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Akkermansia muciniphila is considered the “paradigm for next-generation

beneficial microorganisms” and has been reported to help alleviat immune-

related diseases. Evidence shows that herbal medicine can treat disease by

regulating the abundance of A. muciniphila. Recent studies have revealed a link

between A. muciniphila and immune-related diseases. Here, we systematically

reviewed the association between A. muciniphila, herbal medicine, and

immune-related diseases (including inflammatory bowel disease, human

immunodeficiency virus, cancer immunotherapy, and immune-related liver

injury). We also summarize the potential mechanisms of action of A.

muciniphila and offer perspectives for future studies.
KEYWORDS
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1 Introduction

Immune-related diseases (IRDs) prevalence widely around the world, with an

increasing incidence of autoimmune disease in recent years (Brodin, 2022). The

mechanisms of some IRDs might be related to alterations in immune–microbe

interactions and impaired immune function, leading to recurrent infections, chronic

inflammation, and nutritional deficiency. The gut microbiota affects host health, and

changes in the abundance of organisms within the gut microbiota have been linked with

cancer, type 2 diabetes, obesity, intestinal bowel disease, and neurodegenerative diseases

(Derosa et al., 2022; Bi et al., 2023; Ghotaslou et al., 2023).

The intestine is predominantly colonized by four bacterial phyla: Firmicutes,

Bacteroidetes, Actinobacteria, and Verrucomicrobia (Bibbò et al., 2017). Akkermansia
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muciniphila is the only representative of the Verrucomicrobiota

phylum and is highly effective at mucin degradation and considered

the “paradigm for next-generation beneficial microorganisms”.

Since A. muciniphila was discovered and characterized two

decades ago, changes in this commensal bacterium have led to it

being linked to multiple diseases in humans, such as IRDs and

metabolic disorders (Cani et al., 2022). A. muciniphila shows

alterations in abundance (in some cases a significant reduction)

in patients with IRDs (Scher et al., 2015; Tan et al., 2018; Stoll et al.,

2023; Zhao et al., 2023). These findings suggest that A. muciniphila

may confer a clinical benefit in patients with IRDs.

Herbal medicine is gaining increasing attention worldwide

because of its powerful therapeutic effects and minimal adverse

effects. Herbal medicine can regulate the composition and

metabolism of intestinal flora and inhibits disease by regulating

the abundance of A. muciniphila (Feng et al., 2019; Su et al., 2020;

Zhang et al., 2022b). Herbal medicine might have beneficial

biogenic effects on A. muciniphila, and it plays an important

therapeutic role by regulating the population, distribution, and

metabolites of intestinal microbiota to promote its probiotic

function. Herbal medicine also affects systemic immunity by

increasing the abundance of A. muciniphila in the intestine

(Barratt et al., 2022), suggesting that upregulation of A.

muciniphila abundance may be strongly associated with IRDs,

making the impact of herbal medicine on A. muciniphila and

IRDs a promising area with potentially far-reaching implications.

In this review, we will discuss the close relationship between herbal

medicine, A. muciniphila and IRDs by examining the biological

characteristics of A. muciniphila, the effects of herbal medicine in

regulating the abundance of A. muciniphila, and the mechanisms

underlying the role of A. muciniphila in IRDs.
2 Characteristics of A. muciniphila

A. muciniphila is an oval-shaped Gram-negative bacterium that

is strictly anaerobic, non-motile, and non-endospore-forming. A.

muciniphila can produce acetate, butyrate, and propionate in the

gut as short-chain fatty acids via the process of mucin fermentation.

Genome analysis of Akkermansia revealed four phylogroups (AmI,

AmII, AmIII, and AmIV) (Kirmiz et al., 2020). Phylogroups AmIV

and AmII outcompete AmI strains in antibiotic-treated mice, AmIII

is predominant in the Chinese population, AmIV is predominant in

Western populations, while AmI strains are most prominent in

infants, children, and adolescents (Becken et al., 2021; Luna et al.,

2022). A. muciniphila was initially considered a strictly anaerobic

bacterium, but one study found that it could survive under

microaerophilic conditions to produce additional energy relative

to its oxygen sensitivity (Ghaffari et al., 2022). Phenotypes of A.

muciniphila are resistant to gentamicin, penicillin G, vancomycin,

kanamycin, streptomycin, tetracycline, and ciprofloxacin (Filardi

et al., 2022; MaChado et al., 2022). One study found that in healthy

middle-aged and older adults in southwest China, the abundance of

Akkermansia positively correlated with IgA levels and the

percentage of CD8+ T cells, and negatively correlated with the

percentage of CD4+ T cells and the CD4+/CD8+ ratio, indicating
Frontiers in Microbiomes 02
that the intestinal flora correlates to some extent with immunity

(Shen et al., 2018).

