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Recherche Médicale (INSERM), France
Jean Debédat,
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Feeding with resistant
maltodextrin suppresses
excessive calorie intake in a
high-fat diet, mediated by
changes in mouse gut
microbiota composition,
appetite-related gut hormone
secretion, and neuropeptide
transcriptional levels

Kaede Ito †, Atsushi Haraguchi †, Shuhei Sato,
Masataka Sekiguchi , Hiroyuki Sasaki , Conn Ryan, Yijin Lyu
and Shigenobu Shibata*

Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda
University, Tokyo, Japan
Consuming resistant maltodextrin (RMD) decreases food intake and increase

appetite-related gut hormones, but the underlying mechanisms have remained

unknown. Therefore, we aimed to elucidate the mechanisms underlying the

effects of RMD feeding on food intake (appetite) using Institute of Cancer

Research male mice fed with a high-fat diet (HFD-cellulose group) or HFD in

which cellulose was replaced with RMD (HFD-RMD group). Feeding mice with an

HFD-RMD for approximately 8 weeks inhibited excessive calorie intake and

altered the gut microbiota composition. Excessive calorie intake was inhibited

for several days in mice fed only with an HFD-cellulose and transplanted with

fecal microbiota from the HFD-RMD group (FMT-HFD-RMD group). Moreover,

in the HFD-RMD and FMT-HFD-RMD groups, serum active glucagon-like

peptide (GLP)-1 and peptide tyrosine tyrosine (PYY) levels were significantly

higher, and appetite-related neuropeptide gene transcription in the

hypothalamus were significantly altered, compared with the HFD-cellulose and

FMT-HFD-cellulose groups. These results suggested that the long-term RMD

intake changed the gut microbiota composition, increased the GLP-1 and PYY

secretion, and altered the appetite-related neuropeptide gene transcription in

the hypothalamus, leading to suppressed excessive calorie intake in an HFD.

KEYWORDS

gut microbiota composition, appetite and food intake, appetite-related gut hormones,
appetite-related neuropeptides, fecalmicrobiota transplantation (FMT), resistantmaltodextrin
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1 Introduction

The incidence of obesity is rapidly increasing worldwide and it

is associated with myocardial infarction, diabetes, and non-

alcoholic fatty liver, that are significant health problems (Huang,

2009). Causes of obesity include an imbalance between caloric

intake and energy expenditure resulting from overeating and a

lack of exercise (González-Muniesa et al., 2017). In addition, the gut

microbiota has also been investigated as a cause of obesity. Indeed, a

previous study in mice showed that transplantation of the gut

microbiota of obese individuals made them obese (Turnbaugh et al.,

2006). The prevalence of publications describing a relationship

between the gut microbiota and metabolic diseases such as

obesity, diabetes, and metabolic syndrome has recently increased

(Amar et al., 2011; Ridaura et al., 2013; Suez et al., 2014; Cox et al.,

2015). Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria

comprise ~ 90% of the gut microbiota and food, especially dietary

fiber, easily influence the gut composition (Jandhyala et al., 2015).

Studies of the relationship between appetite regulation and the gut

microbiota composition (Han et al., 2021) have revealed that dietary

habits influence the gut microbiota composition (Bäckhed et al.,

2005; Cuevas-Sierra et al., 2019; Zhou et al., 2023). Therefore, we

aimed to clarify whether dietary fiber could regulate food intake by

altering the gut microbiota composition.

The brain-gut axis regulates appetite and eating behavior

throughout an interdependent process mediated by the gut

hormones signaling between the endocrine and nervous systems

(Huda et al., 2006; Wren and Bloom, 2007; Steinert et al., 2017).

Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine

(PYY) are gut hormones that stimulate satiety, decrease hunger,

and promote meal cessation by signaling in the brain (Abou-Samra

et al., 2022). Satiety-regulating gut hormones, such as active GLP-1

and PYY, positively correlate with activity in subcortical areas, such

as the hypothalamus (Zanchi et al., 2017). For example, Active

GLP-1 and PYY suppress appetite mediated by affecting appetite-

related neuropeptides such as pro-opiomelanocortin (POMC;

appetite suppression), cocaine- and amphetamine-regulated

transcript (CART; appetite suppression), and neuropeptide Y

(NPY; appetite stimulation) (Challis et al., 2003; Chen et al., 2007;

Seo et al., 2008; Hill, 2010; Hamamah and Covasa, 2022). Intestinal

enteroendocrine L-cells expressing G-protein coupled receptor

(GPR) 41 or 43 bind butyrate and acetic acids, and secrete the

active GLP-1 and PYY (Brown et al., 2003; Tazoe et al., 2009;

Tolhurst et al., 2012; Billing et al., 2018; Hamamah and Covasa,

2022). Butyric and acetic acids are short-chain fatty acids (SCFAs)

that are produced by the metabolic fermentation of water-soluble

dietary fiber by the gut microbiota (Pluznick, 2016). Therefore, the

present study focused on the gut microbiota of mice and water-

soluble dietary fibers.

The mammalian gut microbiota comprises approximately 100

trillion gut bacteria. Various relationships between the gut

microbiota and physical/pathological conditions have been

uncovered using next-generation sequencing (Kostic et al., 2014;

Merga et al., 2014; Marchesi et al., 2016). The relationship between
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appetite and SCFAs produced by the gut microbiota has been

investigated. For example, dosing with intraperitoneally injected

acetic acid or butyric acid given by intragastric gavage both

suppressed the intake of a high fat diet (HFD) in mice after an

overnight fast (Frost et al., 2014; Li et al., 2018).

