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Gut microbiota has been reported to be closely related to host energy

metabolism and immunity, and thus influence the development and

progression of various human diseases. To date, the gut microbial metabolites

such as short-chain fatty acids, defensins, cathelicidins, and lactoferrin in feces

have been investigated as biomarkers associated with various disease conditions.

In this review, we introduce intestinal and fecal pH, which is relatively easy and

rapid to measure compared to the composition of the gut microbiota and its

metabolites. In particular, this review presents the distribution of pH in the human

body, its role and clinical significance, and various factors that affect intestinal

and fecal pH, including the gut microbiota and its metabolites.
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Introduction

In recent years, with dramatic advances in next-generation sequencers (NGS), many

studies have revealed a link between the intestinal microbiota and the onset and

progression of various human diseases. Diseases affected by the gut microbiota include

not only gastrointestinal diseases such as gastrointestinal cancer and inflammatory bowel

disease, but also metabolic diseases, cardiovascular diseases, neurodegenerative diseases,

and even psychiatric disorders (Chen et al., 2021; Yamamura et al., 2021). In addition,

high-throughput multi-omics analysis such as metabolomics has revealed that not only

bacteria but also metabolites of the gut microbiota such as cathelicidin, lactoferrin,

osteoprotegerin, S100 protein, M2-PK, and short-chain fatty acids (SCFAs) are

correlated and altered with human health and diseases (Pang et al., 2014). Therefore,

monitoring the intra-individual variability of these metabolites is expected to be useful in

understanding health or disease conditions.

In addition to these microbiota and metabolites, fecal pH, which can be measured more

easily, non-invasively, and rapidly, has been reported to be strongly associated with human

health and has attracted much attention. Furthermore, although more invasive and more
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time consuming to measure than fecal pH, intestinal pH has made

significant contributions, particularly in the development of systems

to deliver drugs to specific locations (vander Schaar et al., 2013). For

example, the enteric coating of 5-aminosalicylic acid (5-ASA),

recommended as a first-line drug for patients with mild to

moderate ulcerative colitis (UC), is designed to resist the highly

acidic environment of the stomach and to dissolve in the basic

environment (around pH 7) of the terminal ileum (Nugent

et al., 2001).

Fecal pH can be rapidly measured using a commonly calibrated

pH probe and meter (Cox et al., 2020; Gill et al., 2022), and

intestinal pH can be measured with high precision in real time

using telemetry capsules or oral tube-attached pH electrodes (Evans

et al., 1988; Nugent et al., 2001; vander Schaar et al., 2013). In fact,

fecal pH has traditionally been used clinically as an indicator of

colonic carbohydrate malabsorption and osmotic diarrhea (see

“Clinical Significance of Fecal pH” section), however, its

importance remains questionable due to its large intra-individual

as well as inter-individual variability. In this context, this review

first describes the distribution and role of pH in the gastrointestinal

tract and its role, then reviews the latest findings on the influences of

various factors such as diet, disease, and drugs on intestinal and

fecal pH variation in conjunction with the gut microbiota and

its metabolites.
pH distribution in the stomach and
its roles

The pH gradient in the human body serves as the driving force

of various vital reactions, such as intracellular adenosine

triphosphate (ATP) synthesis and oxygen transfer in muscle

tissues. In particular, because the gastrointestinal tract is

constantly exposed to the external environment owing to the
Frontiers in Microbiomes 02
ingestion of foods, the gastrointestinal pH provides an optimal

environment for the bactericidal effects of acids and the actions of

digestive and metabolic enzymes. For instance, strong bactericidal

action is required in the stomach considering that it experiences the

most exposure to the external environment. Therefore, the gastric

juice has a fairly strong acidity of pH 1.0–2.0 (Figure 1). To

maintain this strong acidity, the stomach exhibits a regulatory

function via gastrin that promotes hydrochloric acid secretion

when pH increases to >3.0 (Daniels and Allum, 2005). This

action appears to be a major factor that suppresses microbial

colony formation in the stomach (Williams, 2001). Furthermore,

it is known that the enzyme pepsin that is present in the gastric juice

is activated at pH 1.0–2.0.

