at identifying new CAZymes have

sequenced grass-feeding gut microbiota (Al-Masaudi et al., 2017;

Deusch et al., 2017; Wang et al., 2019) and wood degrading gut

microbiomes of termites (Warnecke et al., 2007; Liu et al., 2019;

Romero Victorica et al., 2020), beetle (Scully et al., 2013), wood wasp

(Adams et al., 2011) moose (Svartström et al., 2017; Wong et al., 2017),

and beaver (Wong et al., 2017; Armstrong et al., 2018). Most pertinent

CAZymes for lignocellulose processing can be uncovered through

sequencing metagenomes of enrichment cultures (Jimenéz et al.,

2016; Wang et al., 2016; Schultz-Johansen et al., 2018; Tomazetto

et al., 2020; Borjigin et al., 2022). For instance, in our previous study of

digestive microbiomes from Canadian beaver (Castor canadensis) and

North American moose (Alces americanus), we report substrate-

induced convergence of taxonomic profiles and CAZyme

compositions following anaerobic cultivation of corresponding

inocula on cellulose or pretreated wood fibre.

Large-scale bioreactor systems that process industrial and

municipal lignocellulosic materials represent additional,

compelling sources of CAZymes (Wilkens et al., 2017). Besides

municipal bioreactors, anaerobic digesters that transform pulp mill

effluent to biogas are an untapped source of enzymes for

lignocellulose processing. In most cases, pulp mill effluent is

mechanically processed to remove suspended solids and then

biologically treated through an aerobic activated sludge process

(Thompson et al., 2001). The generated biosludge is subsequently

dewatered and incinerated for power generation or else landfilled.

Increasingly, anaerobic bioconversion of pulp mill effluent prior to

aerobic treatment is employed to reduce the accumulation of

secondary biosludge while also generating biogas (Hagelqvist,

2013; Meyer and Edwards, 2014). About 10% of pulp mills
02
worldwide have installed anaerobic treatment technologies, and in

particular, internal circulation reactors (Meyer and Edwards, 2014).

These high-rate reactors enable effective bioconversion of organic

compounds into biogas via the sequential activity of hydrolytic

bacteria, acetogens, and methanogenic archaea (Tauseef et al., 2013;

Kamali et al., 2016).

Herein, we investigated whether microbial communities enriched

from pulp mill anaerobic bioreactors encode an assemblage of

CAZymes distinct from those identified through metagenomic

analysis of natural digestive systems. To address this question,

microbial granules were collected from an anaerobic internal

circulation bioreactor located at a pulp mill and enriched for three

years on multiple lignocellulosic carbon sources. Subsequent

metagenome sequencing and metagenome assembled genomes

(MAGs) permitted CAZyme assignment to specific microbial

species originating from the pulp mill bioreactor. The current study

underpins the significance of both environmental inoculum and

enrichment condition on the taxonomic distribution and functional

potential of resulting microbial communities.
Materials and methods

Collection of pulp mill anaerobic granules

Anaerobic granules were collected in 2009 from an internal

circulation bioreactor located at a pulp mill in Québec, Canada. The

bioreactor typically received 15,000 m3/day of mixed wastewater

including acid condensate from the evaporator system and bleached

chemi-thermomechanical pulp effluent.
Set up and maintenance of lignocellulose-
degrading enrichment cultures from pulp
mill anaerobic granules

The anaerobic granules were used as inoculum for enrichment

cultures grown at 36 °C under anaerobic conditions as previously

described (Wong et al., 2016). Briefly, sulphide-reduced mineral

medium (pH 7.0) was prepared and purged with 80% N2, 20% CO2

gas mixture (Wong et al., 2017). Approximately 15 mL of anaerobic
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granules were transferred to 160 mL Wheaton glass serum bottles

amended with a lignocellulosic substrate (average 36.1 mg chemical

oxygen demand (COD) equivalent per bottle) and 45 mL of mineral

medium. The lignocellulosic amendments were i) microcrystalline

cellulose (Avicel PH101, Sigma-Aldrich, MO, USA), ii) cellulose +

lignosulphonate, iii) cellulose + tannic acid (Sigma-Aldrich, MO,

USA), and iv) steam-exploded poplar (SunOpta Inc., Canada).

