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Meta-omics profiling of the
gut-lung axis illuminates
metabolic networks and
host-microbial interactions
associated with elevated
lung elastance in a murine
model of obese allergic asthma
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Obesity and associated changes to the gut microbiome worsen airway

inflammation and hyperresponsiveness in asthma. Obesogenic host-microbial

metabolomes have altered production of metabolites that may influence lung

function and inflammatory responses in asthma. To understand the interplay of

the gut microbiome, metabolism, and host inflammation in obesity-associated

asthma, we used a multi-omics approach to profile the gut-lung axis in the

setting of allergic airway disease and diet-induced obesity. We evaluated an

immunomodulator, nitro-oleic acid (NO2-OA), as a host- andmicrobial-targeted

treatment intervention for obesity-associated allergic asthma. Allergic airway

disease was induced using house dust mite and cholera toxin adjuvant in

C57BL6/J mice with diet-induced obesity to model obesity-associated asthma.

Lung function wasmeasured by flexiVent following a week of NO2-OA treatment

and allergen challenge. 16S rRNA gene (from DNA, taxa presence) and 16S rRNA

(from RNA, taxa activity) sequencing, metabolomics, and host gene expression

were paired with a Treatment-Measured-Response model as a data integration

framework for identifying latent/hidden relationships with linear regression

among variables identified from high-dimensional meta-omics datasets.

Targeting both the host and gut microbiota, NO2-OA attenuated airway
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inflammation, improved lung elastance, andmodified the gut microbiome. Meta-

omics data integration and modeling determined that gut-associated

inflammation, metabolites, and functionally active gut microbiota were linked

to lung function outcomes. Using Treatment-Measured-Responsemodeling and

meta-omics profiling of the gut-lung axis, we uncovered a previously hidden

network of interactions between gut levels of amino acid metabolites involved in

elastin and collagen synthesis, gut microbiota, NO2-OA, and lung elastance.

Further targeted metabolomics analyses revealed that obese mice with allergic

airway disease had higher levels of proline and hydroxyproline in the lungs. NO2-

OA treatment reduced proline biosynthesis by downregulation of pyrroline-5-

carboxylate reductase 1 (PYCR1) expression. These findings are relevant to

human disease: adults with mild-moderate asthma and BMI ≥ 25 had higher

plasma hydroxyproline levels. Our results suggest that changes to structural

proteins in the lung airways and parenchyma may contribute to heightened lung

elastance and serve as a potential therapeutic target for obese allergic asthma.
KEYWORDS

asthma, microbiome, obesity, metabolomics, multi-omics analyses, elastance, proline,
gut-lung axis
1 Introduction
Asmany as half of U.S. adults with metabolically unhealthy obesity

also have asthma (Greiner and Hartwell, 2022). Obese individuals

(body mass index, BMI, > 30 kg/m2) make up the majority of adults

with severe asthma (Schatz et al., 2014). Patients with obesity-

associated asthma experience poor asthma control and increased

hospitalization risk (Mosen et al., 2008; Greiner and Hartwell, 2022).

While weight gain and obesity carry an increased risk of developing

airway hyperresponsiveness (Litonjua et al., 2002; Sharma et al., 2008),

treating obesity with bariatric surgery improves asthma control and

airway hyperresponsiveness (Dixon et al., 2011). The connection

between obesity and asthma extends to the gut microbiome. In

murine models, an obese gut microbiome phenotype enhances

ozone-induced airway hyperresponsiveness while depleting an obese

gut microbiome with antibiotics alleviates airway hyperresponsiveness

(Cho et al., 2018; Tashiro et al., 2019). Diet-induced obesity drives loss

of microbial diversity and beneficial microbial taxa known to attenuate

inflammation and regulate host metabolism (Ley et al., 2006;

Turnbaugh et al., 2006; Schneeberger et al., 2015). Obesity and an

obesity-altered gut microbiome exacerbate airway reactivity and

resistance, resulting in worse disease control and lung function.

The molecular mechanisms responsible for worse outcomes in

obesity-associated asthma are still not well-understood, and

targeted therapies for the treatment of obesity-associated asthma

are needed. Small molecule nitroalkenes such as nitro-oleic acid

(NO2-OA) show promise for treating metabolic diseases with

systemic inflammation, including obesity-associated asthma

(Kelley et al., 2014; Schopfer et al., 2018; Khoo et al., 2019). As

NO2-OA is predominantly absorbed in the gut and dampens

inflammation in the large bowel where the majority of the gut
02
microbiota reside (Borniquel et al., 2010; Fazzari et al., 2017), NO2-

OA may positively impact the gut microbiome as well.

We hypothesized that NO2-OA treatment improves lung

function and modifies gut microbiota composition. Here we

demonstrate that NO2-OA targets both host signaling and the gut

microbiota and has potential as a treatment for obesity-associated

asthma. We measured lung function in a murine model of obese

allergic asthma after oral NO2-OA administration and

characterized the gut microbiome with 16S rRNA gene

sequencing. We then deployed a meta-omics approach to

profiling the gut-lung axis. This allowed us to define metabolic

networks and host-microbial interactions contributing to potential

molecular mechanisms of obese allergic asthma.
2 Materials and methods

2.1 Human studies

All human studies received approval from the Institutional

Review Board of the University of Pittsburgh in accordance with

The Code of Ethics of the World Medical Association. Study

participants were enrolled through the Electrophilic Fatty Acid

Derivatives in Asthma study at Pittsburgh (PRO11010186). Male

and female participants were nonsmokers in the last year and had a

10 or less pack-year smoking history. Participants had mild-

moderate asthma with a forced expiratory volume in 1 second

(FEV1) greater than 60% of predicted value and were taking either

no controller medications or up to low- to moderate-dose inhaled

corticosteroids (ICS) with or without a second controller agent

(leukotriene modifier or long-acting b-agonist) as clinically

indicated. Per mandatory reporting requirements by the NIH
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Inclusion of Women, Minorities, and Children policy, study

participants self-reported race from racial categories defined by

the NIH Office of Management and Budget (OMB) Revisions to the

Standards for the Classification of Federal Data on Race and

Ethnicity. Of the study participants with mild-moderate asthma,

57% self-reported as White, and 43% self-reported as Black. Blood

draws, fraction of exhaled nitric oxide (FeNO) measurement, and

baseline and postbronchodilator spirometry following ATS

guidelines were completed (Moore et al., 2011; Fajt et al., 2013).

Plasma was obtained for metabolomics analysis by liquid

chromatography-high resolution mass spectrometry (LC-HRMS).
2.2 Murine model of diet-induced obesity
and allergic airway disease

4-week-old, male C57BL/6J mice (000664, Jackson Laboratory,

Bar Harbor, ME) were fed high fat diet (60% kcal fat diet D12492,

Research Diets, Inc., New Brunswick, NJ) for 15 weeks. During

allergic airway disease induction, which mice were sensitized to 2 µg

house dust mite (D. pteronyssinus, Greer Lot #213051, endotoxin

level 32.25 EU/vial, Greer Laboratories Inc, Lenoir, NC) with 0.1 µg

cholera toxin (from Vibrio cholera, Lot #10070A1, List Biological

Laboratories Inc, Campbell, CA) adjuvant via oropharyngeal

aspiration. Mice were treated with either glycerol trioleate (Sigma

Aldrich, St. Louis, MO) vehicle (AAD-Vehicle group, n = 11) or

9,10-nitro-oleic acid, NO2-OA, (AAD-NO2-OA group, n = 11) via

gavage, followed by challenge 3 hours later with 2 µg house dust

mite antigen via oropharyngeal aspiration. Controls for obese mice

with allergic airway disease included obese mice without allergic

airway disease that only received adjuvant during sensitization

and house dust mite (HDM) during the challenge (Control group,

n = 12) and a group of naïve obese mice (Naïve group, n = 7). The

CT, HDM or treatments did not alter animal weight (Supplement

Figure 1). All mouse experiments were conducted in accordance

with NIH ARRIVE guidelines and approved by the University of

Pittsburgh IACUC (Protocol #20016689).
2.3 Lung function measurement

Mice were anesthetized with an intraperitoneal injection of 100

mg/kg pentobarbital, and a surgical tracheotomy with a cannula was

performed. Mice were subsequently mechanically ventilated at 150

breaths/min with a tidal volume of 10 mL/kg and a positive end

expiratory pressure of 3 cmH2O using a computer-controller small-

animal ventilator (flexiVent, SCIREQ, Montreal, Quebec, Canada).