However, there are several bacteria that can survive in such

highly acidic extreme environments. An example is Helicobacter

pylori, which infects more than half of the world’s population

(Santos et al., 2020) and is a clear risk factor for chronic gastritis,

gastric ulcers, and stomach cancer (Camilo et al., 2017). The fact is

that the bacteria prefer a rather neutral or near-neutral pH in the

test tube and do not grow in a highly acidic environment such as

that in the stomach, but rather may die. However, this bacterium

has been shown to survive and grow in extreme environments by

neutralizing gastric acid by acid-dependent activation of urease in

the bacterium to produce ammonia (Scott et al., 1998). In addition,

this bacterium is known to bind to and inhabit the gastric mucin

layer, which maintains a moderate pH gradient. One study showed

that all strains ofH. pylori bind to relatively large mucins at low pH,

regardless of host blood type, whereas only Leb-binding blood-

group antigen-binding adhesin (BabA)-positive strains bind to Leb-

positive mucins at neutral pH (Lindén et al., 2004). Thus, it is

suggested that gastric pH has a strong influence on the binding and

colonization of H. pylori to gastric mucins. Furthermore, gastric pH

appears to influence the site of H. pylori infection. The usual site of

H. pylori infection in the human stomach is not the fundus of the
FIGURE 1

Distribution of pH in the gastrointestinal tract. In the stomach, strong bactericidal action is necessary, and gastric juices have a fairly strong acidity at
pH 1.0–2.0 (upper right). The pH of the intestinal lumen increases on average to 6.1 in the duodenum, 7.1 in the middle small intestine, and 7.5 in the
distal small intestine (right middle). Thereafter, the pH temporarily reduces to approximately 6.0 near the cecum at the entrance of the large
intestine and increases toward the rectum and becomes around 7.0 near the exit of the large intestine (lower right).
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stomach, where acid secretion occurs, but the antrum of the

stomach, indicating that the optimal pH for the growth of this

bacterium is in the antrum of the stomach (Lee et al., 1995).

Although there are not many commensal bacteria that live in

the stomach, some bacteria that cause intestinal infections survive

the extreme environment of the stomach and make their way to the

intestinal tract. A typical example is Salmonella enterica. S. enterica

is a leading zoonotic pathogen and a major cause of mortality in

people worldwide. After ingestion, S. enterica invades the intestinal

epithelium of the ileum and colon, causing enteric salmonellosis

characterized by fever, abdominal pain, vomiting, and diarrhea, or

disseminates systemically to cause sepsis (Knodler and Elfenbein,

2019). This bacterium has a very specific characteristic, which is

that the bacterium itself is not harmful to the human body when

ingested orally, but it causes the severe symptoms described above

when the bacterium is ingested in food. This is because S. enterica is

killed by stomach acid when only the bacteria are ingested, but

foods such as beef and egg whites temporarily raise the pH of the

surrounding environment, allowing even acid-sensitive S. enterica

to survive on the food surface (Waterman and Small, 1998). In this

study, the authors inoculated ground beef with several pathogens

and tested their ability to survive under acidic conditions of pH 2.5

at 37°C for 2 hours. The results showed that Campylobacter jejuni

and Vibrio cholerae, which are acid-sensitive pathogens similar to S.

enterica, also survived on the food surface, as did S. enterica, and

repopulated when returned to optimal growth conditions. Other

previous study showed that Salmonella spp. acquire an acid

tolerance response (ATR), the ability to survive in extremely

acidic conditions (pH 3) after one generation of culture at

sublethal pH (pH 4.5-5.5) (Foster and Hall, 1990). Thus, although

highly acidic stomach acid plays a very important role as the first

line of defense against orally introduced pathogens, it does not seem

to protect against all of them against food-borne pathogens.
Intestinal pH and its roles

The pH of the intestinal tract of a healthy human has been

investigated primarily by a pH-sensitive radiotelemetry capsule that

passes freely through the digestive tract for up to 48 hours without

the restrictions of normal ambulation (Evans et al., 1988), or by

continuously measuring luminal pH in the small and right large

intestine with an oral tube-mounted pH electrode (Nugent et al.,

2001). First, the pH of the small intestinal tract, which is constantly

exposed to the strong acids of gastric juice discussed in the previous

chapter, was reviewed in detail in a recent meta-analysis (Abuhelwa

et al., 2016). According to this report, the average pH value of the

small intestinal tract is 6.1 in the duodenum, which is in direct

contact with the stomach, rising to 7.1 in the middle part of the

small intestine and reaching 7.5 in the distal part of the small

intestine (Figure 1). The pH of the intestinal lumen increases to

approximately 6.5 in the proximal small bowel and to

approximately 7.5 near the ileum in the distal small bowel.

Thereafter, it temporarily reduces to approximately 6.0 near the

cecum at the entrance of the large intestine and then increases

toward the rectum, where it reaches to around 7.0 near the exit of
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the large intestine (Crawford and Brooke, 1955; Pye et al., 1990;

Nugent et al., 2001, Figure 1). The large intestine is responsible for

numerous functions, such as the fermentation of carbohydrates and

amino acids, absorption of minerals and bile acids, synthesis of

vitamins, metabolism of various other substances, and excretion of

unwanted substances (Cummings, 1997). In the proximal colon

including the cecum, the fermentation of dietary fiber and

saccharides by intestinal bacteria is active, and a large amount of

SCFAs and their metabolites are produced (Nicholson et al., 2012;

Baothman et al., 2016; Yamamura et al., 2020); therefore, it

temporarily becomes acidic (approximately pH 6.0) in this area

(Figure 1). In the distal colon, dietary fiber and saccharides are

fermented by intestinal bacteria, and the SCFAs produced are

rapidly absorbed from the intestinal wall by passive transport, so

the closer to the rectum, the lower the amount of SCFAs.

Furthermore, with the progress in amino acid fermentation, the

proportion of alkaline metabolites increases, resulting in the pH

becoming almost neutral (Conlon and Bird, 2015).