Biogas production was regularly monitored using a pressure

transducer (Omega PX725 Industrial Pressure Transmitter,

Omega DP24-E Process Meter). When biogas production ceased,

the microbial community was transferred to a new bottle with fresh

anaerobic medium and lignocellulose carbon source (Wong et al.,

2016). This process was repeated eight times over a period of 3 years

prior to DNA extraction and sequencing.
DNA extraction and sequencing

DNA was extracted from each culture after three years of

enrichment on respective substates. Samples (10 mL) were taken

just as biogas production began to slow down and centrifuged at

15,000 x g for 15 min at 4 °C. Total community DNA was then

extracted from the resulting pellets using the QIAamp DNA Stool

Mini Kit. The concentration and quality of the extracted DNA was

assessed by measuring the 260/280 absorbance ratio using a

Nanodrop 2000 spectrophotometer (Thermo Scientific, MA, United

States) before storing the DNA samples at -80 °C. The DNA samples

were used for 16S rRNA gene amplicon sequencing and for

metagenomic shotgun sequencing (Wong et al., 2016). The V6-8

hypervariable region of 16S rRNA genes was amplified with 926

Forward (5’- AAACTYAAAKGAATTGACGG) and 1392 Reverse

(5’- ACGGGCGGTGTGTRC) primers and multiplexed with 10-nt

Roche barcodes by polymerase chain reaction (Table S1; DeAngelis

et al., 2012). Multiplex-pyrosequencing was performed in 2013 on a

454 GS FLX platform (454 Life Sciences-a Roche Company,

Branford, CT, USA) at the Génome Québec Innovation Centre.

Illumina paired-end sequencing with TruSeq library was performed

in 2015 using a Illumina HiSeq 2000 (Illumina Inc., San Diego, CA,

USA) at the Génome Québec Innovation Centre.
Analyses of 16S rRNA gene pyrosequences

Pyrosequencing output was converted to sequence reads and

quality scores using Roche 454 Life Science propriety software

(http://www.454.com) and then analyzed by QIIME 1.8.0

(Caporaso et al., 2010) as previously described (Wong et al.,

2016). Combining the taxonomic profiles from our previous

analysis on lignocellulose-degrading microcosms from beaver

dropping and moose rumen (Wong et al., 2017), relative

abundances of genera representing ≥ 1% for at least one of the

samples were extracted for hierarchical clustering (correlation

clustering and average linkage) and Principal Component

Analysis using R statistics in ClustVis (Metsalu and Vilo, 2015).

Non-parametric Kruskal-Wallis test was conducted using R script

(R Development Core Team, 2010).
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Metagenome assembly, annotation of
CAZyme families, multi-modular
sequences, and polysaccharide
utilization loci

Quality trimming and assembly of metagenomics shotgun

sequences were first done using Abyss v 1.3 (Simpson et al., 2009)

as described in Wong et al., 2017. In addition, the raw reads

(70,817,105 pairs for cellulose-fed enrichments, and 78,824,461 pairs

for pretreated poplar-fed enrichments) were quality trimmed and

assembled using the Anvi’o v6.2 snakemake metagenomic workflow

(Eren et al., 2021). This pipeline uses the read quality control methods

developed in Minoche et al., 2011. Three assemblers were used;

megahit v.1.1.2 (Li et al., 2015), spades v. 3.12.0 (metaspades mode,

Nurk et al., 2017), idba v. 1.1.3 (Peng et al., 2012), and the assemblies

were performed both on the samples separately and combined in co-

assemblies. The assemblies were binned into metagenome assembled

genomes (MAGs) using metabat2 (Kang et al., 2019) and maxbin2

(Wu et al., 2016), and the resulting MAGs were compared and

dereplicated using dRep (Olm et al., 2017) with a pairwise ANI cut-

off at 99%, % completion > 75% and contamination < 25%. The

resulting collection of MAGs were combined into one dataset; reads

were mapped back to the MAGs using bowtie2 v 2.4.2 to obtain

coverage information and visualized in Anvi’o. Taxonomic

classification was assigned to each MAG using the GTDB-TK tool

kit which compares the genomes to the genome taxonomy database

(Chaumeil et al., 2020). Taxonomic composition of metagenomic

reads based on rRNA reads extracted from the libraries and classified

to order level was performed using the PhyloFlash v. 3.4 (Gruber-

Vodicka et al., 2020) software and the SILVA v.138 database.