Resistant maltodextrin (RMD) was the water-soluble dietary

fiber in the present study. Dietary supplementation with RMD for

one week reduces the calorie intake of an HFD to levels similar to

those of a normal-fat diet (NFD) in rats and increases satiety in

humans (Ye et al., 2015; Hira et al., 2018). In addition, these studies

suggest that one week of RMD feeding increases the production

levels of GLP-1 in the cecum of rats and plasma GLP-1 and PYY

levels in humans (Ye et al., 2015; Hira et al., 2018). However,

feeding rats with RMD for 7-8 weeks does not affect the intake of

foods containing NFD and HFD (Hira et al., 2015; Hira et al., 2018).

It is not known why the effects of RMD on food intake differ

between short-term (one week) and long-term (7-8 weeks) RMD

intake. Moreover, the mechanism by which RMD intake increases

GLP-1 secretion and inhibits HFD-induced in calorie intake

remains unknown.

We aimed to verify whether long-term RMD supplementation

inhibits the increased calorie intake with HFD, changes the gut

microbiota composition, and suppresses the increased calorie intake

with HFD, and whether mice transplanted with the gut microbiota

from mice supplemented with RMD show inhibited calorie intake

increase with HFD. Moreover, to investigate the mechanism of the

inhibitory effects on increased calorie intake due to HFD, we

measured appetite-related gut hormones in the serum and

neuropeptides in the hypothalamus.
2 Materials and methods

2.1 Animals

Seven-week-old Institute of Cancer Research (ICR) male mice

(Tokyo Laboratory Animals Science Co. Ltd., Tokyo, Japan) were

housed in an animal room at 22°C ± 2°C and 60% ± 5% humidity

under a 12-h light/12-h dark cycle. Zeitgeber times (ZT) 0 (08:00)

and 12 (20:00) were defined as when lights were turned on and off,

respectively. The mice were habituated by feeding with an EF (EF;

Oriental Yeast Co. Ltd., Tokyo, Japan) and tap water ad libitum for

one week before starting experiments. In the present study, we used

male ICR mice because some reports have suggested that ICR mice

are a more appropriate model for metabolic research than C57BL/6J

mice (Park et al., 2005; Park et al., 2006; Zhuhua et al., 2015;

Narimatsu et al., 2022).

The experimental procedures complied with the Fundamental

Guidelines for Proper Conduct of Animal Experiments and Related

Activities in Academic Research Institutions (Ministry of

Education, Culture, Sports, Science and Technology, Japan). The

Committee for Animal Experimentation at Waseda University

approved the study (2020-A039 and 2021-A072).
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2.2 Diets

During experiments, mice fed with an NFD (MF; Oriental Yeast

Co. Ltd.), HFD in which dietary fiber is only cellulose (water-

insoluble dietary fiber), or HFD-RMD in which dietary fiber is

RMD (water-soluble dietary fiber; Fibersol-2AG; Matsutani

Chemical Industry Co., Hyogo, Japan) were given access to tap

water ad libitum. The MF contained water-soluble and insoluble

dietary fibers. The dietary fiber in AIN-93M (Oriental Yeast Co.

Ltd.) is only cellulose. The HFD-cellulose comprised AIN-93M

mixed with lard oil (Sigma-Aldrich Corp., St. Louis, MO, USA), and

the HFD-RMD comprised AIN-93M in which cellulose was

replaced with RMD and lard oil (Table 1). The reason why MF

regarded as NFD was that AIN-93M contained only cellulose as

dietary fiber and was considered inappropriate as a control food.

The quantities of fiber, sugar, and moisture in the RMD were

approximately 90%, 5%, and 5%, respectively. The average

molecular weight of RMD is less than 2000 Da (Kishimoto

et al., 2007).
2.3 Measurements of body weight and
food intake

The mice were placed in individual cages in all experiments to

monitor their food intake. The mice body weight was measured

weekly. The food volume for each mouse was monitored weekly,

calculated, and expressed as kcal/mouse/day. We measured food

intake for one week before the fecal microbiota transplantation

(FMT) in the FMT-donor mice, and for two days before, and daily

at ZT10 after the FMT in the FMT-recipient mice.
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2.4 Quantitation of SCFAs and lactic acid in
cecal contents

Cecal content samples were collected under deep anesthesia.

Subsequently, the cecal content samples were stored in sealable

polypropylene microcentrifuge tubes at -80°C for subsequent analysis.

Cecal SCFAs and lactic acid might serve as markers of the status

of the gut microbiota and environment. Lactic acid is the precursor

of acetic and butyric acids. We therefore quantified SCFAs and

lactic acid extracted from mouse cecal contents using gas

chromatography and flame ionization detection (Shimadzu Co.,

Kyoto, Japan) as described (Huazano-Garcıá and López, 2013) with

some modifications. Mouse cecal contents (approximately 50 mg)

were suspended in 400 µL of diethyl ether (Fujifilm Wako Pure

Chemicals, Osaka, Japan) containing 50 µL of sulfuric acid (Fujifilm

Wako Pure Chemicals), and 200 µL of chloroform (Fujifilm Wako

Pure Chemicals), then centrifuged at 13,000 × g for 30 s at room

temperature. Thereafter, supernatants (1 µL) were injected into a 30

m × 0.25 mm InertCap Pure-WAX capillary column (df = 0.5 µm;

GL Sciences, Tokyo, Japan), and the initial temperature was

increased from 80°C to a final temperature of 200°C using helium

as the carrier gas.
2.5 Fecal DNA extraction

Fecal samples were collected from the colon under deep anesthesia.

Subsequently, the feces were stored in sealable polypropylene

microcentrifuge tubes at -80°C for subsequent analysis.