The increased production of SCFAs results in weakly acidic pH

conditions in the intestinal tract, which play an important role in

maintaining human health. For example, this condition is considered

to exert the effect of reducing the solubility of toxic cholic acids,

promoting the absorption of minerals and inhibiting the absorption

of ammonia and other amines by producing NH+
4 fromNH3viaproton

dissociation (Wong et al., 2006). Moreover, weakly acidic pH

conditions in the intestinal tract have been shown to contribute

significantly to the absorption of vitamins, electrolytes, and iron, as

well as to the activation of digestive enzymes (Chernelch et al., 1970;

Ohta et al., 1995; Fallingborg, 1999). It has also been reported that

weakly acidic conditions in the intestinal tract strongly inhibit the

growth of pathogenic Clostridium. More specifically, it was reported

that germination and growth of Clostridium difficile from spores was

greatly retarded when the medium was acidic (Kochan et al., 2018).

As such, several studies have been conducted on the impact of pH on

changes in the microbiome. In general, most opportunistic bacteria

prefer to grow in near-neutral pH conditions (pH 6.0-7.0) and do not

grow well in acidic conditions (pH ≤ 5.5). For example, some bacteria

can grow at a wide range of pH values, such as Bacteroides (Duncan

et al., 2009), while others are inhibited at acidic pH, such as

Veillonella and Streptococcus (Bradshaw and Marsh, 1998).

Furthermore, butyric acid bacteria such as Faecalibacterium and

Roseburia are known to grow better at a weakly acidic pH (pH 5.5)

than at a nearly neutral pH (pH 6.7) and produce more butyric acid

(Walker et al., 2005). This stimulation of butyric acid production is

considered to nourish colon cells and protect them from hydrogen

peroxide-induced DNA damage (Rosignoli et al., 2001). Furthermore,

weakly acidic pH (pH 5.5) may slightly inhibit propionate production

as a result of restricted growth of propionate-producing species such

as Bacteroides (Walker et al., 2005). Propionate is the second

preferred energy source for colon cells after butyrate (Clausen and

Mortensen, 1994), has anti-inflammatory properties, and can play an

important role in the treatment of inflammatory bowel disease

(Tedelind et al., 2007). Other studies have shown that a decrease in

colonic pH prevents the growth of pathogenic bacteria, especially

Enterobacteraciae, which are generally sensitive to low pH (Roe et al.,

1998; Hirshfield et al., 2003). Interesting results have also been shown
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in in vitro experiments in which pH values of 33 representative

human E. coli species were measured at three levels of approximately

5.5, 6.2, and 6.7 (Duncan et al., 2009). In this study, they found that

the eight representative Bacteroides spp. tested grew little at pH 5.5, as

did E. coli. They also reported that Bacteroides spp. accounted for 27%

of the 16S rRNA sequences detected at pH 5.5, but 86% at pH 6.7, and

conversely, butyrate-producing Gram-positive bacteria accounted for

50% of all 16S rRNA sequences at pH 5.5, but none at pH 6.7. From

this study, the authors concluded that a major group of Gram-

negative bacteria is inhibited at a weakly acidic pH, creating a niche

available to lower pH-resistant microorganisms. In addition, another

in vitro experiment using indigestible polysaccharides as growth

substrates showed that a one-unit pH shift causes significant

changes in the composition of the human colonic microbiota,

particularly with Gram-negative Bacteroides species becoming

dominant at pH 6.5 and Gram-positive Firmicutes increasing at

pH 5.5 (Walker et al., 2005).

Thus, it is clear that pH can promote or inhibit the growth of

certain bacteria. other effects of pH on the microbiome include the

promotion or inhibition of fermentation by the microbiome. In one

in vitro study, in a pH-controlled fermenter, more butyrate was

produced than acetic acid at pH 5.5, but the opposite was true at pH

6.5 (Walker et al., 2008). Another similar study reported that in vitro

cultures with mixed fecal microflora produced lactic acid in the pH

range of 5.2 to 6.4, with the highest production under mildly acidic

conditions (pH 5.9) (Belenguer et al., 2007). They also reported that

at low pH (<5.2), lactic acid production increased slightly, but lactic

acid utilization was strongly inhibited and lactic acid accumulated.

In addition, a recent study showed that V. cholerae, which is

transmitted by oral infection from contaminated food and water

and has a very high disease burden in developing countries, has an
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increased swimming speed using flagellar motility at alkaline pH,

which results in enhanced intestinal mucus invasion (Nhu et al.,

2021). Thus, the production of SCFAs by intestinal bacteria and the

resulting weakly acidic conditions in the intestinal tract have a

variety of health effects, such as promoting the elimination of toxic

substances from the intestinal tract, promoting the absorption of

nutrients, and inhibiting the growth of pathogenic bacteria.
Clinical significance of fecal pH

SCFAs produced by intestinal bacteria, mainly by fermenting

carbohydrates (dietary fiber and saccharides), are rapidly absorbed

from colonic epithelial cells into the host body, stimulating the

absorption of water and sodium in the intestinal tract (Figure 2)

(Fleming and Arce, 1986). Moreover, this fermentation of

carbohydrates into SCFAs is known to reduce the osmotic pressure

in the intestinal lumen and either prevent or alleviate osmotic

diarrhea (Jiang and Savaiano, 1997). Conversely, the malabsorption

of carbohydrates and SCFAs into the intestinal tract increases the

SCFA concentration excreted in feces and simultaneously elevates

fecal osmotic pressure. This causes the water in the intestinal tract to

transfer to feces, resulting in osmotic diarrhea (Blattner, 1961;

Hammer et al., 1989; Hammer et al., 1990).