A. muciniphila affects the composition of immune cells and

enhances immune regulation by regulating pleiotropic cytokines,

including interferon (IFN)-g, tumor necrosis factor (TNF)-a, Th17,
interleukin (IL)10, IL33, and IL4, with multiple immunomodulatory

effects (Derrien et al., 2010; Li et al., 2019; Chen et al., 2020; Katiraei

et al., 2020). Preliminary evidence from preclinical studies has

revealed the immune-regulatory potential of A. muciniphila.

Supplementation with A. muciniphila increases the thickness of the

intestinal mucus layer and improves the systemic immune status of

mice (van der Lugt et al., 2019). A. muciniphila supplementation also

improves immune cell chemotaxis, phagocytosis, natural killer cell

activity, proliferative capacity, and reduces oxidative stress

parameters and pro-inflammatory cytokines in aged mice (Cerro

et al., 2022). These studies collectively support the immune-

regulation potential of A. muciniphila and offer new directions for

immune-related research.
3 A. muciniphila, herbal medicine,
and immunomodulation

Probiotics are live organisms that confer a health benefit to the

host when administered in adequate amounts (Cani, 2018).

Probiotics play an important role in immune system modulation

and the anti-inflammatory response (Plaza-Dıáz et al., 2017). A.

muciniphila alleviates persistent inflammation, mediates

immunosuppression, and protects against catabolism syndrome

by reshaping the microbial community. A. muciniphila is one of

the most abundant microorganisms in humans with an

immunoregulatory function (Sanders et al., 2019; Terrisse et al.,

2022). Recent studies have demonstrated that a decreased

abundance or lack of A. muciniphila is closely linked with

increased inflammation in the context of multiple diseases, such

as Crohn’s disease, ulcerative colitis, human immunodeficiency

virus (HIV), diabetes, and obesity (Plovier et al., 2017;

Depommier et al., 2019) Recently, herbal medicine has been

shown to have immunomodulatory effects by regulating the

abundance of A. muciniphila (Feng et al., 2019; Alharris

et al., 2022).

A. muciniphila plays a key role in maintaining intestinal health

by inducing intestinal adaptive immune responses and immune

responses (Ansaldo et al., 2019; Wang et al., 2020). A. muciniphila

can be used as a treatment strategy for IRDs by regulating the

immune system and restoring balance to the intestinal flora

(Table 1). Herbal medicine can be used as an immunomodulator

in IRDs such as inflammatory bowel disease (IBD), rheumatoid

arthritis, and hypersensitivity reactions (Teng et al., 2023).

Furthermore, there is a correlation between the regulation of

intestinal flora by herbal medicine and the prevention and control

of IRDs (Table 2). The link between A. muciniphila and herbal

medicine in IRDs has long been a topic of great interest. These

studies support the interaction of A. muciniphila with herbal

medicine in the treatment of IRDs and introduce new

perspectives for future IRD research.
frontiersin.org

https://doi.org/10.3389/frmbi.2024.1276015
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Ding et al. 10.3389/frmbi.2024.1276015
4 A. muciniphila, herbal medicine, and
immune-related diseases

4.1 A. muciniphila, herbal medicine, and
inflammatory bowel disease

IBD is a chronic, relapsing gastrointestinal disease that develops

an inappropriate immune response to environmental factors in

genetically-susceptible individuals (Wright et al., 2018). The onset

of IBD is caused by combining the effects of barrier functions,

intestinal microecology, and mucosal immunity (Vindigni et al.,

2016). Reduced diversity of the intestinal flora leads to microbial

dysbiosis, resulting in the occurrence of IBD (Marchesi et al., 2016;

Thaiss et al., 2016). The abundance of A. muciniphila a is considered

crucial in the occurrence and development of IBD. A. muciniphil, a

promising probiotic, could protect against colitis via the regulation of

the immune response. Integrative analysis of fecal metagenomes and

serum metabolomes revealed that A. muciniphila significantly offsets

the reduction in indoleacetic acid concentrations, increases the serum

concentrations of indole acrylic acid, and upregulates aryl

hydrocarbon receptor target genes, including CYP1A1, IL-10 and

IL-22, thereby attenuating colonic inflammation (Gu et al., 2021).
Frontiers in Microbiomes 03
Additionally, the administration of A. muciniphila reduces the