Baseline lung function was recorded using pressure-volume curves

to measure the quasi-static lung parameters of compliance and

hysteresis. An integrated nebulizer delivered 0, 3.125, 12.5, 25, and

50 mg/mL methacholine aerosol challenges to the mouse lungs, and

respiratory mechanics were assessed using the single compartment

(single frequency forced oscillations) and constant phase (multiple

frequency forced oscillations) models to generate dose-response

curves. Using Flexiware 8.2.0 software (SCIREQ, Montreal, Quebec,

Canada), measured pressure and volume datasets for each
Frontiers in Microbiomes 03
individual mouse were fit with multiple linear regressions, from

which Newtonian resistance (Rn), tissue damping (G), tissue

elastance (H), total respiratory resistance (Rrs), and total

respiratory elastance (Ers) were calculated.
2.4 Bronchoalveolar lavage fluid, serum,
and tissue collection

After lung function measurement, bronchoalveolar lavage fluid

(BALF) was collected by flushing the lungs with 1 mL phosphate

buffered saline (Gibco PBS, pH = 7.4, Thermo Fisher Scientific,

Waltham, MA) through the tracheal cannula. BALF was transferred

to a 10 mL glass centrifuge tube and centrifuged at 1500 rpm at 4°C

for 10 min to pellet BAL immune cells. BALF supernatant was

removed and stored in a new 10 mL glass centrifuge tube at -80°C

until further downstream processing. Pelleted BAL immune cells

were reconstituted in 500 µL phosphate buffered saline (Gibco PBS,

pH = 7.4, Thermo Fisher Scientific) and counted as previously

described (Manni et al., 2014; Manni et al., 2016). Blood was

collected via cardiac puncture and transferred to serum separator

tubes on ice. Serum separator tubes were thawed at room

temperature for 30 min and then centrifuged at 10,000 x g for 90

seconds. Murine lung, cecum, and mid-colon tissue were collected

immediately after sacrifice and flash-frozen with liquid nitrogen. All

BALF, serum, lung, cecum, and mid-colon tissue samples were

stored at -80°C until further downstream processing.
2.5 Cytokine and chemokine measurement

30-60 mg of crushed lung tissue was weighed out into 1.5 mL

Eppendorf Safe-Lock Tubes (Eppendorf AG #022363212, Hamburg,

Germany). To completely homogenize lung tissue, crushed lung

samples were sonicated in 1 mL PBS (Gibco #10010023, pH = 7.4,

Thermo Fisher Scientific) buffer with PhosSTOP (Sigma Aldrich

#4906837001, St. Louis, MO) and cOmplete ULTRA EDTA-free

(Sigma Aldrich #5892970001) protease inhibitors. Cytokine and

chemokine concentrations normalized to protein amount were

measured in lung homogenates with a Bio-Plex Pro Mouse

Cytokine 23-plex Assay (Bio-Rad Laboratories, Hercules, CA,

#M60009RDPD) and the Bio-Plex 200 suspension array system

(Bio-Rad) following the manufacturer’s instructions.
2.6 Murine tissue gene expression
with real-time quantitative polymerase
chain reaction

mRNA gene expression for the gut and lungs was measured in

RNA extracted from mid-colon tissue and crushed lung tissue,

respectively. Flash-frozen murine lungs were crushed on ice with

mortar and pestle. Mid-colon tissue was rinsed with PBS (Gibco PBS,

pH = 7.4, ThermoFisher Scientific) to remove stool contents and

homogenized in 2 mL lysing tubes (Lysing Matrix A, MP

Biomedicals, Solon, OH) with an automated tissue homogenizer
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https://doi.org/10.3389/frmbi.2023.1153691
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Heinrich et al. 10.3389/frmbi.2023.1153691
(FastPrep-24 5G Homogenizer, MP Biomedicals). RNA was

extracted from crushed lung and bead-homogenized mid-colon

tissue with Thermo Fisher TRIZol reagent following the

manufacturer’s instructions. cDNA was synthesized from 1 µg

template RNA with the iScript cDNA synthesis kit (Bio-Rad

Laboratories, Hercules, CA). mRNA expression was measured by

RT-qPCR using TaqMan Fast Advanced Master Mix (Applied

Biosystems, Waltham, MA) and TaqMan Gene Expression Assays

(Applied Biosystems) with FAM-dye labeled gene primers and VIC-

dye labeled mouse Gapdh (4352339E, Applied Biosystems) as

the housekeeping gene. FAM-dye labeled primers (Applied

Biosystems) were used for the following target genes in the

lungs: Ano1 (Mm00724407_m1), Ccl8 (Mm01297183_m1),

Clca1 (Mm01320697_m1) , Cxcl1 (Mm04207460_m1) ,

Cxcl15 (Mm04208136_m1), IL6 (Mm00446190_m1), Lox

(Mm00495386_m1), Muc5ac (Mm01276718_m1), Muc5b

( Mm 0 0 4 6 6 3 9 1 _ m 1 ) , N o s 2 ( Mm 0 0 4 4 0 5 0 2 _ m 1 ) ,

P4ha1 (Mm00803137_m1), Pparg (Mm01184322_m1), Prg2

(Mm00435905_m1), and Pycr1 (Mm00522678_m1). FAM-dye

labeled primers (Applied Biosystems) were used for the following

target genes in the colon: Cox2 (Mm03294838_g1), IL6

(Mm00446190_m1) , Nos2 (Mm00440502_m1) , Pparg

(Mm01184322_m1), and Tnf (Mm00443258_m1). RT-qPCR

reactions were prepared following manufacturer instructions and

amplified for 40 cycles with the Applied Biosystems StepOne Real-

Time PCR system. Gene expression was quantified using the 2-DDCt

method (Livak and Schmittgen, 2001).
2.7 Metabolomics with liquid
chromatography-high resolution
mass spectrometry

Amino acids (including hydroxyproline), organic acids and

other metabolites were measured by untargeted LC-HRMS in

murine serum, stool, cecum, and lung tissue. Proline and

hydroxyproline were also measured in the plasma of adults with

mild-moderate asthma by untargeted LC-HRMS.

For LC-HRMS sample preparation, metabolic quenching and

polar metabolite pool extraction was performed by adding ice cold

80% methanol (aqueous) at a ratio of 1:15 (1 mg: 15 µL) for tissue

and through the addition of ice cold 1:1 methanol:ethanol at a ratio

of 1:4 serum/plasma:solvent. 13C-creatinine, taurine-d4, lactate-d3
and alanine-d3 (Sigma-Aldrich) were added to the sample lysates as

an internal standard at a final concentration of 10 µM. Tissue

samples were homogenized using a MP Bio FastPrep system using

Matrix D (ceramic sphere) for 60 seconds at 60 Hz. The tissue and

serum supernatants were then cleared of protein by centrifugation

at 16,000 x g.