Fecal pH is currently used in clinical practice as an indicator of

carbohydrate malabsorption in the colon and osmotic diarrhea

(Maffei et al., 1984; Fine and Schiller, 1999; Podolsky et al., 2015;

Karu et al., 2018). It should be noted, however, that there are quite a

number of factors that affect intestinal and fecal pH, as discussed in

the next chapter, and therefore their significance in clinical practice

is still very limited.
FIGURE 2

Fermentation of dietary fiber by intestinal bacteria, production of short-chain fatty acids (SCFAs) and its absorption into the colonic epithelium and excretion
into faces. SCFAs are the products of gut microbial fermentation of mainly host-derived dietary fibers. Approximately 95% of SCFAs produced by the gut
microbiota are absorbed by the colonic epithelium via rapid passive transport, whereas the remaining 5% are excreted in the faces.
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Factors affecting intestinal and
fecal pH

As described above, fluctuations in intestinal pH caused by

metabolites of intestinal bacteria play an extremely important role

in maintaining the functions and health of the large intestine.

Meanwhile, fluctuations in the gut microbiota affect the digestion

of food ingested by us, the host, and the increase or decrease in

metabolites, which in turn cause fluctuations in intestinal and fecal

pH (Figure 3). In the present review, we examine the factors

affecting intestinal microbiota and summarize its relationship

with intestinal and fecal pH, which can be noninvasively and

relatively easily measured.
Age

The intestines of human fetuses are known to be completely

sterile. Exposure to maternal and environmental bacteria at birth is

considered to initiate the formation of the gut microbiota (Figure 4)

(Arrieta et al., 2014). Typically, the first bacteria to settle in the

intestines are facultative anaerobes such as Enterococcus,

Staphylococcus and Enterobacteriaceae (Tsuji et al., 2012).

Thereafter, obligate anaerobes such as Bifidobacterium ,

Bacteroides, and Clostridium appear and Bifidobacterium becomes

the predominant bacterial group in the intestines approximately 2

weeks after birth (Figure 4) (Mitsuoka, 2014). These changes in the

gut microbiota during infancy greatly affect the changes in fecal pH.

The fecal pH of infants at 1–2 h after birth is approximately 6.0 and

reduces to around pH 5.0 with the start of breastfeeding (Grütte and

Haenel, 1980). The fecal pH of breastfed infants becomes acidic

because the count of Bifidobacterium, which metabolizes human

milk oligosaccharides in breast milk to acidic final products

centered on lactic and acetic acids, increases in the intestines

(Stiles, 1996); fecal pH becomes increasingly alkaline with the

consumption of a diet similar to that of adults as the abundance

of Bifidobacterium relatively decreases (Haenel et al., 1970;
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Kurokawa et al., 2007). However, in recent years, numerous

babies, particularly in developed countries, have reportedly been

born with no or significantly less Bifidobacterium than in the past or

in developing countries (Grześkowiak et al., 2012; Henrick et al.,

2018). These babies exhibited a markedly higher fecal pH than

babies with the normal Bifidobacterium population. They are

known to have larger amounts of pathogens and mucus-eroding

bacteria among intestinal microbiota and have signs of chronic

enteric inflammation (Duar et al., 2020a; Duar et al., 2020b). These

results suggest that the existence of Bifidobacterium and a low

intestinal pH are important for protecting the intestinal

environment of infants.

In the feces of the elderly, the abundance of Bifidobacterium

decreases, and the abundance of putrefactive bacteria such as

Escherichia coli and Clostridium perfringens relatively increases

(Mitsuoka, 1990), thereby resulting in higher fecal pH. A study

that classified 66 healthy individuals (aged 21–82 years) into groups

as those aged >40 years and those aged<40 years showed no

significant difference in fecal pH between both groups (Pye et al.,

1990); therefore, it is suggested that fecal pH does not change

significantly in adolescence, early middle age, and late middle age.