Prediction of open reading frames, CAZyme families, PULs as

well as taxonomic assignment of the predicted CAZymes were

performed on the Abyss-assembly and visualized in accordance to

the methodology described in Wong et al., 2017. Count of identified

sequences in a given CAZyme family was normalized by the number

of open reading frames. Normalized count of predicted plant

polysaccharide-active CAZyme families from the earlier beaver

dropping and moose rumen metagenomes (Wong et al., 2017) were

combined with the current dataset for hierarchical clustering

(correlation clustering and average linkage) and PCA using R

statistics in ClustVis (Metsalu and Vilo, 2015). The identified genes

encoding CAZymes were mapped to the MAGs using BLASTN.

Results and discussion

Establishment of biogas-producing
microbial enrichments

Anaerobic enrichment cultures were established and biogas

production was sustained over three years on four lignocellulosic

carbon sources. As observed previously (Wong et al., 2016), biogas

yield per COD added dropped during early stages of enrichment,

likely due to depletion of readily digestible COD present in the

inoculum (Figure 1). The subsequent increase in biogas yield was

consistent with microbial acclimatization to the amended carbon

sources. Following the three year acclimatization period (i.e., by the
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eighth transfer), biogas yields were highest for cellulose-fed cultures

(0.69 mL biogas/mg COD added), followed by pretreated poplar

(0.58 mL biogas/mg COD added), cellulose + lignosulphonate (0.41

mL biogas/mg COD added), and cellulose + tannic acid (0.15 mL

biogas/mg COD added). The apparent inhibition of biogas

production in cultures amended with tannic acid was also

observed in enrichment cultures from beaver droppings and

moose rumen (Wong et al., 2016).
Microbial diversity in lignocellulose-
degrading microcosms enriched from pulp
mill anaerobic granules

A total of 99,218 high-quality 16S rRNA gene pyrosequences

from the established anaerobic enrichments were assigned to 5,359

OTUs at 97% similarity threshold (Table S2A). Beta-diversity based

UPGMA (unweighted pair group method with arithmetic mean)

clustering of the microbial communities revealed two main clades:
Frontiers in Microbiomes 04
i) microcosms fed with cellulose or cellulose + tannic acid, and ii)

inoculum and microcosms fed with cellulose + lignosulphonate and

pretreated poplar (Figure 2). The clustering of biological replicates

for a given enrichment further reflected the statistical differences

between the communities following the amendments, as well as the

reproducibility of enrichments and 16S rRNA gene analysis. The

following paragraph highlights the relative abundances of main

microorganisms in each culture to uncover shifts in populations

that correlate with the amended substrate.

Prior to enrichment, pulp mill anaerobic granules were

dominated by Clostridiales (~ 40%), Bacteroidales (10%),

Synergistales (6%), Anaerolineales (6%), Syntrophobacterales (5%)

bacterial orders, as well as methanogens belonging to

Methanosarcinales order (5%) (Figure 2; Table S2B). The species

richness of the microbial communities decreased upon anaerobic

enrichment on cellulose, and to a lesser extent, pretreated poplar

(Figure S1). Nevertheless, lineages recognized as lignocellulose

degraders were consistently abundant in all enrichment cultures.

For example, populations belonging to Clostridiales and
FIGURE 2

Heatmap of the microbial orders (≥ 1% in at least one sample) identified by 16S rRNA analysis of pulp mill anaerobic granules and corresponding
enrichment cultures, with the sample similarities calculated by weighted UniFrac method and summarized by UPGMA clustering.
FIGURE 1

Biogas production by microcosms fed with lignocellulosic carbon sources over 3-years. DNA was extracted from Phase 8 for this study. The
estimated stoichiometric maximum biogas yield is shown by the horizontal grey band to provide a reference for the extent of conversion of each
substrate (Symons and Buswell, 1933; Wong et al., 2016); error bars indicate standard deviation; n = 3.
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Bacteroidales orders represented more than 75% of the microbial