For analyses performed by untargeted LC-HRMS, cleared

supernatant (2 µL) was subjected for online analysis via a

Thermo Vanquish UHPLC and separated over a reversed phase

Thermo HyperCarb porous graphite column (2.1×100 mm, 3mm
particle size) maintained at 55°C. For the 20-minute LC gradient,

the mobile phase consisted of the following: solvent A (water/0.1%
Frontiers in Microbiomes 04
formic acid, FA) and solvent B (acetonitrile, ACN/0.1% FA). The

gradient was the following: 0-1min 1% B, with an increase to 15%B

over 5 min, increasing to 98%B over 5 min, holding at 98%B for 5

min, and then equilibration at 1%B for 5 min. The Thermo ID-X

tribrid mass spectrometer was operated in both positive and

negative ion mode, scanning in ddMS2 mode (2 mscans) from 70

to 800 m/z at 120,000 resolution with an automatic gain control

(AGC) target of 2e5 for full scan, 2e4 for MS2 scans using high-

energy collisional dissociation (HCD) fragmentation at stepped 15,

35, 50 collision energies. Source ionization settings were 3.0 and

2.4kV spray voltage for positive and negative mode, respectively.

Source gas parameters were 35 sheath gas, 12 auxiliary gas at 320°C,

and 8 sweep gas. Calibration was performed prior to analysis using

the PierceTM FlexMix Ion Calibration Solutions (Thermo Fisher

Scientific). Integrated peak areas were then extracted manually

using Quan Browser (Thermo Fisher Xcalibur ver. 2.7). Data is

reported as the Relative Amount, which is the peak area ratio of the

analyte normalized to the internal standard.
2.8 16S rRNA gene and 16S
rRNA sequencing

Passed murine stool was collected with sterile technique prior to

lung function measurement. Stool RNA and DNAwere isolated using

ZymoBIOMICS DNA/RNA Miniprep kit (Zymo Research

Corporation, Irvine, CA). cDNA was synthesized (SuperScript IV

VILO kit, ThermoFisher Scientific, Waltham, MA). 16S rRNA

amplicons were run on Illumina MiSeq (Illumina, San Diego, CA)

(Caporaso et al., 2012; Stapleton et al., 2021). 16S rRNA reads were

processed for quality control with an in-house pipeline; taxonomic

profiles adjusted for compositional data with the additive log ratio

transformation were generated (Wang et al., 2007; Cole et al., 2009;

Schloss et al., 2009; Caporaso et al., 2012; Quast et al., 2013; Tarabichi

et al., 2015). Additional details on the 16S rRNA gene and 16S rRNA

sequencing and processing are included in the Supplemental

Information. Regression modeling using transformed taxonomic

abundances was performed. We fitted multiple linear regression

models using ALR transformed taxonomic abundances as

predictors (X’s) and lung function parameters as responses (Y’s) to

associate changes in gut microbiota composition with pulmonary

function in obese mice with asthma. We first applied the ALR

transformation to relative abundances, so that the resultant

transformed abundances could be analyzed as independent and

normally distributed values (Tarabichi et al., 2015). Two linear

models (Y=X, multivariate in Y, multiple in X, regression) were

fitted and evaluated. The first model assumed that the microbiome

(X) was a predictor of lung function parameters (Y), then a second

model assumed that the lung function parameters were predictors (X)

of the microbiome (Y). For assessment of beta-diversity and

microbial community composition similarity/dissimilarity,

multidimensional scaling (MDS) plots based on Euclidean inter-

sample distances were calculated for the 16S rRNA ALR-transformed

taxonomic abundances assessed through gene sequencing data.

Permutational multivariate analysis of variance (PERMANOVA)
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was performed to test the association of 16S composition

with covariates.
2.9 Meta-omics data integration and
analysis with treatment-measured-
response framework

The Treatment-Measured-Response (TMR) framework was

devised to provide a systematic approach for testing the

relationships among groups of related variables with linear

modeling. Measurements of high dimensional “-omics” datasets

benefit from their analysis as a group since they typically represent a

particular biological compartment, where there may be a high

degree of within group variable correlation. Within group

correlations are of less interest in the overall TMR framework,

since they may represent components of a pathway or cascade of

inseparable events within a compartment. However, between group

associations provide a means to integrate –omics datasets because

they may reflect the bridges of inter-compartmental signaling. In

the TMR modeling, variable groups (e.g. 16S rRNA, 16S rRNA

gene, host lung and colon gene expression, lung, serum and cecum

metabolomics, HDM, NO2-OA and high fat diet treatment,

flexiVent measurements, etc.) are assigned to one of the three

framework groupings. The “Treatment” group includes covariates,

which cumulatively represent variables that were under control of

the experimenter (treatments) or are essentially fixed (sex, age, etc.)

during the experiment. Weight was chosen to represent the high fat

diet treatment and was included in the model as percentage increase

and final weight. The “Response” variables included the flexiVent

measurements (baseline and slopes), which represents the clinical

manifestation of the studied disease. Treatment and Response

grouped variables are always considered predictors (x) and

response (y) variables, respectively, in the TMR framework. The –

omics datasets are analyzed in the “Measured” group. The variables

in the “Measured” group may be predicted by the “Treatment”

group and/or may be predictors of the variables in the “Response”

group. The variables in the “Measured” group may also be

predictors or responders to variables in other “Measured” groups.

The following categories of linear models are fit:

1.) Effect of Treatment (x) on Measured (y):

Measured½i� = Treatment

2.) Effect of Measured (x) on Measured (y), controlling for

Treatment (x). Where i and j are different datasets. Two models are

explicitly stated to emphasize that the members of each pair of

measured variables will participate as a predictor and then as a

response in the two separate linear models:

Measured½i� = Measured½j� + Treatment

Measured½j� = Measured½i� + Treatment

3.) Effect of Measured (x) on Response (y), controlling for

Treatment (x):
Frontiers in Microbiomes 05
Response = Measured½i� + Treatment

Note that in the above models, for clarity, only one treatment and

response group was illustrated, but multiple treatment and response

groups may be included and tested separately in the same TMR

framework. In general, and as was implemented by including the

suite of flexiVent measurements, if the Response group is specified as

a group of continuous variables (in contrast to a single Boolean

outcome or disease state) then the TMR framework has the flexibility

to associate specific variables from the Measured groups to specific

aspects of disease manifestation. After the regression models have

been fit and coefficient and p-values have been estimated, network

figures are generated at various p-value cutoffs to illustrate the

relationship across the variables in the groups by connecting

statistically significant associations between predictors and response

variables with lines. If there is a significant bi-directional association

between two variables from two Measured groups, then the stronger

association (direction) is selected. Supplement Table 1 contains a

summary of the most significant associations between the grouped

variables. Note that in some cases, the predictor variable is a member

of the treatment/covariate group and the model column indicates that

a measured group is the predictor. This indicates that the treatment/

covariate variable’s association with the response variable was

significant when the measured group’s variables were included

(controlled for) in the model.

In contrast to the networks built with pair-wise correlations

calculated between all variables, the relationships identified by the

TMR framework is driven by and restricted to the relationships

determined by the experiment’s design. Covariates may be

controlled for when multi-variable linear regression models

identify associations between predictors and response variables. In

addition, in multi-omic datasets, the number of biomarker variables

in each dataset can be substantial, however Principal Component

Analyses (PCAs) frequently reveal that only a small proportion of

the Principal Components (PCs) are necessary to capture the

majority of the variance in a dataset. The strategy for using PCA

as a means to select variables for inclusion into the TMR

calculations is described in the following Section 2.10.