However, these studies only observed the association between

specific bacterial species and fecal pH in a cross-sectional

manner, and further studies are needed to elucidate the causal

relationships and mechanisms of how these bacterial species affect

the intestinal tract or fecal pH with age, and how they affect the

onset and progression of disease.
Diet

Activities involving food in the large intestine include SCFA

production via the fermentation of carbohydrates (particularly

dietary fiber) and proteins by intestinal bacteria, production of

amines and fatty acids with branched alkyl groups by amino acid

metabolism, and bile acid metabolism and absorption used in lipid

digestion. Therefore, the diet and nutrients we consume appear to

greatly impact fecal pH via the production, metabolism, and
FIGURE 3

Effects of diet, gut microbiota, and their metabolites on intestinal and fecal pH in healthy individuals. The consumption of vegetables and low-fat
diets, the production of short-chain fatty acids (SCFAs) by gut microbiota and the growth of beneficial bacteria lead to a decrease in intestinal and
fecal pH. Conversely, the consumption of meat and high-fat diets, alcohol, and the growth of pathogenic bacteria lead to an increase in intestinal
and fecal pH.
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absorption of fatty acids and bile acids in the large intestine. This

section focuses on the effects of diet and nutrients on fecal pH and

summarizes the findings achieved to date.

An interventional study in which women with low iron (n = 32)

were orally administered inulin or placebo 3 times/day

(approximately 20 g/day) for 4 weeks found that inulin intake

significantly decreased stool pH (Petry et al., 2012). Moreover, the

same result has been reported in an animal experiment using rats

(Ohta et al., 1995). Furthermore, an interventional study

investigated the changes in fecal pH in a group that consumed a

high-protein and high-carbohydrate diet and another group that

consumed a high-protein and low-carbohydrate diet; it was

observed that fecal pH became increasingly acidic in the former

and increasingly alkaline in the latter. The interventional study also

examined intestinal microbiota whose abundance ratio actually

changed and found that the Roseburia spp. and Eubacterium

rectale of the Clostridium coccoides group decreased in the group

fed with a high-protein and low-carbohydrate diet (Russell et al.,

2011). Furthermore, in an experiment where the initial pH

condition in the culture of symbiotic bacteria was changed, when

compared at pH 5.5 and pH 6.5, it was observed that the growth of

Bacteroidetes was inhibited at pH 5.5, whereas the proliferation of

Roseburia spp. and E. rectale of the C. coccoides group was

particularly promoted (Duncan et al., 2009). These results

suggested that the weakly acidic condition caused by the

fermentation of carbohydrates affects the compositional change of

the gut microbiota.

Conversely, in an intervention study where 1.4 g or 2.8 g of

xylooligosaccharide was orally administered to 32 healthy adults for

up to 8 weeks, there were no effects on fecal pH (Li et al., 2014).

Furthermore, a recent blinded, randomized, crossover dietary
Frontiers in Microbiomes 06
intervention study included 20 healthy young adults (18-45 years

of age) who were fed high and low SCFA diets for 21 days with a 21-

day washout in between (Gill et al., 2022). However, there was no

significant difference in fecal pH between the high and low SCFA diet

groups. In addition, a single-blind randomized controlled trial of 52

patients with quiescent Crohn’s disease or ulcerative colitis conducted

in the UK in 2020 showed that dietary intervention did not alter fecal

pH (Cox et al., 2020). In this study, patients were randomly assigned

to a low-fermentable oligosaccharide, disaccharide, monosaccharide,

polyol (FODMAP) diet group and a control diet group with dietary

advice, and after 4 weeks of intervention, fresh stool pH was

measured. Relatedly, a 2022 meta-analysis of nine randomized

controlled trials of low FODMAP diets in patients with sensitive

bowel syndrome similarly reported no effect of dietary intervention

on fecal pH (So et al., 2022). The authors also concluded in this study

that the effect of a low FODMAP diet on the colonic microbiome in

IBS patients is specific to Bifidobacterium, with no consistent effects

on other microbiome indicators such as microbiota diversity or stool

SCFA concentrations. Thus, discrepancies between highly blinded

and randomized studies of dietary interventions in similar subjects

still suggest that fecal pH may not be consistently linked to any

particular diet or nutrient.

A study on infants reported that the fecal pH of breastfed

infants was significantly lower than that of formula-fed infants

(Langhendries et al., 1995). One of the reasons for this difference is

that Bifidobacterium is the most predominant bacterial group in

breastfed 1-month-old infants, and a large amount of SCFAs is

produced (see “Age” section). However, reportedly, the fecal pH of

breastfed infants with almost no Bifidobacterium was lower than

that of formula-fed infants; thus, the reason remains unclear (Willis

et al., 1973).
FIGURE 4

Changes in the gut microbiota with age. The intestines of human fetuses are completely sterile (left). The genus Bifidobacterium becomes the
predominant bacterial group in the gut in the first 2 weeks of life (second from the left), and the percentage dramatically decreases through
adolescence and middle age (second from the right). In the faces of the elderly, the proportion of Bifidobacterium is further reduced and the
presence of putrefactive bacteria is relatively increased (right).
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Drug intake

Drugs are also metabolized in the large intestine. However, drugs

such as laxatives, antidiarrheals, and antibiotics are mainly directly

associated with changes in intestinal microbiota and pH. It has been

reported that taking laxatives lowers fecal pH, whereas taking

antidiarrheals increases fecal pH (Lewis and Heaton, 1997). In

addition, a study investigating the fecal pH of patients with colorectal

cancer (CRC) reported that these patients with alkaline fecal pH are less

prone to diarrhea (Holma et al., 2013), and this was associated with the

tendency of feces to be excreted when pH decreases.