We extracted gut microbiota DNA from mouse fecal samples as

described (Nishijima et al., 2016). Feces (approximately 20 mg) in

20 mL of phosphate-buffered saline was filtered through a 100-µm
TABLE 1 Ingredients of the diets [%].

MF HFD-cellulose HFD-RMD

Casein
23.1*

11.2 11.2

L-cysteine 0.144 0.144

Corn starch

55.3**

37.25536 37.25536

Gelatinized corn starch 12.4 12.4

Sucrose 8 8

Soybean oil

5.1***

3.2 3.2

Lard oil 20 20

Tertiary butylhydroquinone 0.00064 0.00064

Cellulose powder
2.8****

4

Resistant maltodextrin (RMD) 4

Mineral mix (AIN-93M-MX)

13.7*****

2.8 2.8

Vitamin mix (AIN-93VX) 0.8 0.8

Choline bitartrate 0.2 0.2

Sum 100 100 100
*crude protein, ** crude carbohydrate, *** crude fat, **** crud dietary fiber, ***** crud ash contents including moisture (7.9%).
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nylon mesh (Corning Inc., Corning, NY, USA). The filtrate was

centrifuged at 9,000 × g for 20 min at 4°C, then pellets were inverted

with 800 µL TE10 buffer and 100 µL lysozyme (150 mg/mL; Sigma-

Aldrich Corp.). Samples were incubated at 37°C for 1 h between

each of these processes. Achromopeptidase (20 µL), proteinase K

(50 µL) and 20% sodium dodecyl sulfate were sequentially added

between incubations at 55°C. gut microbiota DNA was extracted

using phenol: chloroform: isoamyl alcohol (25: 24: 1), 3 M sodium

acetate, and isopropanol, and refined with 70% ethanol.

After fecal DNA extraction, DNA quantity was measured using

the PicoGreen® dsDNA Assay Kit (Invitrogen, USA) and diluted to

5 ng/µL with 10 mM Tris-HCl (pH 8.5).
2.6 Sequencing 16S rDNA

We analyzed 16S rDNA extracted from gut microbiota in fecal

samples using an Illumina sequencing platform (Illumina MiSeq)

according to the 16S Metagenomic Sequencing Library Preparation

protocol (15044223 B).

The V3–V4 variable regions of the 16S rDNA gene were

amplified using the polymerase chain reaction (PCR) with the

respective forward and reverse (5′  3′) primers:

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTA

CGGGNGGCCWGCAG

G T C T C G T G G G C T C G G A G A T G T G T A T A A

GAGACAGGACTACHVGGGTATCTAATCC

Sequences of interest were amplified by PCR using 2.5 µL

microbial DNA (5 ng/µL), 5 µL of each primer (1 µmol/L), and

12.5 µL 2 × KAPA HiFi HotStart Ready Mix (Kapa Biosystems Inc.,

Wilmington, MA, USA). The PCR conditions comprised 95°C for 3

min followed by 25 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C

for 30 s, followed by 72°C for 5 min and holding at 4°C. Amplicons

were cleaned using AMPure XP beads (Beckman Coulter Inc., Brea,

CA, USA) as described by the manufacturer. Purified DNA (5 µL)

was amplified by index PCR using 5 µL of each Nextera XT Index

Primer and sequenced using Nextera XT Index Kit v2 and an

Illumina MiSeq (both from Illumina Inc.). Thereafter, index PCR

products were amplified by PCR in 2 × KAPA HiFi HotStart Ready

Mix (25 µL) and PCR-grade water (10 µL) under the following

conditions: 95°C for 3 min followed by 8 cycles of 95°C for 30 s, 55°

C for 30 s, and 72°C for 30 s, 72°C for 5 min, and hold at 4°C. The

index PCR products were cleaned using AMPure XP beads

(Beckman Coulter Inc.) as described by the manufacturer. Purity

was verified using an Agilent 2100 Bioanalyzer with a DNA 1000 Kit

(Agilent Technologies, Santa Clara, CA, USA). The concentration

of the DNA library was adjusted to 4 nM, then the library sequenced

using MiSeq Reagent Kit v3 (Illumina Inc.) and an Illumina MiSeq 2

× 300 bp platform as described by the manufacturer.
2.7 Analysis of 16S rDNA gene sequences

The 16S rDNA sequences were analyzed using the Quantitative

Insights into Microbial Ecology (QIIME) pipeline version 1.9.1

(Caporaso et al., 2010). Filtered 16S rDNA sequences were assigned
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to operational taxonomic units based on having 97% similarity

according to the UCLUST algorithm (Edgar, 2010), then compared

with reference sequences in the Greengenes database (August 2013

version). We analyzed these sequences using QIIME to produce a

taxonomy summary from the phylum to genus level, as well

as alpha diversity (Simpson diversity index), and beta diversity.

We also used weighted UniFrac distances for principal

coordinate analysis.
2.8 Fecal microbiota transplantation

The fecal microbiota were transplanted as described (Wei

et al., 2018). The FMT-recipient mice were fasted and housed in

new individual cages for 1 h (ZT3−4). Polyethylene glycol (PEG) is

an osmotic laxative that allows simple, rapid, and safe cleaning of

the bowel (Mıńguez et al., 2016). Bowel cleansing with PEG

reduces ~ 90% of the total bacteria in the luminal and mucosal

gut microbiota (Wrzosek et al., 2018). The intestinal tracts of

FMT-recipient mice were washed using four oral administrations

of PEG (200 µL, 425 g/L; Tokyo Chemical Industry Co., Ltd.,

Tokyo, Japan) at 20-min intervals 4 h before transplantation with

gut microbiota from the FMT-donor mice. The FMT-donor mice

were moved to new individual cages and fresh feces were collected.