In addition to identifying variable specific relationships between

TMR groupings, a dendrogram of variable groupings was calculated

based on the inter-sample distances estimated for each variable

grouping with Mantel’s test statistic (Mantel, 1967). Using only the

variables in each variable grouping, a Euclidean distance matrix (N x

N) is calculated between all the samples. For every pair of variable

groupings, the Pearson’s correlation coefficient is calculated between

their respective distance matrices in the manner of Mantel’s test

statistic for comparing distance matrices. The distance between

groupings is then defined as the 1-|cor(x,y)|, where x and y are the

distance matrices and cor is the Mantel’s test statistic. This intergroup

distance is then used to hierarchically cluster the variable grouping

types with Ward’s minimum variance algorithm and the dendrogram

can be generated. As a result, variable grouping that are the most

closely related to each other, cluster together in the dendrogram. These

distance-based results should support the TMR regression-based

relationships such that variable groups that are the most connected

between their variables will also cluster together in the dendrogram.
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2.10 Principal component analysis-based
variable selection

Variable selection, for inclusion into the TMR framework, was

performed in two steps for each meta-omics dataset, independently: 1.)

Perform PCA to identify the number of principal components (PCs)

necessary to sufficiently represent the variance in the dataset. 2.)

Identify the closest representing variables in the dataset to represent

the identified PCs. The goals of variable selection were to reduce the

number variables included in the framework and ensure both that the

variables that were selected would cumulatively represent a significant

proportion of the variance (information) and not be highly correlated

with one another. The steps included in the variable selection process

are the following: First, variables were tested with the Shapiro-Wilks

test to determine if they are normally distributed. If a variable is not

normally distributed, then both a square root and logarithm transform

are applied, separately. If either transformation improved the normality

of the variable, then the better transformation is accepted. PCA was

then performed on the correlation matrix calculated across the

(transformed, if necessary) variables. Only PCs that could contribute

more than 1% of the total variance in the dataset were retained. For

each of the retained PCs, the correlation with each of the underlying

(transformed) variables in the dataset (that were utilized in the PCA)

was calculated, and an underlying variable was selected as a proxy for

each of the PCs. Across our datasets, fewer than 10 PC variables were

selected per dataset, while still accounting for more than 85% of the

variance in each dataset. The selected underlying variables that are used

as proxies for each of the selected PCs tended to have correlations

>0.90, thus making them viable representatives. This provides a means

for the interested reader to also examine the unselected variables and

their relationship to each PC. Note, for the two 16S datasets, only the

top 10 taxa (by average abundance) were included. This is a reasonable,

unbiased approach because the top taxa account for the majority of

taxonomic abundances, and the lower abundance taxa may have

greater coefficients of variance.

2.11 Statistical analysis

All analyses, with the exception of the Treatment-Measured-

Response model (which was implemented with custom code in R

and using adonis2 from the vegan library), used GraphPad Prism 9

(GraphPad Software, San Diego, CA). Dose response curves were

analyzed using two-way analysis of variance (ANOVA) with

Tukey’s multiple comparisons test. One-way ANOVA with

Tukey’s multiple comparisons test or one-way Welch’s ANOVA

for unequal variance with Dunnett’s multiple comparisons were

performed for experiments with one variable. Outliers were

identified using the ROUT method (Q = 1%).

3 Results

3.1 NO2-OA reduced total inflammatory
cells present in the lung airspaces

Obesity-associated allergic asthma was modeled by murine diet-

induced obesity and allergic airway disease (AAD) using HDM as an

allergic antigen and Cholera Toxin (CT) adjuvant for immune
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sensitization (Figure 1A). Cholera toxin was added as an adjuvant

during sensitization to stimulate a mixed Th2/Th17 immune response,

to promote cellular, humoral, and mucosal immune recall, and to

prevent the development of an HDM-tolerant phenotype

(Krishnamoorthy et al., 2008; Mattsson et al., 2015). There were 4

different treatment groups of mice: Naïve, Control, AAD-Vehicle

(AAD no treatment), and AAD-NO2-OA (Figure 1B). We started by

investigating the impact of NO2-OA on host inflammation and disease.

To assess the effect of NO2-OA treatment on airway inflammation, we

quantified the immune cells present in lung airspaces. AAD-Vehicle

group had higher total BAL cell counts than Control (p< 0.0001) and

Naïve (p< 0.0001) groups (Figure 1C). AAD-NO2-OA group had lower

total BAL cells in the airways compared to AAD-Vehicle (p = 0.0118,

Figure 1C). Although the BAL cell differentials were unavailable for this

experiment, we had previously determined that eosinophils were the

primary immune cell that increased with allergic airway disease in the

model (Manni et al., 2021). In lieu of BAL cell differential counts, we

measured lung mRNA expression of eosinophil granule protein

proteoglycan 2, Prg2, and neutrophil granulocyte enzyme

myeloperoxidase Mpo as surrogate markers for eosinophil and

neutrophils, respectively. Compared to Naïve (p = 0.0421) and

Control (p = 0.0331) groups, the AAD-Vehicle group had greater

lung mRNA expression of Prg2, but no difference between the AAD-

Vehicle and AAD-NO2-OA groups was detected (Figure 1D). Prg2

expression was elevated for obese mice with allergic airway disease

whileMpo expression was not detected (Figure 1D), consistent with the

previously reported eosinophil and neutrophil cell counts (Manni et al.,

2021). To examine cytokine signaling driving cellular inflammation in

the airways, we measured lung cytokine and chemokine levels on the

day of the flexiVent lung function measurement and bronchoalveolar

lavage procedures by multiplex immunoassay. Compared to Naïve and

Control groups, the AAD-Vehicle and AAD-NO2-OA groups had

higher protein levels of Eotaxin-1 (CCL11) (p< 0.0001), macrophage

inflammatory protein-1a (MIP-1a/CCL3, p< 0.0001), and RANTES

(CCL5, p< 0.05) cytokines (Figures 1E–G). Monocyte chemoattractant

protein-1 (MCP-1/CCL2) levels and lung mRNA expression of

neutrophil chemokine ligand 15 (Cxcl15), however, were lower for

AAD-Vehicle (p< 0.01) and AAD-NO2-OA (p< 0.01) groups

compared to the Naïve and Control groups (Figure 1H; Supplement

Figure 2). No differences in Eotaxin-1, MIP-1a, RANTES, and MCP-1

cytokine levels were observed between AAD-Vehicle and AAD-NO2-

OA groups (Figures 1E–H). Obese mice with allergic airway disease

had elevated eosinophil chemotactic cytokine levels and greater

expression of eosinophil granule protein Prg2 in the lung

parenchyma. Obese mice with allergic airway disease treated with

NO2-OA had lower total immune cells present in the lung airspaces.
3.2 NO2-OA alleviated elastic stiffness of
lung tissue and respiratory function while
expression of genes associated with mucus
hypersecretion in the airways was largely
driven by disease status

To examine whether NO2-OA treatment improved lung

function, lung parameters were measured with a small animal
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ventilator (flexiVent, SCIREQ). Compared to AAD-Vehicle group,

AAD-NO2-OA had lower elastance (Figure 2A, p = 0.0051) and

total respiratory elastance (Figure 2C, p = 0.0024) at the 50 mg/mL

methacholine dose. Tissue damping (G) at 25 mg/mL methacholine

trended higher for the AAD-Vehicle group compared to the AAD-

NO2-OA group (Figure 2B, p = 0.0629). AAD-Vehicle group had

elevated elastance (Figure 2A, p< 0.0001), tissue damping

(Figure 2B, p< 0.0001), total respiratory elastance (Figure 2C, p<
Frontiers in Microbiomes 07
0.0001), and total respiratory resistance (Figure 2D, p< 0.0001) in

response to 50 mg/mL methacholine bronchoprovocation

compared to Naïve group. To evaluate airway mucus secretion,

we measured mRNA expression of airway surface mucin 5AC

(Muc5ac), respiratory tract mucin 5B (Muc5b), calcium-activated

chloride channel regulator 1 (Clca1), and Anoctamin-1/

Transmembrane member 16A protein (Ano1) in lung tissue. No

differences were observed in mRNA expression of Muc5ac, Muc5b,
A

B
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E
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C