Regarding antibiotics, despite differences depending on the type of

drugs used, they are known to typically kill major SCFA-producing

bacteria and increase fecal pH (Osuka et al., 2012). Therefore, studies

focusing on the relationship between fecal pH and diseases that will be

described later are mostly attentive to the presence or absence of

antibiotic administration. Furthermore, acarbose, an antidiabetic drug

that is a type of a-glucosidase inhibitor that delays carbohydrate

digestion and intestinal absorption, has been reported to significantly

increase total SCFA, acetic acid, and butyric acid concentrations in feces,

significantly lowering fecal pH (Holt et al., 1996). If future interventional

studies can clarify the causal relationship by longitudinal and long-term

monitoring of changes in intestinal and fecal pH before and after drug

administration, along with changes in the gut microbiota and its

metabolites, intestinal and fecal pH may be utilized as indicators of

intestinal environmental dysbiosis. However, even in such a case, it is

necessary to keep in mind that the clinical application of pH should take

into account confounding factors such as pHmeasurementmethod, diet,

disease, and other concomitant medications.
Diseases

In recent years, a number of diseases in which the composition of

intestinal bacteria and their metabolites are deeply involved have been

revealed. This section summarizes the relationship between diseases

and intestinal microbiota as well as fecal and intestinal pH (Table 1).

Colorectal cancer and colonic polyps
Until around 1990, the feces of patients with CRC were reported to

be alkaline (Pye et al., 1990). However, since 1990, some reports have

stated that fecal pH does not change even with CRC (Hove et al., 1993;

Holma et al., 2012). Moreover, a study on colon polyps reported that

fecal pH is conversely acidic in the group diagnosed with >1 villous

colorectal (renal tubular) adenoma exceeding 1 cm in diameter, with a

high risk of having moderate or severe dysplasia (De Kok et al., 1999).

One relatively new report on CRC and fecal pH involved a study of 93

patients and 49 healthy volunteers; in this report, patients with CRC

exhibited a higher fecal pH and patients with colonic polyps exhibited a

fecal pH between that of healthy individuals and that of patients with

CRC (Ohigashi et al., 2013). Therefore, the specific relationship

between CRC and fecal pH remains undetermined, and larger-scale

epidemiological studies are required in the future.

Regarding the relationship between the gut microbiota and

CRC, findings of the possible involvement of Fusobacterium in
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the development and progress of CRC have consecutively been

reported in recent years (Kostic et al., 2012; Kostic et al., 2013;

Tahara et al., 2014). Conversely, in patients with CRC, the

proportion of obligate anaerobes such as the Clostridium

coccoides group, Clostridium leptum subgroup, Bacteroides

fragilis group, and Bifidobacterium and Atopobium cluster was

typically low; moreover, the proportion of Enterobacteriaceae

and Staphylococcus was low (Kostic et al., 2012; Kostic et al.,

2013; Tahara et al., 2014). Many of these bacteria are typical

SCFA-producing bacteria and may be associated with the

changes in the fecal pH (particularly changes to alkalinity) of

patients with CRC.

Pseudomembranous colitis
For confirming the diagnosis of pseudomembranous colitis, a

combination of the toxin and antigen tests has been shown to be

effective. This is because when only either one was positive, there were

several misdiagnoses. The fecal pH of patients with

pseudomembranous colitis was reportedly alkaline in both positive

groups (Gupta et al., 2016). Furthermore, the study reported that there

was no significant difference in fecal pH of either-positive or both-

negative patients. This type of colitis is one of the infectious colitis

caused by the abnormal proliferation of Clostridium difficile, a spore-

producing obligate anaerobe (Moreno et al., 2013). It has been found

thatC. difficile rarely inhabits feces with a pH below 6.0 (Miyazaki et al.,

1992), and it may be associated with the alkaline fecal pH of patients

with pseudomembranous colitis.

Ulcerative colitis and Crohn’s disease
It has been clarified that fecal pH tends to be lower in patients

with UC and Crohn’s disease (CD) compared with that in healthy

individuals (healthy individuals: pH 7.0, UC: pH 6.6, and CD: pH

6.8) (Vernia et al., 1988b). In particular, in patients with UC, it has

been reported that fecal pH decreases with the increase in severity

from the remission phase, mild and moderate to severe (remission

phase: pH 7.2, mild: pH 6.4, moderate: pH 6.3, and severe: pH 6.2)

(Vernia et al., 1988a). Remarkably, fecal SCFA levels were

significantly lower in patients with UC than in healthy individuals

(Treem et al., 1994; Nemoto et al., 2012; Zhuang et al., 2019), and

this may be related to the increased fecal pH in these patients.

Similar to the fecal results, colonic lumen pH has been shown to

decrease in patients with active UC (Macfarlane et al., 1992).