Fresh feces from each group were pooled in tubes. Subsequently,

FMT-donor mice were returned to their individual home cages.

The fresh feces (200 mg) from the FMT-donor mice were

suspended in 5 mL PBS and finely ground using a spatula. The

suspension was passed through a 100 µm nylon filter (Corning

Inc.) and centrifuged at 5,500 × g for 5 min at 4°C. The

supernatant was discarded, then the precipitate resuspended in

PBS (200 µL; final concentration, 400 mg/mL) was orally

administered to the FMT-recipient mice at ZT10. The FMT-

recipient mice were then transferred to new cages and fed with

HFD-cellulose.
2.9 Measurement of serum metabolic
parameters

Terminal blood samples were collected from the retro-orbital

sinus under deep anesthesia. Serum concentrations of active GLP-1

(Millipore Sigma, Burlington, MA, USA) and PYY (Fujifilm Wako

Pure Chemicals) in mice were determined using ELISA kits as

described by the manufacturer.

Active GLP-1 immediately undergoes limited degradation by

dipeptidyl peptidase-IV (DPP-IV) in the blood and is transformed

into inactive GLP-1. Therefore, to measured active GLP-1, DPP-IV

inhibitor (final concentration, 50 µM) was placed in 0.6 mL tubes in

advance. Blood samples were centrifuged at 600 × g for 10 min at 4°C

within 10 min of collection. Each serum sample was divided into two

tubes; tubes containing DPP-IV inhibitor for measurement of active

GLP-1 and other tubes for measurement of PYY. All samples were

stored in sealable polypropylene microcentrifuge tubes at -80°C.
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2.10 Total RNA extraction and real-time
reverse transcription PCR

Hypothalamus samples collected under deep anesthesia were

homogenized in phenol (Omega Bio-Tek Inc., Norcross, GA, USA)

and stored at -80°C.

Total RNA in hypothalamus samples was extracted using

phenol and reverse transcribed by RT-PCR using One-Step SYBR

RT-PCR Kits (Takara Bio Inc., Shiga, Japan) with specific primer

pairs designed using Primer 3 Plus software (Table 2) and a Piko

Real PCR system (Thermo Fisher Scientific Inc., Waltham, MA,

USA). The relative expression of target genes was normalized to that

of Gapdh. The data were analyzed using the DDCt method. Melt

curves were analyzed to identify non-specific products.
2.11 Experimental details

Experiment 1: Male ICR mice were assigned to groups fed with

MF, HFD-cellulose, or HFD-RMD (n = 6−8), given access to tap

water ad libitum and kept in individual cages for 10 weeks. The

body weight and food intake were measured weekly. Subsequently,

we prepared other ICR male mice and fed them with either HFD-

cellulose or HFD-RMD (n = 7) in individual cages for 8 weeks. We

collected fresh feces at ZT10 before the experiment starting and

after the kept each condition for 8 weeks, to analyze the gut

microbiota composition. Moreover, we also collected cecal

contents at ZT10 after the kept each condition for 8 weeks to

analyze the SCFAs content.

Experiment 2: Male ICR mice were assigned to groups fed with

an HFD-cellulose or HFD-RMD for > 8 weeks as the FMT-donor

mice (HFD-cellulose and HFD-RMD groups; n = 8). We also

assigned other ICR male mice (n = 7−8) as the FMT-recipient

mice (FMT-HFD-cellulose and FMT-HFD-RMD groups) and fed

them with an HFD-cellulose for one week of habituation before

undergoing the FMT. Thereafter, the FMT-recipient mice were fed

with an HFD-cellulose. We measured the volume of HFD-cellulose

at ZT10 on days 1−4 and 7 to calculate the daily intake (Figure 1A).

Experiment 3: We fed ICR male mice with an HFD-cellulose or

HFD-RMD groups for > 8 weeks (HFD-cellulose and HFD-RMD

groups; n = 4). We also prepared ICR male mice (n = 7−8) as the

FMT-recipient mice (FMT-HFD-cellulose and FMT-HFD-RMD

groups) and fed them with an HFD-cellulose for one week of

habituation before undergoing the FMT. Serum, hypothalamus,
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cecal content, and feces of the FMT-recipient mice were collected at

ZT10 two days after the FMT. Moreover, serum, hypothalamus, and

cecal contents of FMT-donor mice were also collected at ZT10 one

week after the feces collection (Figure 1B). Levels of gut hormones

associated with appetite regulation that are produced in the gut

were measured in serum, appetite-related neuropeptide mRNA

expression was assessed in the hypothalamus, SCFAs in the cecal

content were quantified, and the gut microbiota content was

analyzed using feces. We collected samples from FMT-recipient

mice two days after FMT because HFD-cellulose intake was

stably suppressed in the FMT-HFD-RMD group at that time.

Additionally, we collected samples from FMT-donor mice one

week after feces collection to allow them to recover from the

stress of feces collection.

In this experiment, we collected samples at ZT10, and we have

mainly two reasons. First, feces were collected more easily. Indeed, a

previous study in mice showed that fecal output showed a circadian

rhythm and that fecal output during the inactive period was

significantly lower than that during the active period (Hoogerwerf

et al., 2010). Therefore, at approximately ZT10, just before the

active period, we expected that mice would retain more feces in the

colon. Second, we expected that each parameter at approximately

ZT10 would reflect feeding behavior during the subsequent

active period. Indeed, a previous study has shown that mice

predominantly consume food during the active period (Chaix

et al., 2019). Therefore, we expected that sample collection at

ZT10 would be appropriate.
2.12 Statistical analysis

All values are expressed as means ± standard error of the mean

(SEM). All data were statistically analyzed using GraphPad Prism v.