number of infiltrating macrophages and CD8+ cytotoxic T

lymphocytes in the colon, which may improve colitis (Wang et al.,

2020). A study of an acute colitis mice model found that gavage

feeding of A. muciniphila decreased intestinal permeability and the

level of inflammatory cytokines in serum and tissue. Analysis of 16S

rDNA sequences showed that A. muciniphila induced significant gut

microbiota alterations (Bian et al., 2019). Amucc_2109, an enzyme

secreted by A. muciniphila, attenuates dextran sulfate sodium-

induced colitis in mice, possibly in association with inhibition of

the overexpression of inflammatory cytokines (Qian et al., 2022). In

clinical practice, fecal microbiota transplantation has been used to

treat IBD and has shown certain effects. Metagenomic sequencing

indicated higher species diversity and higher abundance of anti-

inflammatory bacteria in the fecal microbiota transplantation

intervention group, including Alistipes putredinis, A. muciniphila,

Bifidobacterium adolescentis, SCFAs-producing bacterium

Christensenella minuta, and secondary bile acids-producing

bacterium Clostridium leptum. Metabolomics analysis showed that

indoleacetic acid and unsaturated fatty acids (DHA, DPA, and EPA)

with anti-inflammatory effects were significantly enriched

(Yang et al., 2022). These studies suggest that A. muciniphila
TABLE 1 Links between Akkermansia muciniphila and immune-related diseases.

Immune-
related
diseases

Model Change in
Akkermansia
muciniphila
abundance
compared to
healthy
controls

Efficacy
after
intervention
with
Akkermansia
muciniphila

Microbiota
analysis
approach

Potential mechanisms Ref.

Systemic
lupus
erythematosus

Mice
model

NR Beneficial
for disease

16SrRNA
sequencing

Regulate cytokine levels in the circulation,
restore the intestinal barrier integrity, and
remodel the gut microbiome

(Guo
et al., 2023)

Psoriasis Mice
model

Reduced Beneficial
for disease

16SrRNA
sequencing, qPCR

Improve intestinal microenvironment and
regulates the intestinal homeostasis

(Tan et al.,
2018;
Sonomoto
et al., 2023)

Atopic dermatitis Mice
model

Increased Beneficial
for disease

Metagenomic
shotgun
sequencing, qPCR

Improve immune responses and the production
of filaggrin in the skin and ZO-1 in the
intestinal barrier.

(Hong et al.,
2022; Lee
et al., 2022)

Asthma Human,
Mice

Reduced Beneficial
for disease

16SrRNA
sequencing, qPCR

Induce the secretion of anti-inflammatory
cytokine IL-10 and prevented the secretion of
pro-inflammatory cytokines like IL-12, change
the microbiota composition

(Demirci
et al., 2019;
Michalovich
et al., 2019)

Inflammatory
bowel disease

Mice
model

Reduced Beneficial
for disease

16SrRNA
sequencing, qPCR

Protect the gut barrier function and reduce the
levels of inflammatory cytokines, improve the
microbial community.

(Bian
et al., 2019)

Human
immunodeficiency
virus

Human Reduced NR 16S rRNA gene
and whole
genome shotgun
metagenomic
sequence

Changed the gut microbiota composition and
increase the abundance of favorable anti-
inflammatory bacteria

(Isnard
et al., 2020;
Yanavich
et al., 2022)

Immune-related
liver injury

Mice
model

Reduced Beneficial
for disease

16SrRNA
sequencing, qPCR

Enhance expression of Occludin and Tjp-1 and
inhibited CB1 receptor, strengthen intestinal
barriers and reduce systemic LPS level, increase
microbial richness and diversity

(Wu
et al., 2017)
f

NR, not reported; qPCR, quantitative polymerase chain reaction.
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could ameliorate mucosal inflammation either via microbe-host

interactions, which protect the gut barrier function and reduce

the levels of inflammatory cytokines, or by improving the

microbial community.

Si-Ni-San (SNS) is a herbal medicine that modulates the gut

microbial community and markedly inhibits inflammatory

responses by improving intestinal flora dysbiosis, reducing the

abundance of pro-inflammatory flora, and upregulating the

abundance of anti-inflammatory species (Wang et al., 2021; Cai

et al., 2023). A study exploring the potential modulatory effects of

GeGen QinLian decoction on intestinal flora found that the NOD/

RIP2/NF-kB signaling pathway is inhibited in the mesenteric lymph

nodes and serum of mice that received fecal microbiota

transplantation from mice fed GeGen QinLian decoction, these

changes are associated with changes in A. muciniphila (Deng et al.,

2021). Coptis chinensis is a Chinese herb that can improve the

intestinal barrier by increasing the abundance of Akkermansia

(Yang et al., 2023; Zhao et al., 2023). Codonopsis pilosula extract

could alleviate the symptoms of acute colitis in mice by regulating

the intestinal microbiota. Bacterial 16S rRNA sequencing analyzed

showed that addition of Codonopsis pilosula extract stimulating the

growth of three important probiotics, Bifidobacterium spp.,

Lactobacillus spp., and A. muciniphila. Gas chromatography

determined the content of SCFAs in feces found that Codonopsis

pilosula extract has selectively increased the bacteria that produced

SCFAs, and promoted the production of SCFAs, alleviated

malnutrition symptoms in colitis (Jing et al., 2018). These

findings imply that the administration of herb medicine can

ameliorates the symptoms of acute colitis.