Furthermore, an interventional study where exclusive enteral

nutrition (EEN) was administered to pediatric patients with CD

reported a gradual increase in fecal pH and an alleviation of CD

symptoms on days 15, 30 and 60 after the initiation of EEN

(Gerasimidis et al., 2014).

With regard to intestinal bacteria, the phylum Proteobacteria,

adherent-invasive E. coli, Fusobacterium, and Ruminococcus gnavus

are known to adversely affect the pathogenesis of UC and CD.

Moreover, Bifidobacterium, Groups IV & XIVa Clostridium,

Facalibacterium prausnitzii, Roseburia spp., Suterella spp.,

Bacteroides, and Saccharomyces cerevisiae reportedly decrease in

patients with inflammatory bowel disease (Sartor and Wu, 2017).

Among them, the increase in Fusobacterium and decrease in
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Bacteroides, Bifidobacterium, and Clostridium are the same as those

observed in patients with CRC (see “Colorectal Cancer and Colonic

Polyps” section) and may be associated with the changes in

fecal pH.
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Other diseases
In addition to the colonic diseases mentioned above, various

other illnesses have been found to be associated with fecal pH.

There is a study about systemic inflammatory response syndrome
TABLE 1 Relationship between diseases and intestinal microbiota as well as fecal and intestinal pH.

Disease Fecal pH Colonic
lumen pH Fecal SCFA levels Microbiota Ref.

Colorectal Cancer

Alkalinity – – – Pye et al., 1990

Unchanged – – –
Hove et al., 1993;
Holma et al., 2012

Alkalinity –
Lower (Total organic acid, acetic acid, butyric acid,

propionic acid, valeric acid)

Total bacteria
counts ↓

Ohigashi et al., 2013

Clostridium
coccoides group ↓

Clostridium leptum
↓

Bacteroides fragilis
group ↓

Bifidobacterium ↓

Atopobium cluster
↓

Enterobacteriaceae
↓

Staphylococcus ↓

Colonic Polyps

Acidity – – – De Kok et al., 1999

Alkalinity – Lower

Total bacteria
counts ↑

Ohigashi et al., 2013

Clostridium leptum
↓

Bacteroides fragilis
↓

Staphylococcus ↓

Pseudomembranous Colitis Alkalinity – – – Gupta et al., 2016

Ulcerative Colitis

Acidity – Lower – Vernia et al., 1988a

Acidity –
Lower

(Lowest in severe colitis and pancolitis)
– Vernia et al., 1988b

– Acidity – – Macfarlane et al., 1992

Crohn’s disease Acidity – Unchanged – Vernia et al., 1988a

Systemic inflammatory
response syndrome

Alkalinity –
Lower (Total organic acid, acetic acid, butyric acid,

propionic acid)

Bifidobacterium ↓

Shimizu et al., 2006

Lactobacillus ↓

Veillonella ↓

Enterobacteriaceae
↓

Staphylococcus ↑

Pseudomonas ↑

Type 2 diabetes mellitus Unchanged – Lower – Sato et al., 2014

Anorexia nervosa Alkalinity – – – Morita et al., 2015
-, not tested; ↓, decreased; ↑, increased.
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(SIRS), a general term for serious conditions such as sepsis caused

by burns or accidents, investigating the relationship between

symptoms, the gut microbiota, fecal SCFA levels and fecal pH of

patients transported by ambulance and treated in the intensive care

unit (ICU). In this study, the fecal pH of patients with SIRS was

more alkaline than that of healthy individuals, which may be

attributed to the fact that these patients exhibited less number of

Bifidobacterium and Lactobacillus and lower fecal SCFA levels

compared with healthy individuals. Similarly, more elevated fecal

pH has been reported in patients with severe SIRS (Shimizu et al.,

2006), and abnormal fecal pH (below 6.0 and above 7.2) in patients

with severe SIRS showed a significant positive correlation with an

increased risk of death and bacteremia (Osuka et al., 2012). These

findings may be attributed to the destruction of the gut microbiota

by H2 blockers and antibiotics that are administered to severe

ICU patients, thereby resulting in a decrease in the amount of

SCFAs produced, leading to the feces becoming extremely alkaline,

or resulting in the damage to the intestinal epithelium by

harmful bacteria that causes lactose malabsorption, leading to the

feces becoming extremely acidic. Furthermore, it has been reported

that the supplementation of a decreased amount of Bifidobacterium

and Lactobacillus with the symbiotic therapy (a combination of

probiotics and prebiotics) for patients with SIRS increases fecal

SCFA levels, lowers pH and reduces the incidence of enteritis,

pneumonia and bacteremia (Shimizu et al., 2009). The fecal pH of

patients with SIRS may be higher than that of healthy individuals

owing to antibiotic administration. However, the fact that symbiotic

therapy resulted in decreased incidence of various infections along

with increased fecal SCFA levels and decreased fecal pH suggests

that fecal pH is important for understanding the systemic

immune state.