6.03 (GraphPad Software, San Diego, CA, USA). Normal or non-

normal data distribution was determined by assessing equal

variation using D’Agostino–Pearson normality tests, Kolmogorov-

Smirnov t tests, and one-sample t-tests. Bias was assessed using

F-value and Bartlett test. Significance between two independent

groups was assessed by parametric analysis using unpaired t-tests,

and abnormally distributed data were assessed by non-parametric

analysis using Mann-Whitney tests and by Kruskal-Wallis tests

with Dunn multiple comparison tests. Two factors requiring non-

parametric analysis were assessed using Mann Whitney tests with

false discovery rate multiple testing correction.
TABLE 2 Primers.

Forward Reverse

Gapdh TGGTGAAGGTCGGTGTGAAC AATGAAGGGGTCGTTGATGG

Npy ACCCTCGCTCTATCTCTGCTC TATCTGGCCATGTCCTCTGC

Pomc GATGTGTGGAGCTGGTG GGCTGTTCATCTCCGTTG

Cart CTGGACATCTACTCTGCCGTGG GTTCCTCGGGGACAGTCACACAGC
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3 Results

3.1 Effects of RMD on body weight,
food intake volume, gut microbiota
composition, and SCFAs in the
cecal contents

We investigated the effects of water-soluble or -insoluble dietary

fiber on food intake and body weight. We fed mice with MF, HFD-

cellulose, or HFD-RMD for 10 weeks, monitored their body weight

and food volume weekly, and calculated their food intake. Body

weight changes in the HFD-RMD group were similar to those in the

HFD-cellulose group and were significantly higher than those in the

MF group (Figure 2A). Caloric intake in the HFD-RMD group was

significantly lower than that in the HFD-cellulose group after the

beginning of feeding and at week 6−9 (Figure 2B).

Subsequently, we prepared HFD-cellulose and HFD-RMD groups

using other mice. We collected feces from mice before and 8 weeks

after starting the HFD-cellulose or the HFD-RMD groups. We also

collected cecal contents at week 8 because differences in caloric intake

were significant in both groups. Body weights in both groups were
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similar after being maintained under each condition for eight weeks

(Figure 3A). Moreover, the average calorie intake over 8 weeks in the

HFD-RMD group was significantly lower than that in the HFD-

cellulose group (Figure 3B). These results were similar to the above

results (Figure 2). Propionic acid levels in the HFD-RMD group tended

to be higher than those in the HFD-cellulose group (Figure 3D). The

lactic acid levels in the HFD-RMD group were significantly higher than

those in the HFD-cellulose group (Figure 3D). The total SCFAs, acetic

acid, and butyric acid levels in the HFD-RMD group showed similar

levels as those in the HFD-cellulose group (Figures 3C, D). Figure 4

shows the gut microbiota composition in feces samples. Weighted

UniFrac PCoA plots of the gut microbiota composition revealed a

similar composition in both groups before starting the experiment, and

significant differences after feeding with an HFD-RMD or HFD-

cellulose for 8 weeks (Figure 4A). The gut microbiota composition

and relative abundance ofActinobacteria, Bacteroidetes, Firmicutes, and

Proteobacteria at the phylum level were similar between the HFD-

cellulose and HFD-RMD groups before starting the experiment

(Figures 4B, C). However, after being maintained under each

condition for 8 weeks, the gut microbiota composition differed

between the HFD-cellulose and HFD-RMD groups (Figure 4B). The
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relative abundance of Bacteroidetes and Proteobacteria in the gut

microbiota significantly differed between both groups (Figure 4D).

The abundances ofActinobacteria and Firmicutes showed similar levels

in both groups (Figure 4D). Subsequently, we analyzed some bacteria at

the genus level. The relative abundance of Bacteroides, which produces

acetic acids, in the HFD-RMD group tended to be higher than that

in the HFD-cellulose group, and the relative abundance of

Parabacteroides, which produces acetic acids, in the HFD-RMD
Frontiers in Microbiomes 07
group was significantly higher than that in the HFD-cellulose group

(Figure 5). The relative abundance of Dorea, which produces butyrate,

showed similar levels in both groups (Figure 5) (Martıń-Núñez et al.,

2021; Namted et al., 2022).

These results suggested that acute and long-term feeding with

RMD feeding inhibited the increased calorie intake with HFD and

changed the gut microbiota composition compared with

cellulose feeding.
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3.2 Effects of the gut microbiota
composition on HFD intake

We showed that RMD feeding changed gut microbiota

composition and suppressed the increased calorie intake with

HFD. Therefore, we investigated the effects of the gut microbiota

composition on the increased calorie intake with HFD in the FMT-

recipient mice (FMT-HFD-cellulose and FMT-HFD-RMD groups)

transplanted with feces collected from the FMT-donor mice (HFD-
Frontiers in Microbiomes 08
cellulose and HFD-RMD groups). Before the FMT, we measured

body weight and food intake in the FMT-donor mice and measured

HFD-cellulose intake in the FMT-recipient mice. After the FMT,

the FMT-HFD-cellulose and FMT-HFD-RMD groups were fed

with an HFD-cellulose, and the intake volumes were monitored

(Figure 1A). Before FMT in the FMT-donor mice, the body weight

in the HFD-RMD group was similar to that in the HFD-cellulose

group (Figure 6A), and food intake in the HFD-RMD group

was significantly lower than that in the HFD-cellulose group
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(Figure 6B). Before FMT in the FMT-recipient mice, HFD-cellulose

intake was similar in both groups (Figure 6C). Intake of HFD-

cellulose was significantly lower in the FMT-HFD-RMD group than

that in the FMT-HFD-cellulose group at days 2−4 after the FMT

(Figure 6D). This effect disappeared one week after the FMT

(Figure 6D). Overall, these results suggested that long-term RMD

feeding would inhibit excessive calorie intake in HFD-cellulose in

the HFD-RMD group by changing the gut microbiota composition.
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3.3 Cecal SCFAs levels, serum levels of
appetite-associated gut hormones, and
gene transcripts of appetite-associated
neuropeptides in hypothalamus from the
FMT-donor and recipient mice