community in the cellulose-fed enrichments and remained ~ 40% in

those fed with pretreated poplar (Table S2B). Moreover, the

uncultivated Firmicutes lineage OPB54 represented up to 10% of

the cellulose-fed enrichment and ~ 3% in all other enrichments even

though it was not detected in the anaerobic granule inoculum

(Table S2B). Members of OPB54 are reported in diverse ecologies

including the gut microbiomes of beaver and moose (Wong et al.,

2017) and can ferment a wide variety of carbohydrates (Liu et al.,

2014). Similarly, the ‘termite group 3’ (TG3) class of the

Fibrobacterota phylum was abundant (60%) in cultures enriched

on cellulose + lignosulphonate even though it was not detected in

the inoculum. As its name implies, the TG3 class was initially

detected in termite guts (Hongoh et al., 2006) and later identified in

diverse habitats, including anaerobic digesters (Rahman

et al., 2016).
Metagenome sequencing and assembly

The cellulose-fed and pretreated poplar-fed enrichments

exhibited highest biogas yields compared to the other

enrichments generated herein and so corresponding metagenomic

DNA was collected for sequencing and assembly. The metagenomic

DNA from cellulose-fed and pretreated poplar-fed enrichments

yielded 64 and 68 million high quality reads, respectively. The

taxonomic composition of the metagenomes was assessed by

extracting rRNA genes and comparing them to the SILVA

database. The taxonomic composition at order level was similar

to the community structure obtained from the amplicon data

(Figure S2), with Clostridiales and Bacteroidales representing >

75% of the microbial community in the cellulose-fed enrichments

and ~30% in those fed with pretreated poplar.

The metagenome reads were assembled using four assemblers;

assembly statistics are provided in Table S3. The assembled contigs

were binned into 2,417 bins, which were dereplicated using a 99%

identity cut-off to 139 unique metagenome assembled genomes

(MAGs) with completeness > 75% and contamination < 25% as

determined by CheckM (Parks et al., 2015; Table S4). Of these, 127

MAGs had at least medium quality with less than 10%

contamination (Bowers et al., 2017). Moreover, 83% of reads

from cellulose-fed enrichments and 75% of reads from pretreated

poplar-fed enrichments were mapped to the MAGs.

Taxonomy and abundances of each MAG are shown in Figure 3

and Table S4. Most abundant MAGs obtained from the cellulose-

fed enrichment were classified as belonging to Parabacteroides

(TG_idbaud_maxbin.144), Herbinix (TGCmsp_mb_bin.66) and

Acetivibrionaceae (TGPidbaud_mb_bin_32). By comparison, the

community structure was more even in the pretreated poplar-fed

enrichment, and most abundant MAGs were classified to

Treponemataceae Spiro-10 (TGP_msp_maxbin.003), Bacteroidota

UBA10030 (TGP_msp_maxbin.004) and Cloacimonas sp.

002432865 (TGP_mgh_maxbin.005). One abundant MAG shared

by the two metagenomes at the 99% identity was the

Acetivibrionaceae MAG TGPidbaud_mb_bin_32. However,

inspection of reads mapped to this MAG revealed that each
Frontiers in Microbiomes 05
enrichment contains a distinct, but highly similar strain of

this taxon.
CAZyme family profiles of the cellulose-
and poplar-fed microcosms

In total, 3,580 genes encoding 95 families of glycoside

hydrolases (GHs), 12 families of carbohydrate esterases (CEs), 13

families of polysaccharide lyases (PLs), 32 families of

glycosyltransferases (GTs) and 33 families of carbohydrate

binding modules (CBMs) were predicted from the two

metagenomes (Table S5). This corresponded to approximately 3%

of open reading frames predicted in the cellulose-fed and pretreated

poplar-fed enrichments. No auxiliary redox enzymes were

identified as expected for anaerobic microbial communities.

Among the predicted CAZymes, 245 genes from the cellulose-

fed enrichment and 555 from the pretreated poplar-fed enrichment

were predicted to be involved in plant polysaccharide

deconstruction (Figure 4). Similar to cellulose-fed and pretreated

poplar-fed enrichments of moose rumen samples and beaver

droppings (Wong et al, 2017), nearly 30% of these CAZymes

belonged to families GH2, GH3, GH5, GH9, GH43, CE1, and

CE4 (Figure 4A). Thus, a similar CAZyme profile emerged from

industrial and natural digestive systems following their enrichment

on the same cellulosic and pretreated-poplar substrates. Closer

inspection of the CAZyme profiles reported herein, however,

distinguished the metagenome of the pretreated poplar-fed

enrichment from the cellulose counterpart by its higher

occurrence of CAZyme families predicted to act on pectin,

including more than nine times the number of sequences

belonging to family PL1 (pectate lyases), and more than twice the

number of sequences belonging to families CE8 (pectin

methylesterase), GH28 (polygalacturonases) and GH105

(unsaturated glucuronyl/galacturonyl hydrolases) (Figure 4B).