FIGURE 1

NO2-OA reduced total inflammatory cells present in the lung airspaces. (A) Murine model of obese allergic asthma in which C57BL/6J male mice
developed diet-induced obesity and allergic airway disease with sensitization to house dust mite (HDM) and cholera toxin adjuvant, followed by daily
treatment and HDM challenge via the oropharyngeal route. (B) Schematic of treatments received by each group. (C) Total inflammatory cells in the
airspaces were measured in the bronchoalveolar lavage (BAL) fluid as 104 cells per mL BAL fluid. Treatment groups included obese naïve (Naïve, n =
8), mock sensitization control (Control, n = 4), AAD-Vehicle (AAD-Veh, n = 4), and AAD-NO2-OA (n = 3). (D) Lung mRNA expression of eosinophil
granule protein proteoglycan 2, Prg2, was measured with RT-qPCR normalized to Gapdh. (E) Eotaxin-1 (CCL11), (F) MIP-1a (CCL3), (G) RANTES
(CCL5), and (H) MCP-1 (CCL2) cytokine protein levels normalized to mg protein were measured in lung homogenates with multiplex immunoassays.
Treatment groups included obese naïve (Naïve, n = 7), mock sensitization control (Control, n = 12), AAD-Vehicle (AAD-Veh, n = 11), and AAD-NO2-
OA treatment (n =11). Values are shown as mean ± SEM. Statistical significance was calculated by ordinary one-way ANOVA with Tukey’s multiple
comparisons test, *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001.
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Clca1, and Ano1 between the AAD-Vehicle and AAD-NO2-OA

groups (Figures 2E–H). Development of allergic airway disease with

obesity worsened elastic stiffness of the lung tissue and respiratory

system, increased tissue damping, and enhanced total respiratory

system resistance. While NO2-OA treatment alleviated elastic

stiffness of both the lung tissue and respiratory system, mucus

hypersecretion did not improve.
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3.3 NO2-OA decreased the abundance of a
microbial taxon associated with poorer
lung function in asthma

Next, we investigated the impact of NO2-OA treatment on the

murine gut microbiome. To assess whether NO2-OA treatment

modified the composition of gut microbiota, 16S profiles from stool
A B

D

E F G H

C

FIGURE 2

NO2-OA alleviated elastic stiffness of the lung tissue and respiratory system while expression of genes associated with mucus hypersecretion in the
airways was largely driven by disease status. (A) Elastance (H), (B) tissue damping (G), (C) total respiratory elastance (Ers), and (D) total respiratory
resistance (Rrs) were recorded at baseline and in response to increasing nebulized doses of methacholine with a flexiVent small animal ventilator.
Treatment groups included obese naïve (Naïve, n = 7) marked with solid black line with circle data points, mock sensitization control (Control, n =
12) marked with solid magenta line with starred data points, AAD-Vehicle (AAD-Veh, n = 11) marked with solid teal line with diamond data points,
and AAD-NO2-OA (n =11) marked with solid purple line with triangle data points. (E) Muc5ac, (F) Muc5b, (G) Clca1, and (H) Ano1 mRNA gene
expression was measured in lung tissue with RT-qPCR normalized to Gapdh. Treatment groups included obese naïve (Naïve, n = 7), mock
sensitization control (Control, n = 12), AAD-Vehicle (AAD-Veh, n = 11), and AAD-NO2-OA treatment (n =11). Values are shown as mean ± SEM.Values
are shown as mean ± SEM. For flexiVent lung function, statistical significance was calculated by 2-way ANOVA with Tukey’s multiple comparisons
test and reported for AAD-NO2-OA group versus AAD-Vehicle group, **p< 0.01. Statistical significance of mRNA expression data was calculated with
Welch’s ANOVA with Dunnett’s multiple comparisons test, *p< 0.05, **p< 0.01.
frontiersin.org

https://doi.org/10.3389/frmbi.2023.1153691
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Heinrich et al. 10.3389/frmbi.2023.1153691
were sequenced from both DNA and RNA (from cDNA) to determine

taxa presence and activity, respectively (Figures 3A–D). To

qualitatively describe the 16S profiles, the top five most abundant

taxa in 16S rDNA profiles were Akkermansia, Lachnospiraceae_uncl,

Lactococcus, Romboutsia, and Bacteroides (Figures 3A, B). The top

three most abundant taxa in 16S rRNA profi les were

Lachnospiraceae_uncl, Romboutsia, and Akkermansia (Figures 3C,

D). Akkermansia was the most abundant taxa in the 16S rDNA

profiles (Figures 3A, B), while Lachnospiraceae_uncl was most

abundant taxa in the 16S rRNA profiles (Figures 3C, D).

Multidimensional scaling (MDS) using inter-sample distances was

performed for the 16S rDNA (Figure 3E) and 16S rRNA (Figure 3F)

compositional data to illustrate microbial community similarity/

dissimilarity with 2D spatial distances. We tested whether microbial

composition in the 16S rDNA and 16S rRNA profiles differed by NO2-

OA treatment with permutational multivariate analysis of variance

(PERMANOVA). Additional covariates CT adjuvant, HDM

treatment, and final weight as a measure of obesity, were also tested

(Supplement Figure 3). Microbial community composition differed by

NO2-OA treatment in 16S rDNA profiles (p = 0.0492, R2 = 0.0465,

Figure 3E), but was not significantly different in the 16S rRNA profiles

(p = 0.1312, R2 = 0.0353, Figure 3F). Numerous differences between

AAD-NO2-OA and AAD-Vehicle in the less abundant major taxa

were found, but the most significant difference was in the unclassified

Oscillospiraceae taxa (Oscillospiraceae_uncl), where NO2-OA

compared to Vehicle was associated with a decreased relative

abundance of Oscillospiraceae_uncl in the gut microbiota in both the

DNA (p = 0.0003) and RNA (p = 0.0012) 16S profiles (Figure 3G). We

evaluated whether microbial taxa abundances were associated with

lung function. The mean relative abundance of Oscillospiraceae_uncl

increased with baseline tissue damping (G) (Figure 3H). Using

multivariable regression modeling (R2 = 0.5525) with 16S taxa

abundances as predictors and lung function parameters as responses,

we found that increased abundance of Oscillospiraceae_uncl in the

DNA profiles was associated with increased tissue damping (Table 1,

p = 0.0275, b = 0.4111). Thus, NO2-OA treatment significantly

decreased the abundance of a microbial taxon associated with

increased tissue damping, a measure of increased small airway

resistance and marker of poorer lung function. Relative abundance

of Lachnospiraceae_unclwas negatively correlated with tissue damping

(Table 1, p = 0.0350, b = -0.9433), but relative abundance did not

change with NO2-OA treatment (Supplement Figure 4). NO2-OA

treatment modified gut microbiota composition, including a microbial

taxon associated with poorer lung function.
3.4 Meta-omics data integration and
modeling reveal that gut-associated
inflammation, metabolites, and functionally
active gut microbiota are linked to lung
function outcomes

In the final phase of our study, we took a meta-omics approach

to profiling the microbiome, metabolome, and host gene expression

across the gut-lung axis to identify potential mechanisms of obese
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allergic asthma in our murine model. To understand the datasets

relative to each other, we measured the inter-sample distance and

clustering between groups of variables (Figure 4A), as well as

correlations between inter-sample distance matrices between

groups of variables (Supplement Figure 5). The similarity of

variable groups based on the measurements collected for each

sample and the inter-sample distance matrices calculated for each

group were represented in an inter-group similarity dendrogram

(Figure 4A). Combining distance-based clustering and correlation

between groups of variables, we identified several key relationships.