The above findings indicated that long-term RMD feeding altered

the gut microbiota composition, and caused the suppression of
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excessive calorie intake in HFD-cellulose. We then investigated the

mechanism of this suppression effect, in the FMT-donor and

recipient mice under the same conditions as Experiment 2. We

collected samples from the FMT-recipient mice two days after the

FMT. Moreover, we collected samples from FMT-donor mice at one

week after the FMT (Figure 1B).

The results showed that the consumption of HFD-RMD

significantly increased total SCFAs and individual SCFAs levels in

the cecal contents of the FMT-donor mice (the HFD-RMD group),

compared with the HFD-cellulose group (Figures 7A, B). In

contrast, total SCFAs and individual SCFAs levels were similar
Frontiers in Microbiomes 10
between both groups of the FMT-recipient mice (the FMT-HFD-

cellulose and FMT-HFD-RMD groups) (Figures 7C, D). In

addition, we analyzed the gut microbiota composition in feces

from the FMT-HFD-cellulose and FMT-HFD-RMD groups

(Figure 8). At the phylum level, gut microbiota composition was

similar between the FMT-HFD-cellulose and FMT-HFD-RMD

groups (Figure 8A). Moreover, the relative abundances of

Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria

showed similar levels in both groups (Figure 8B).

We analyzed serum levels of appetite-related gut hormones

(active GLP-1 and PYY) that stimulate satiety. Levels of active
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GLP-1 and of PYY were significantly higher in the HFD-RMD

group than the HFD-cellulose group of the FMT-donor mice

(Figure 9A). The results were notably similar between the FMT-

donor and recipient mice (Figures 9A, C). Levels of serum active

GLP-1 and of PYY were significantly higher in the FMT-HFD-

RMD group than the FMT-HFD-cellulose group of the FMT-

recipient mice (Figure 9C).

We analyzed the transcriptional levels of the appetite-related

neuropeptides POMC and CART (appetite suppression), as well as

NPY (appetite stimulation) in the hypothalamus (Chen et al., 2007;

Hill, 2010). Significantly less Npy was transcribed in the HFD-RMD

group than HFD-cellulose group of the FMT-donor mice. Levels of

Pomc and Cart transcription were significantly higher and higher,

respectively, in the HFD-RMD group than in the HFD-cellulose

group (Figure 9B). The results of the FMT-recipient and donor mice

were notably similar (Figures 9B, D). Significantly more Pomc and

Cart, and significantly less Npy were transcribed in the FMT-HFD-

RMD group than in the FMT-HFD-cellulose group of the FMT-

recipient mice (Figure 9D).

Serum appetite-related gut hormones (satiety stimulators) were

increased, appetite-related neuropeptide gene transcription was

changed in the hypothalamus, and excessive calorie intake in

HFD-cellulose was inhibited in the HFD-RMD and FMT-HFD-

RMD groups. Levels of SCFAs in the cecal contents and the gut

microbiota composition were similar in the FMT-recipient mice

(FMT-HFD-cellulose and FMT-HFD-RMD groups), suggesting

that the diet immediately affected SCFAs and gut microbiota

composition. Our findings indicated that the FMT-HFD-RMD

group would maintain the gut macrobacteria, which were

increased by long-term RMD feeding and transplanted from the

HFD-RMD group, despite feeding this group with HFD-cellulose.
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4 Discussion

The present study found that feeding mice with RMD for long

and short terms inhibited the increased calorie intake with HFD and

that long-term RMD changed the gut microbiota composition and

increased the amount of cecal SCFAs levels. Furthermore, the gut

microbiota composition, which was changed by long-term RMD

feeding, increased serum active GLP-1 and PYY levels and altered

the expression of appetite-related neuropeptide genes in the

hypothalamus. We also found that RMD even suppressed

excessive calorie intake in HFD-cellulose by the FMT-recipient

mice transplanted with gut microbiota from mice fed with RMD,

even when the FMT-recipient mice were fed only with an HFD-

cellulose. Moreover, the FMT-recipient mice, transplanted with gut

microbiota from mice fed with RMD, showed the increases of

serum active GLP-1 and PYY levels and the changes of the

expression of appetite-related neuropeptide genes in the

hypothalamus. The present findings indicate that the increased

calorie intake with HFD would be suppressed through changes in

the gut microbiota composition caused by long-term RMD feeding,

which increased the amount of SCFAs, as well as active GLP-1 and

PYY secretion, and affected appetite-related neuropeptide gene

transcription in the hypothalamus.

We found that long-term RMD feeding inhibited the increased

calorie intake with HFD. One week of RMD feeding decreases HFD

intake and contributes to a decrease in postprandial hunger and the

maintenance of satiety in rats and humans, respectively (Ye et al.,

2015; Hira et al., 2018). However, previous studies of rats found that

long-term RMD feeding (~ 8 weeks) did not affect NFD and HFD

intake (Hira et al., 2015; Hira et al., 2018). We have no correct idea

why our findings and previous studies’ results were differences. One
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of differences between previous study and our study is strain (rat or

mouse). These results indicated that acute and long-term RMD

feeding inhibited the increased calorie intake with HFD in mice.