The majority (> 93%) of the predicted CAZymes acting on plant

polysaccharides were included in the MAGs constructed from the

metagenomes (Figure 3, Table S6). MAGs from cellulose-fed

enrichments that carry the highest number of predicted CAZymes

targeting plant polysaccharides were also the most abundant in the

metagenome; however, this was not the case for pretreated poplar-

fed enrichments (Tables S6, S7). For example, the most abundant

MAG in the cel lulose-fed enrichment is classified as

Acetivibrionaceae (TGPidbaud_mb_bin_32) and carries 79 of the

245 genes from the corresponding metagenome that are

predicted to encode CAZymes acting on plant polysaccharides.

The MAG belonging to Acetivibrionaceae from the pretreated

poplar-fed enrichment also encoded the highest number of

CAZymes predicted to deconstruct plant polysaccharides;

however, this MAG was low in abundance (Tables S6, S8).

Instead, the most abundant MAGs in the pretreated poplar-fed

enr ichment were the Bacte ro idota UBA10030 MAG

(TGP_msp_maxbin.004) that carried only 61 CAZymes predicted

to act on plant polysaccharides, Treponemataceae Spiro-10 MAG

(TGP_msp_maxbin.003) that carried only 17 and the Cloacimonas

sp. 002432865 MAG (TGP_mgh_maxbin.005) that carried none.
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Notably, the Bacteroidota MAG is distinguished by having a

comparatively high content of predicted polysaccharide lyases and

pectinases belonging to family GH28.

As mentioned in the above section, both OPB54 and TG3

species were identified in the enrichment cultures but not the

anaerobic granule inoculum, and corresponding OTUs were

previously reported in other l ignocellulose-degrading

communities. Herein, a MAG corresponding to the OPB54

species was identified in the cellulose-fed enrichment

(TGC_mgh_maxbin.005), which is assigned to the family

UBA8346 that forms a novel Firmicutes lineage. The OPB54

MAG encodes nearly 40 CAZyme sequences predicted to act on

plant polysaccharides, and compared to most abundant MAGs in
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the cellulose-fed metagenome, it comprised a high number of

predicted pectinolytic enzymes. Specifically, the OPB54 MAG

uniquely encodes sequences belonging to families PL22

(oligogalacturonan lyases) and PL26 (rhamnogalacturonan

lyases), and 50% of sequences belonging to family GH28. TG3

was identified in the pretreated poplar-fed metagenome, which

assigned TG3 to the Fibrobacterota phylum (TGPmsp_mb_bin.17).

The TG3 MAG encodes 44 CAZyme sequences predicted to act on

plant polysaccharides, with a distribution close to that observed for

the corresponding metagenome (Figure 4A, Table S8).

Members of the archaeal phylum Bathyarchaeota are found in

many anoxic environments and reportedly transform both plant

polysaccharides and lignin (Zhou et al., 2018). Several MAGs
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FIGURE 3

Metagenome Assembled Genomes (MAGs) from anaerobic granules (AG) following enrichment on cellulose (AG-C) or pretreated poplar (AG-P). The
139 dereplicated MAGs from the AG-C and AG-P metagenomes are visualized using the Anvi’o software (Eren et al., 2021). The phylogenetic tree at
the centre of the figure is a maximum likelihood tree based on concatenated ribosomal proteins calculated using FastTree (Price et al., 2010). From
inner to outer ring: The first ring shows the % completion of each MAG calculated based on single-copy core genes (SCGs) with maximum set to
100%. The second ring indicates the level of redundancy (or possible contamination) also based on SCGs with maximum set to 30%. The green and
yellow bar for each MAG shows the mean coverage of each MAG in each sample, with maximum at 1284 and 587 for AG-C and AG-P, respectively.
The AG-C CAZY and AG-P CAZY bar shows number of blast matches to carbohydrate-active enzyme sequences predicted to act on plant-
polysaccharides, where the maximum number in each case is 79 and 80, respectively (pairwise sequence identity was 99%-100%). Genes in PULSs
corresponds to the number of CAZymes encoded in MAGs that are predicted to act on plant polysaccharides and be localized in polysaccharide
utilization loci (PULs). The outer circle shows the taxonomic domain by color, predicted by Anvio using the genome taxonomy database (gtdb,
https://gtdb.ecogenomic.org/). Finally, the best taxonomic classification of each MAG is provided. A ‘p’ in front of the taxon name indicates this is a
phylum classification, a ‘c’ indicates classification to class, ‘f’ indicates family level classification, ‘o’ indicates order level classification, ‘g’ indicates
classification to genus and ‘s’ indicates species level classification. The bars on the right-side shows percent and total number of reads mapped to
the MAGs from each metagenome. SNV denotes single nucleotide variants and shows the level of diversity in all the MAGs when reads from the two
metagenomes are mapped back to the best MAG.
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belonging to the Bathyarchaeota were identified in the metagenome