Cecum metabolites were closely clustered with 16S DNA and RNA

profiles (Figure 4A). Weight (as a proxy for high fat diet) was more

closely clustered with serum metabolites (Figure 4A). Treatments,

including NO2-OA and sensitization with HDM/CT or CT only

(determining allergic airway disease status), were closely clustered

with lung mRNA expression and metabolites (Figure 4A). Lung

function measured by flexiVent was most closely clustered with

colon mRNA expression of inflammation-associated genes

(Figure 4A). Close clustering may suggest signaling between

compartments or similarity in the mechanisms and measured

biomarkers. When we examined the individual variables links, we

found numerous significant associations between covariates

(weight, treatment, and sensitization by HDM/CT or CT only)

and measured variables (microbial taxa, metabolites, and host gene

expression) (Figure 4B). HDM (b = -7.022, p = 0.000445) and CT

(b = -9.663, p = 8.246e-08) as a proxy for allergic airway disease

were negatively associated with the abundance of Faecalibaculum

in the 16S DNA profiles, as well as the 16S RNA profiles (HDM:

b = -6.803, p = 6.864e-05; CT: b = -8.416, p = 3.058e-08, Figure 4B).

NO2-OA treatment was negatively associated with the abundance of

Oscillospiraceae_uncl in the 16S DNA (b = -2.047, p = 0.000347)

and 16S RNA profiles (b = -1.738, p = 0.000451, Figure 4B). CT

adjuvant was associated with increased lung mRNA expression of

Clca1 (b = 2.788, p = 0.00171), as well as increased glycine (b =

0.0545, p = 0.00103) and glutamine (b = 0.582, p = 0.000913) levels

in the cecum (Figure 4B). Individual relationships between the

response variables (flexiVent lung function) and covariate/

measured variables were also delineated (Figure 4C). Allergic

airway disease (b = 1.624, p = 0.00304) and cecum hexose levels

(b = 0.945, p = 0.00474) were associated with enhanced airway

hyperresponsiveness measured by Newtonian Resistance

(Figure 4C). Amounts of hydroxyproline in the cecum was

positively associated with lung elastance, or elastic stiffness of the

lung tissue (b = 3.516, p = 0.00436, Figure 4C). In the 16S RNA

profiles, Colidextribacter (b = -0.330, p = 0.00138) and Oscillibacter

(b = -0.444, p = 0.000663) were negatively associated with

hysteresis, while Oscillospiraceae_Uncltrd (b = 0.399, p =

0.000718) was positively associated (Figure 4C). Lung mRNA

expression of Cxcl1, a neutrophil chemoattractant, was negatively

associated with total respiratory elastance at baseline (b = -0.321,

p = 0.00378, Figure 4C). Together, these results suggest that

activity in the gut may influence lung function. Gut-associated

inflammation, metabolites, and functionally active microbial taxa

were associated with lung function outcomes in our murine model

of obese allergic asthma.
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FIGURE 3

NO2-OA decreased the abundance of a microbial taxon associated with poorer lung function in asthma. Mean relative taxa abundances in 16S rRNA
gene profiles from (A) AAD-Vehicle and (B) AAD-NO2-OA groups. Mean relative taxa abundances in 16S rRNA profiles from RNA (cDNA) for (C) AAD-
Vehicle and (D) AAD-NO2-OA groups. Multidimensional scaling (MDS) plots showing inter-sample distances for (E) 16S rDNA and (F) 16S rRNA
profiles paired with permutational multivariate analysis of variance (PERMANOVA) to test the association of gut microbiota composition with NO2-
OA treatment as a covariate. (G) Relative abundance of Oscillospiraceae_uncl taxa was lower in AAD-NO2-OA group (n = 11) compared to AAD-
Vehicle group (n = 11) in both the DNA (p = 0.0003, unpaired t-test) and RNA profiles (p = 0.0012, unpaired t-test). Values are shown as mean ±
SEM. (H) Stacked bar chart displays mean relative abundances of major microbial taxa in DNA profiles for the following defined ranges of tissue
damping, G: 2-2.5, 2.5-3.0, 3.0-3.5, 3.5-4.0, and 4.5-5.0 cmH2O/mL. **p<0.01 and ***p<0.001.
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TABLE 1 Gut microbiota abundance predicts tissue damping (G) at baseline.

Predictor variables (xn) Coefficient (ß) SE t-value p-value

Akkermansia -0.0437 0.1263 -0.3458 0.7366

Lachnospiraceae_uncl -0.9433 0.3871 -2.4371 0.0350*

Lactococcus 0.2902 0.2813 1.0318 0.3265

Romboutsia 0.2511 0.1320 1.9021 0.0863

Bacteroides 0.3176 0.2730 1.1633 0.2717

Dubosiella 0.0250 0.1055 0.2366 0.8177

Colidextribacter -0.3699 0.3380 -1.0946 0.2994

Oscillospiraceae_uncl 0.4111 0.1594 2.5791 0.0275*

Oscillospiraceae_Uncltrd 0.2683 0.2026 1.3242 0.2149

Lachnoclostridium 0.3364 0.2051 1.6406 0.1320
F
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Response variable (Y): Tissue damping (G) at baseline. *p<0.05.
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FIGURE 4

Meta-omics data integration and modeling reveal that gut-associated inflammation, metabolites, and functionally active gut microbiota are linked to
lung function outcomes. (A) Dendrogram showing clustering and distance between meta-omics datasets. Correlations between datasets were
converted to distances with the function (1 - |cor(distances)|). (B) Significant associations (p< 0.005) between individual variables from murine model
covariates (treatments, weight) and measured data (16S, metabolomics, host gene expression). (C) Significant associations (p< 0.005) between
individual variables from murine model covariates/measured data and response variables (flexiVent lung function). Negative associations are shown
with dotted magenta line. Positive associations are marked with solid black line.
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3.5 Collagen and elastin constituents
proline and hydroxyproline are elevated in
obese allergic asthma
To follow up on the cecum hydroxyproline and lung elastance

linkage, we examined proline and hydroxyproline levels in our

murine model of obese allergic asthma by disease status and found

that proline and hydroxyproline in the lungs were elevated in the

AAD-Vehicle group (Figures 5C, G). While no differences in cecum

and stool proline were detected between treatment groups

(Figures 5A, B), hydroxyproline levels in cecum and stool were

lower for the AAD-Vehicle and AAD-NO2-OA groups,

respectively, compared to the Control group (Figures 5E, F). No

differences between AAD-Vehicle and AAD-NO2-OA groups for

proline (Figures 5A, B) and hydroxyproline (Figures 5E, F) levels in

the stool and cecum were detected by LC-HRMS. To identify which

metabolic pathways contributed to elevated lung proline and

hydroxyproline, we measured lung mRNA expression of

pyrroline-5-carboxylate reductase 1 (Pycr1, Figure 5D) and prolyl

4-hydroxylase subunit alpha 1 (P4ha1, Figure 5H). PYCR1 catalyzes

the final step of proline synthesis, converting pyrroline 5-

carboxylate to proline, while prolyl 4-hydroxylase catalyzes the

hydroxy la t ion o f pro l ine to hydroxypro l ine dur ing

posttranslational modification (Gorres and Raines, 2010;

Christensen et al., 2017). We observed significant differences in

Pycr1 gene expression in the lungs of mice with allergic airway

disease receiving NO2-OA. Compared to the AAD-Vehicle group,

AAD-NO2-OA mice had lower Pycr1 lung mRNA expression

(Figure 5D, p = 0.023). No differences in lung mRNA expression

of P4ha1 between AAD-Vehicle and AAD-NO2-OA groups were

observed (Figure 5H). To explore whether diminished proline

biosynthesis may affect downstream collagen and elastin

production, we measured lung mRNA expression of lysyl oxidase

(Lox, Figure 5I), which is responsible for cross-linking collagen and

elastin precursors (Siegel et al., 1970; Kagan and Trackman, 2012).