We revealed that long-term RMD supplementation changed the

gut microbiota composition and increased the amount of cecal

SCFAs. Previous studies have suggested that RMD is a prebiotic

fiber that modifies the gut microbiota composition in humans and

leads to increased SCFAs production (Fastinger et al., 2008;

Hashizume et al., 2012). Moreover, fructooligosaccharides,

burdock (Arctium lappa) root, and other water-soluble dietary

fibers exert similar effects in rodents (Hira et al., 2018; Watanabe

et al., 2020). These results suggest that the intake of water-soluble

dietary fibers, including RMD, would modify the gut microbiota

composition, leading to increase of cecal SCFAs production.
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We found that dietary RMD supplementation increased serum

levels of active GLP-1 and of PYY and that these levels were also

increased in mice transplanted with gut microbiota from the HFD-

RMD group. Both propionic and butyric acid increase Pyy

transcription and PYY secretion in NCI-h716 enteroendocrine

cells that model human GLP-1 secreting scarce in vitro (Larraufie

et al., 2018). The isolated perfused rat colon stimulated by acetic or

butyric acid increases GLP-1 secretion (Christiansen et al., 2018).

GPR 41 or 43 activation is involved in the increase in GLP-1

secretion induced by SCFAs (Blad et al., 2012). In addition, feeding

rats with the RMD for various duration increases serum GLP-1 and

GLP-1 levels in the rat cecum (Hira et al., 2015; Hira et al., 2018).

Dietary supplementation with RMD for one week increases

postprandial satisfaction as well as plasma GLP-1 and PYY levels
0

5

10

15

20

HFD-cellulose HFD-RMD

0

10

20

30

40

FMT-

HFD-cellulose

FMT-

HFD-RMD

0

10

20

30

40

HFD-cellulose HFD-RMD

P
L

G
-1

 [
p

M
]

P
L

G
-1

 [
p

M
]

0

4

8

12

HFD-cellulose HFD-RMD

P
Y

Y
 [

n
g
/m

L
]

4

8

12

FMT-

HFD-cellulose

FMT-

HFD-RMD

P
Y

Y
 [

n
g
/m

L
]

0

5

10

15

20

HFD-cellulose HFD-RMD

R
el

at
iv

e 
N
py

m
R

N
A

 l
ev

el
s

 e
vitale

R
c
moP

sle
vel 

A
N

R
m

0

1

2

3

4

5

HFD-cellulose HFD-RMD

R
el

at
iv

e 
C
ar
tm

R
N

A
 l

ev
el

s

R
el

at
iv

e 
N
py

m
R

N
A

 l
ev

el
s

 e
vitale

R
c
moP

sle
vel 

A
N

R
m

R
el

at
iv

e 
C
ar
tm

R
N

A
 l

ev
el

s

C

A
*

**

**

**

*
**

*

B

D

p = 0.0912

0

1

2

3

4

5

6

7

8

FMT-

HFD-cellulose

FMT-

HFD-RMD

0

2

4

6

8

10

12

FMT-

HFD-cellulose

FMT-

HFD-RMD

#

0

2

4

6

8

10

FMT-

HFD-cellulose

FMT-

HFD-RMD

#

FIGURE 9

Serum levels of appetite-related gut hormones and neuropeptides mRNA in hypothalamus of the FMT-donor and recipient mice. Serum values for active
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in humans (Hira et al., 2015; Ye et al., 2015; Hira et al., 2018).

However, whether RMD directly or indirectly increases GLP-1 and

PYY secretion levels remained unclear. Taken together, our results

indicated that the RMD feeding indirectly would increase active

GLP-1 and PYY secretion levels by changing the gut microbiota

composition, which leads to the suppression of the increased calorie

intake with HFD.

We revealed that the RMD supplementation significantly

increased and decreased Pomc (appetite suppression-related

neuropeptide gene) and Npy (appetite stimulation-related

neuropeptide gene) transcription in the hypothalamus. We also

found that in the hypothalamus, mice transplanted with gut

microbiota from the HFD-RMD group showed significantly

increased Pomc and Cart transcription levels and significantly

decreased Npy transcription level. Previous studies reported that

administration of GLP-1 or PYY to fasted rats suppressed food

intake after fasting and significantly increased and decreased the

Pomc and Npy transcriptional levels in the hypothalamus,

respectively (Challis et al., 2003; Seo et al., 2008). These results

suggested that the increased serum GLP-1 and PYY levels would

affect Pomc, Cart, and Npy transcription in the hypothalamus,

which in turn would suppress the increased calorie intake

with HFD.

In the FMT experiment, we revealed that the FMT-HFD-RMD

group showed similar HFD-cellulose intake throughout the week

after FMT and that the FMT-HFD-cellulose group showed an

increase in HFD-cellulose intake in days 2–4 compared to days 1

and 7 after FMT. Indeed, a previous study in rats indicated that re-

feeding with HFD increased calorie intake from the first or second

day after fasting compared with re-feeding with NFD, and that

calorie intake from HFD changed to the same level as caloric intake

from NFD approximately one week after re-feeding (Moriya et al.,

2018). These results suggest that changes in gut microbiota

composition altered by RMD supplementation would suppress

the increase in excessive calorie intake in HFD a few days after

re-feeding with HFD.

The intake of HFD-cellulose on day 7 after the FMT was similar

between the FMT-HFD-cellulose and FMT-HFD-RMD groups.

Moreover, the FMT-HFD-cellulose and FMT-HFD-RMD groups

had similar SCFAs levels and gut microbiota composition on day 2

after the FMT. Previous studies on probiotics conducted

administration with probiotics at various intervals, from once a

day to once a week (Chen et al., 2005; Wrzosek et al., 2018;

Foroozan et al., 2021). These results suggested that probiotics

effects would remain for several days, which would vary

depending on the gut bacteria, food, and other conditions.