sequences assembled herein; however, only one MAG

(TGPidbaud_mb_bin.66) encoded a CAZyme predicted to act on

plant-derived carbohydrates (belonging to family GH2; Tables

S6, S8).
Prediction of polysaccharide utilization loci

As a specialized adaptation for polysaccharide degradation,

genomes of many gram-negative bacteria within the Bacteroidetes,

Gemmatimonadetes, Ignavibacteriae, Gemmatimon, Balneolaeota

phyla feature PULs that comprise physically-linked genes that
Frontiers in Microbiomes 07
encode CAZymes for stepwise binding, hydrolysis and uptake of

plant polysaccharides (Terrapon et al., 2018). Of the 800 sequences

from cellulose- and pretreated poplar-fed enrichments that were

predicted to encode CAZymes targeting plant polysaccharides, over

25% were present in identified PULs. Consistent with the overall

distribution of predicted CAZyme sequences, those belonging to

families GH3, GH2, and GH43 were most frequently identified in

the predicted PULs (Figure 5). The PULs were identified in eight

MAGs, where seven were classified as belonging to the phylum

Bacteroidota and one containing a single two-gene PUL was

classified as belonging to Cloacimonas acidaminovorans

(TGP_mgh_maxbin.006) (Table S6). Whereas three of the PUL-

containing MAGs were detected in the cellulose-fed enrichment,
A

B

FIGURE 4

(A) Distribution of plant polysaccharide degrading CAZyme families as single and multi-modular domains. (B) Normalized count and fold difference
of CAZyme families predicted to act on plant polysaccharides between pretreated poplar- and cellulose-fed pulp mill anaerobic granule cultures.
Fold difference was only calculated for non-zero counts.
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including the highly abundant Parabacteroides MAG

(TG_idbaud_maxbin.144), all eight were detected in the

p r e t r e a t e d p o p l a r - f e d e n r i c h m e n t w i t h t h e

Paludibacteraceae MAG (TGP_msp_maxbin.009) and the

Ignavibacteria MAG (TGP_idbaud_maxbin.007l) being the most

enriched (Table S5).
Conclusion

Following cultivation on cellulose and pretreated poplar,

microbial communities originating from anaerobic pulp mill

digesters encoded a similar profile of predicted plant-

polysaccharide active enzymes to communities originating from

animal digestive systems (Wong et al., 2017). This observation

underscores the considerable impact that substrate amendment has

on the functional potential of microbial communities originating
Frontiers in Microbiomes 08
from disparate environmental sources. The metagenome assembled

genomes of lignocellulose-degrading microbial communities

completed herein highlight that OTU abundance does not always

identify microorganisms that encode the highest complement of

enzymes needed to access the amended lignocellulosic substrate.

This was especially apparent for microbial communities enriched

on pretreated poplar wood chips. Interestingly, most of the

CAZymes predicted to act on plant polysaccharides were found

in a small subset of the MAGs constructed. For example, 4 MAGs

from the cellulose-fed enrichment encode 219 of the 245 CAZymes

predicted to act on plant polysaccharides, while 8 MAGs from the

pretreated poplar-fed enrichment encode 403 of the 555 predicted

CAZymes. This suggests that a small selection of organisms directly

participates in the plant polysaccharide deconstruction and

supports the rest of the community. Lastly, the reported MAG

analyses shed light on the functional contributions of OTUs that

reoccur in lignocellulose-degrading communities (e.g., TG3 and
FIGURE 5

Top 20 most abundant CAZyme families identified in predicted PULs from cellulose- and pretreated poplar-fed pulp mill anaerobic granules
microcosms.
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OPB54), which can inform the selection of new CAZyme sequences

for functional characterization.
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