Compared to the AAD-Vehicle group, the AAD-NO2-OA group

trended toward lower Lox lung mRNA expression (Figure 5H, p =

0.08). To evaluate whether these changes extended to human

disease, we measured plasma amino acid levels in overweight/

obese adults with mild-moderate asthma. While no differences in

proline plasma levels were observed, individuals with mild-

moderate asthma and a BMI ≥ 25 had higher plasma levels of

hydroxyproline compared to those with asthma and a BMI< 25

(Figures 5J, K). In the murine model of obesity-associated asthma,

hydroxyproline was lower in the gut, but elevated in the lungs of

diseased animals. NO2-OA treatment inhibited proline

biosynthesis, which may have downstream effects on collagen and

elastin synthesis. In adults with mild-moderate asthma, plasma

hydroxyproline levels were higher for overweight/obese individuals,
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suggesting the alterations in murine hydroxyproline levels may also

be relevant to human disease.
3.6 Significant associations between
measured variables in the treatment-
measured-response model identify
key interactions between allergic
airway disease, NO2-OA, gut microbiota,
and amino acid precursors to collagen
and elastin

To examine latent (hidden) relationships among the measured

variables (16S, metabolomics, host gene expression) that might

explain additional host-microbial interactions, significant

associations (p< 0.005) between measured variables were

identified in the Treatment-Measured-Response model

(Supplement Table 1) and summarized visually (Figure 6). Several

microbial taxa were linked to allergic airway disease status.

Receiving CT adjuvant during sensitization was associated with

greater Rombouts ia (b = 3.189 , p = 0.000176) and

Oscillospiraceae_Uncltrd (b = 3.242, p = 0.00303) in 16S DNA

taxa profiles (Figure 6; Supplement Table 1). Sensitization with

HDM (allergic airway disease) was connected to lower Bacteriodes

in16S RNA, (b = -2.661, p = 0.000396), but greater Romboutsia (b =

3.879, p = 0.000150) in 16S DNA taxa profiles (Figure 6,

Supplement Table 1). Development of allergic airway disease was

associated with lower Bacteriodes, but greater abundance of

Romboutsia, in the gut microbiome (Figure 6; Supplement

Table 1). We observed significant interactions between amino

acids levels in the gut and abundance of gut microbiota (Figure 6;

Supplement Table 1). Particularly of interest were cecum

hydroxyproline and stool proline levels given associations

observed with lung elastance. Stool proline levels were negatively

associated with multiple gut microbiota: Lachnospiraceae_uncl (16S

DNA, b = -3.661, p = 0.000253 and 16S RNA, b = -3.381, p =

0.00206) Muribaculaceae_ge (16S DNA, b = -4.420, p = 0.00318),

Lachnoclostridium (16S DNA, b = -3.749, p = 0.00135 and 16S

RNA, b = -4.190, p = 0.000288), Oscillospiraceae_Uncltrd (16S

RNA, b = -3.441, p = 0.00109), and Oscillibacter (16S RNA, b =

-3.767, p = 0.000085) (Figure 6; Supplement Table 1). NO2-OA

treatment, which alleviated lung elastic stiffness and total

respiratory elastance, was linked to greater Muribaculaceae_ge (b =

2.345, p = 0.00423) and Lactobacillus (b = 3.592, p = 0.00115) in 16S

DNA taxa profiles (Figure 6; Supplement Table 1), suggesting that

NO2-OA may be associated with microbial proline metabolism in

the gut as well. Using Treatment-Measured-Response modeling, a

previously hidden network of host-microbe interactions between gut

levels of amino acid metabolites, gut microbiota, NO2-OA treatment,

and lung elastic stiffness emerged.
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4 Discussion

We tested NO2-OA as a treatment for obese allergic asthma and

evaluated its impact on the gut microbiome-metabolome of a

murine model. NO2-OA alleviated airway inflammation as

measured by total immune cell numbers and lung elastance, but

did not improve mucus hypersecretion compared with untreated

control obese mice with allergic airway disease. NO2-OA was linked

to several key modifications of the gut microbiota. NO2-OA

reduced levels of Oscillospiraceae_uncl, a bacterial taxon that was
Frontiers in Microbiomes 13
associated with greater tissue damping (G), a measure of small

airway resistance and poor lung function. NO2-OA treatment was

also linked to greater abundance of beneficial microbial taxa,

Lactobacillus and Muribaculaceae_ge, which were negatively

associated with stool proline in our model. These associations

identified in our study model suggest that NO2-OA treatment

may benefit both the host and the gut microbiota in obese allergic

asthma and warrant further investigation (Figure 7).

This study presents preclinical evidence for the ability of NO2-

OA to modulate lung function in obesity-associated asthma, with
A B D

E F G

I J K

H

C

FIGURE 5

Collagen and elastin constituents proline and hydroxyproline are elevated in obese allergic asthma. Relative amount (Analyte/Internal Standard) of
proline measured in murine (A) stool, (B) cecum, and (C) lung homogenates. (D) Pycr1 mRNA gene expression was measured in lung tissue with RT-
qPCR normalized to Gapdh. Relative amount (Analyte/Internal Standard) of hydroxyproline measured in murine (E) stool, (F) cecum, and (G) lung
homogenates. (H) P4ha1 and (I) Lox mRNA gene expression was measured in lung tissue with RT-qPCR normalized to Gapdh. Plasma levels of (J)
proline and (K) hydroxyproline measured in adult individuals with mild-moderate asthma separated by BMI. Treatment groups in murine model
included obese naïve (Naïve, n = 7), mock sensitization control (Control, n = 12), AAD-Vehicle (AAD-Veh, n = 11), and AAD-NO2-OA (n =11). Values
are shown as mean ± SEM. Statistical significance was calculated by ordinary one-way ANOVA with Tukey’s multiple comparisons test (A-F) and
unpaired t-test (J, K), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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prior studies reinforcing that the translation of NO2-OA for obese

allergic asthma may also prove effective in treating human disease.

For example, clinical elevation of lung elastance in obese adults with

asthma has been reported (Bates et al., 2021), indicating that NO2-

OA targets lung mechanics relevant to human disease. Consuming a

Mediterranean diet rich in olive oil, a dietary source of fatty-acid

nitroalkenes, has been associated with improved asthma control

and lower risk of developing asthma in adults and children
Frontiers in Microbiomes 14
(Chatzi et al., 2007; Garcia-Marcos et al., 2007; Barros et al., 2008;

Fazzari et al., 2014; Cazzoletti et al., 2019). Nitration of extra virgin

olive oil in the acidic environment of the stomach has been shown

to produce endogenous nitro-oleic acid (Fazzari et al., 2014). A

clinical trial (NCT03762395) of the specific positional isomer 10-

NO2-OA (CP-6) is currently underway in adults with obesity-

associated asthma. The present study reinforces the rationale for

this Phase 2 trial using a relevant model system that expands upon
FIGURE 6

Significant associations (p< 0.005) between measured variables in the Treatment-Measured-Response Model identify key interactions between
allergic airway disease, NO2-OA, gut microbiota, and amino acid precursors to collagen and elastin. Negative associations are shown with dotted
magenta line. Positive associations are marked with solid black line.
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the well-documented, systemic anti-inflammatory effects of NO2-

OA treatment in the host (Cui et al., 2006; Delmastro-Greenwood

et al., 2014; Ambrozova et al., 2016; Schopfer et al., 2018).