Other diseases that reportedly alter fecal pH and fecal SCFA

levels in addition to SIRS include type 2 diabetes (T2DM) and

anorexia nervosa. Two studies have reported that fecal pH remained

unchanged, and only the total fecal SCFA levels were reduced in

patients with T2DM (Sato et al., 2014), whereas the feces became

alkaline in patients with anorexia nervosa (Morita et al., 2015). The

reason for alkaline feces in the case of anorexia may be because food

is not orally consumed. Combined with the description in the Diet

section, carbohydrate intake may be the key to the acidification of

fecal pH in any case.

Several other diseases have been reported to be associated with

the gut microbiota, such as obesity (Ley et al., 2006; Turnbaugh

et al., 2006), metabolic syndrome (Le Chatelier et al., 2013; Hartstra

et al., 2015), irritable bowel syndrome (Ford et al., 2009), liver

diseases (alcohol-related liver disease (Yan et al., 2011),

nonalcoholic fatty liver disease (Harte et al., 2010), liver cirrhosis

(Qin et al., 2014), and primary sclerosing cholangitis (Sabino et al.,

2016)), arteriosclerosis (Kasahara et al., 2017), multiple sclerosis,

(Jangi et al., 2016), and autism spectrum disorder (Finegold et al.,

2002). However, no study has been conducted on the relationship
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between any of them and fecal pH. Further research is anticipated in

the future.
Other factors

In addition to the above-mentioned factors, there are other factors

strongly associated with fecal and intestinal pH. In particular, fecal pH

reportedly has a strong negative correlation with the abundance of

Bifidobacterium, and in recent years, fecal pH has been proposed to be

used as an indirect measurement index of the abundance of

Bifidobacterium (Frese et al., 2017; Henrick et al., 2018). For example,

the fecal pH of infants had continued to increase for approximately 100

years (from 1926 to 2017), suggesting that it is related to the decrease in

the abundance of Bifidobacterium in infants in developed countries

(Henrick et al., 2018). In the future, it may become possible to easily

estimate the composition of intestinal bacteria by combining fecal pH

and fecal metabolites. In addition, it has been demonstrated that

intestinal pH is strongly affected by the fermentation of carbohydrates

by intestinal microbiota and absorption of SCFAs from colonic epithelial

cells as well as whole-gut transit time and fecal water content (Nugent

et al., 2001; Karu et al., 2018). The technique of noninvasively analyzing

and examining the intestinal environment by measuring fecal pH has

already been applied in clinical examinations (see “Clinical Significance

of Fecal pH” section). However, as noted above, intestinal and fecal pH

are strongly influenced by a variety of factors, and their clinical

significance and interpretation require considerable attention.
Limitations

As discussed in this paper, intestinal and fecal pH appear to

fluctuate with some correlation to disease status. However, it is also

affected by a variety of other factors, such as aging, diet, and

medications, and even within individuals, intra- and inter-day

variations are expected to be very large. Regarding diet, various

intervention studies have also been conducted, but the results on the

effects of diet on intestinal and fecal pH have been inconsistent.

Furthermore, differences in intestinal and fecal pH between diseases

have not yet been studied, and it would be difficult to utilize them as

markers to distinguish between diseases. Moreover, although we

focused on the correlation of intestinal and fecal pH variation with

SCFA in this review, the extent to which SCFA influences intestinal

and fecal pH variation is not yet known. Furthermore, no

quantitative and high-quality studies have yet been conducted to

determine to what extent the variation in intestinal and fecal pH

conversely affects the acidity of SCFA. In view of these facts, this

research field in the future will first require standardization of

intestinal and fecal pH measurement methods (measuring

instruments, time of day, and methods of recording meals and

medications up to the day before the day of measurement). Then, if
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it can be clarified to what extent intestinal and fecal pH fluctuates in

conjunction with gut microbiota and intestinal metabolites such as

SCFA, and in what degree of causal relationship, the possibility of

utilizing intestinal and fecal pH as a simple tool for understanding

the intestinal environment of each individual will be opened up.
Conclusions

On the basis of the information summarized in this review, it can

be perceived that fecal pH changes with a certain degree of clear

cause-to-effect correlation depending on the individual’s condition

and lifestyle, such as age, diet, disease conditions, drugs, the gut

microbiota and its metabolites. However, it is also important to

consider that fecal pH can change significantly during storage of fecal

samples and that many factors can affect its value at the same time.

Further limitations should be noted that the methods for evaluating

intestinal and fecal pH have not yet been standardized, fresh samples

are difficult to obtain for feces, and the intestinal pH is difficult to

implement. Therefore, at present, the significance of intestinal and

fecal pH values in human health is limited, and it is difficult to set a

normal or abnormal threshold for fecal pH value that is universal to

all people, and rather it is effective to observe changes that occur in

the daily life of individuals. In this respect, clinical applications of

fecal pH are promising, for example, for diseases such as

inflammatory bowel disease, for which maintenance of remission is

important, monitoring fecal pH in individuals over time may enable

noninvasive and rapid understanding of pathological conditions.

Furthermore, combined with indicators such as gut microbiota and

metabolite concentrations in feces and blood, this technique will pave

the way for the development of evidence-based biomarkers for

various health issues as well as for digestive health.
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