We also observed that the FMT-HFD-cellulose and FMT-HFD-

RMD groups showed similar SCFAs levels and relative abundance

of the gut microbiota components. The reasons would be that we

fed the FMT-recipient mice (the FMT-HFD-cellulose and FMT-

HFD-RMD groups) with same food including only water-insoluble

dietary fiber (cellulose) after the FMT. Indeed, previous studies have

shown that water-insoluble dietary fiber decreases the production of

SCFAs (Tahara et al., 2018), and that the gut microbiota

composition changes rapidly after dietary ingestion and responds

rapidly to the altered diet (Zhou et al., 2023). Therefore, we
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hypothesized that the gut bacteria induced by the RMD feeding

would be present in the intestinal of the FMT-HFD-RMD group

until a few days after the FMT. Indeed, we observed the effects of

RMD on the increased calorie intake with HFD, serum appetite-

related gut hormones levels, and appetite-related neuropeptides

genes transcription levels in the FMT-HFD-RMD group. These

results suggest that the gut bacteria, which would be increased by

the RMD feeding and involved in suppressing the increased calorie

intake with HFD, may have been present in the intestines of FMT-

recipient mice for a few days.

We found that after only one FMT, the FMT-HFD-RMD group

showed lower calorie intake with HFD-cellulose than the FMT-

HFD-cellulose group at days 2–4 after FMT. A previous study

performed FMT at various intervals (once to twice a week) and

suggested that FMT once a week appeared to be the best

compromise, as it allowed the engraftment of Faecalibacterium

and a higher diversity of bacteria belonging to the order

Bacteroidales (Wrzosek et al., 2018). These results indicate that

repeated weekly FMT for several weeks may continuously inhibit

the increased calorie intake associated with HFD.

We used HFD-RMD, containing 4% RMD, in this study.

Previous studies also evaluated the effects of an HFD supplemented

with 4−5% RMD (Hira et al., 2015; Hira et al., 2018), which in rodents

study is equivalent to 20–30 g/day in humans (Parnell and Reimer,

2012; Cluny et al., 2015) that complies with the recommended levels

of dietary fiber (Turner and Lupton, 2011). Moreover, RMD

(continuous intake of 60 g/day for three months or acute intake of

50 g) has never been reported to induce severe gastrointestinal

symptoms or diarrhea (Nomura et al., 1992; Okuma and Matsuda,

2002). Therefore, we presumed that 4% RMD supplementation

would be suitable for the present study.

This study had six limitations. First, we kept mice in the

individual cages in all experiments, because we needed to monitor

individual food intake for various term. However, it is said that

single housing would be stressful for animals. We were trying to

reduce the effects of stress by keeping mice in the HFD-cellulose and

HFD-RMD groups under single housing for more than eight weeks

before the FMT (Experiment 1-3), and by keeping FMT-recipient

mice (the FMT-HFD-cellulose and FMT-HFD-RMD groups) under

single housing for one week before the FMT (Experiment 2 and 3).

Indeed, previous study in mice showed that food intake level in

single housed group was similar to that in pair housed group

(Buckinx et al., 2021). Second, we did not identify which gut

bacteria were increased by RMD feeding and directly involved in

the increased secretion of GLP-1 and PYY. However, we found that

serum active GLP-1 and PYY were increased in the FMT-HFD-

RMD group and that the FMT-HFD-RMD group showed

significantly lower HFD-cellulose intake than the HFD-RMD

group. Thus, we predicted that the intestines of FMT-HFD-RMD

group (FMT-recipient mice) would have gut bacteria that were

increased by RMD feeding and involved in increasing the serum

GLP-1 and PYY levels. Third, we did not use germ-free (GF) mice

as FMT-recipient mice in experiments 2 and 3. Although PEG can

reduce ~ 90% of the total gut bacteria in the luminal and mucosal

intestinal microbiota (Wrzosek et al., 2018), it does not eliminate all

gut bacteria. We could not address this issue using GF mice due to
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space constraints at our institution. Fourth, there are no studies on

the effect of RMD on fat preference in animals; thus, we were unable

to analyze these effects. However, our results in mice and previous

studies in rats have shown that RMD consumption increases the

secretion of appetite-related gut hormones, such as GLP-1 and PYY

(Hira et al., 2015; Ye et al., 2015; Hira et al., 2018). Therefore, we

hypothesized that the effect of RMD on fat preference is limited.

Fifth, we did not confirm the effects of RMD on body weight gain.

We had no data on the amount of fat after feeding RMD for 8 weeks,

energy expenditure in the whole body, brown adipose tissue activity,

energy excretion in the feces, or the weight of fecal output. Future

studies are required to verify the effects of RMD on body weight

gain. Finally, in FMT, we treated the fecal matter as quickly as

possible during preparation, but we did not use precautions to

limit the oxygenation of fecal slurries. Therefore, in the future,

experiments may be required to use precaution to limit the

oxygenation of fecal slurries.

In conclusion, our findings provide evidence that long-term RMD

feeding suppresses excessive calorie intake in mice even when fed with

a highly palatable HFD that induces such intake. We also showed that

these effects are mediated by changes in the gut microbiota

components, increases in serum active GLP-1 and PYY levels, and

changes in appetite-related neuropeptide gene transcription

(Figure 10). These results suggested that RMD supplementation

contributes to appetite suppression without stress and might

represent a new therapeutic strategy for obese patients with excessive
Frontiers in Microbiomes 14
caloric intake. However, it is not yet known whether the results of our

study can be completely extrapolated to humans. Therefore, additional

experiments would be required to verify these possibilities.
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