Given NO2-OA is predominantly absorbed in the gut and

regulates microbial-derived metabolites such as bile acids, prior

studies have postulated that NO2-OA modifies the gut microbiome

and host-microbial metabolism (Fazzari et al., 2017; Manni et al.,

2021), which is affirmed by this study. Moreover, the gut microbiota

affected by NO2-OA include microbiota relevant to asthma in

murine models and humans. Supplementation with Lactobacillus,

which was positively associated with NO2-OA treatment in our

study, suppresses lung inflammation in other murine models of

allergic airway disease (Wu et al., 2016). Oral administration of

Lactobacillus reduces airway inflammation and symptoms in

school-age children with asthma and restores anti-inflammatory

fatty acid metabolites in human infants at high risk for developing

asthma (Chen et al., 2010; Miraglia Del Giudice et al., 2012; Durack

et al., 2018). Studies to date have focused on Lactobacillus

supplementation as a preventative and therapeutic strategy for

childhood asthma (Chen et al., 2010; Miraglia Del Giudice et al.,

2012; Durack et al., 2018). Given the positive association between

Lactobacillus and NO2-OA in this study and other groups’ findings

that Lactobacillus supplementation attenuates airway inflammation,

the therapeutic potential of Lactobacillus supplementation paired

with a fatty acid nitroalkene prebiotic, such as NO2-OA, conjugated

linoleic acid, or olive oil, is a possible future direction for

consideration in obese allergic asthma.

We also sought to identify potential molecular mechanisms of

obese allergic asthma using a meta-omics profiling approach in our

murine model. This meta-omics profiling and Treatment-
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Measured-Response data integration model revealed a network of

connections between proline and hydroxyproline levels in the gut,

gut microbiota, and greater lung elastance. Lachnospiraceae, one of

the 16S taxa that was associated with lower stool proline, expresses

proline reductase PrdA and has been reported to compete with

other microbiota for proline and other amino acids (Mefferd et al.,

2020).Muribaculaceae, which was also linked to lower stool proline

in our model, is associated with anti-obesity effects and produces

butyrate, a short chain fatty acid that attenuates lung inflammation

in murine models of allergic airway disease (Cait et al., 2017; Xu

et al., 2020; Ye et al., 2021; Lv et al., 2022). However, we did not

observe changes in short chain fatty acids measured from cecal

tissue in this model (Supplement Figure 6). Both lung elastance and

Muribaculaceae_ge were associated with NO2-OA treatment, as

NO2-OA lowered lung elastance and was linked to greater

abundance of Muribaculaceae_ge. Further investigation using

targeted metabolomics analysis revealed that obese mice with

allergic airway disease had higher levels of proline and

hydroxyproline in the lungs and that asthma patients with BMI ≥

25 had higher plasma hydroxyproline levels. Obese mice with

allergic airway disease treated with NO2-OA had diminished

proline biosynthesis in the lungs. Proline is abundant in

structural proteins elastin and collagen, which are present in the

airways and lung parenchyma (Gorres and Raines, 2010). A fraction

of the proline residues in elastin and collagen undergo

posttranslational modification to hydroxyproline by prolyl 4-

hydroxylase (Gorres and Raines, 2010). While elastin provides

strength and flexibility to the lung tissue, increased submucosal

elastin and airway thickening were observed in bronchial

biopsies from adults with severe asthma and an average BMI > 30
FIGURE 7

Nitro-oleic acid (NO2-OA) targeted both the gut microbiota and host lungs in a murine model of obese allergic asthma. NO2-OA positively impacted
the gut microbiota and was associated with increased abundance of anti-inflammatory taxa Lactobacillus and Muribaculaceae_ge. NO2-OA
decreased the abundance of Oscillospiraceae_uncl, which was associated increased tissue damping and poorer lung function. NO2-OA
downregulated Pycr1 expression and proline biosynthesis in the lung parenchyma and lowered lung elastance, leading to improved lung function.
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(Wilson et al., 2021). Collagen deposition can also increase elastic

stiffness of airways and lung tissue (Li and Wu, 2018; Hough et al.,

2020; Karna et al., 2020). NO2-OA treatment also promotes

collagen degradation by tissue resident macrophages in murine

models of lung fibrosis (Koudelka et al., 2022). We speculate that a

possible mechanism by which NO2-OA attenuates lung elastance is

by the modulation of gut proline metabolism by microbiota and

downregulation of lung proline biosynthesis by pyrroline-5-

carboxylate reductase 1 (PYCR1), leading to reduced deposition

of elastin and collagen in the lungs.

Although our findings provide evidence for the multi-target

immunomodulator NO2-OA modifying lung function,

inflammatory responses, and the gut microbiome in obese allergic

asthma, the link between NO2-OA, allergic airway disease, and gut

microbiome is complex. Future studies using germ free mice will

help to determine the extent to which the therapeutic benefits of

NO2-OA treatment are mediated by the host versus the gut

microbiota. In our present work, meta-omics profiling and

analysis was used to pinpoint connections between lung function

and specific gut microbiota. These associations uncovered by our

meta-omics profiling and data integration model reveal potential

disease mechanisms through the networks of connections. Our

objective in developing a meta-omics profiling and data integration

model was to elucidate potential mechanisms of obese allergic

asthma involving the gut microbiome for future studies with

mechanism-focused hypothesis testing. While a murine model of

obese allergic asthma allowed for extensive meta-omics profiling of

host tissues along the gut-lung axis, some of the identified

relationships in our model are murine-specific. For instance,

NO2-OA treatment was positively associated with beneficial

microbial taxa Muribaculaceae_ge, which is found in the

intestinal microbiome of rodents (Lagkouvardos et al., 2019).

Future human studies will help to identify comparable, human-

specific gut microbiota that respond to NO2-OA treatment. The

clinical study design of the ongoing Phase 2 trial of 10-NO2-OA in

adults with obesity-associated asthma includes pre- and post-10-

NO2-OA administration fecal material collections for future

profiling of human-specific gut microbiota responses. Although

some murine-specific associations were uncovered in the

Treatment-Measured-Response model, numerous relationships

that were identified were relevant to human disease.

Faecalibaculum, which was negatively associated with allergic

airway disease in our murine model, is also negatively correlated

with symptoms in chronic rhinosinusitis patients, suggesting

Faecalibaculum supplementation may benefit allergic respiratory

diseases (Gan et al., 2021). Despite its limitations, a murine model

paired with meta-omics analysis illuminates additional potential

targets and treatment options for obese allergic asthma.

In summary, we conclude that oral NO2-OA administration

may represent a beneficial treatment for obesity-associated asthma

as evidenced by an ability to modulate immune cell infiltration or

accumulation in the airways, improve lung elastance, and positively

modulate the gut microbiota in our murine model. We introduced a

meta-omics profiling approach of 16S rRNA and rRNA gene

sequence, metabolomics, and host gene expression data with a
Frontiers in Microbiomes 16
Treatment-Measured-Response variable model for data integration

and identification of hidden relationships within the data, providing

a strategy to address an important technical knowledge gap for the

field (Kozik et al., 2022). This novel approach enabled us to identify

proline metabolism and the inhibition of the synthesis of proline-

rich, structural proteins elastin and collagen as a potential

mechanism accounting for the ability of NO2-OA to relieve lung

elastance. While other studies have proposed that enhanced lung

elastance stems from increased adiposity and chest wall weight in

obesity (Bates et al., 2021), the present results suggest that changes to

structural proteins in the lung airways and parenchyma may also

contribute to heightened lung elastance and serve as a potential

therapeutic target for obese allergic asthma. Targeted inhibition of

proline biosynthesis in the lung extracellular matrix may mitigate

aberrant elastin accumulation observed in fatal asthma and airway

remodeling due to increased collagen deposition in uncontrolled,

corticosteroid-resistant asthma (Araujo et al., 2008; Burgstaller et al.,

2017). Probiotic supplementation with gut microbiota that attenuate

lung inflammation, such as Lactobacillus, may also augment the

therapeutic benefits of NO2-OA in obese allergic asthma. Leveraging

synergistic interactions between future therapies and the

gut microbiota is an important consideration for treating

obese allergic asthma, a disease process involving both the host

and microbiota.
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