The relationship between A. muciniphila and herb medicine

play an important role in maintaining intestinal barrier integrity

and intestinal microenvironment homeostasis. More animal trials

combined with clinical studies are urgently needed to further
Frontiers in Microbiomes 04
elucidate the mechanisms for the effect of specific probiotic

bacteria in preventing IBD.
4.2 A. muciniphila, herbal medicine, and
human immunodeficiency virus

The CC chemokine receptor 5 is an attractive target for HIV as

it is expressed at high levels in intestinal CD4 T cells, which are

severely depleted during infection (Brenchley and Douek, 2008;

Weichseldorfer et al., 2022). HIV infection disrupts the intestinal

barrier, leading to translocation of microbial products. Although

antiretroviral therapy (ART) can control the viral load and CD4 T

cell count, it is difficult to normalize gut dysbiosis and chronic

immune activation, which affect disease progression (Marchetti

et al., 2013; Zicari et al., 2019). Evidence has shown that gut

damage and microbial translocation contribute to the risk of non-

AIDS comorbidity and mortality (Ouyang et al., 2023). Therefore,

upregulation of intestinal barrier function may be a promising

strategy in people living with HIV (PLWH).

It is particularly important to explore the gut microbiota

mechanisms in PLWH (Schretter, 2020). A reduction in A.

muciniphila in the gut is one of the changes associated with ART-

naïve and ART-treated PLWH compared with noninfected people

(Rocafort et al., 2019). Furthermore, the abundance of A. muciniphila

in 27 chronically HIV-1-infected patients treated with ART was

similar to the abundance in noninfected people (Rocafort et al., 2019).

A Phase 2b trial studying the ability of supplementation with

probiotics to reduce disease-associated systemic immune activation

in an immune-unresponsive phenotype of PLWH showed that 18

patients in the probiotic group had increased blood CD8 and CD4+ T

cell activation compared with 10 patients in the placebo group

(Rousseau et al., 2022).
TABLE 2 Regulation of the intestinal flora by the active ingredients in herbal medicine for the treatment of immune-related diseases.

Immune-
related
diseases

Chinese herb Model Change in
Akkermansia
muciniphila
abundance

Potential
mechanisms

Change of indicators Ref.

Rheumatoid
arthritis

Atractylodes koreana Mice
model

Increased Inflammatory factors ↓,
imbalance of intestinal
flora and SCFAs↑

synovial infiltration and vascular
proliferation↓, TNF - a, IL-1, IL-1
b, IL-2, IL-6, hs-CRP ↓

(Pang
et al., 2021)

Ulcerative
colitis

Icariin,
Coptis chinensis Franch.

Mice
model

Increased Tissue damage and
inflammatory response ↓

Modulating the p-p65/p65
expression.,
IL-6, TNF-a, NF-kB↓

(Yang et al.,
2021; Zhang
et al., 2021)

Non-alcoholic
fatty
liver disease

Si Miao Formula, MDG,
an Ophiopogon
japonicus polysaccharide

Mice
model

Increased Modulate lipid-
related pathways

Acly, Fas, Acc, Scd-1 ↓, pro-
inflammatory cytokines (Il-1b,
Nlrp-3) ↓

(Zhang et al.,
2022b; Zeng
et al., 2023)

Cancer
Immunotherapy

Huoxue Yiqi Recipe-2 Mice
model

Increased Modulate the
composition of
intestinal flora

NR (Teng
et al., 2020)

Irritable bowel
syndrome

Wuji Wan Male
wistar
rats

Increased Goblet cell proliferation↑,
restored the mucus
barrier,
tight junctions↓

mucin↑, tight junction proteins
Occludin, ZO-1 ↑, MLCK↓

(Chen
et al., 2017)
TNF, tumor necrosis factor; IL, Interleukin; CRP, C-reaction protein; NF-kB, nuclear factor kappa-B; Nlrp-3, nucleotide binding oligomerization domain-like receptor protein 3; MLCK, myosin
light-chain kinase; ZO1, tight junction protein 1; NA, not reported.
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A study of seven chronically simian immunodeficiency virus-

infected pigtail macaques showed that ART plus probiotics/prebiotics

increases the frequency and functionality of the gastrointestinal tract by

upregulating the expression of APC-related genes, enhancing the

reconstitution and functionality of CD4+ T cells, and reducing the

fibrosis of colonic lymphoid follicles (Klatt et al., 2013). Thus, ART

combined with probiotic/prebiotic symbiotic supplementation in

PLWH may promote increased intestinal CD4+ T cell reconstitution

and mitigate inflammatory sequelae, significantly improve disease

prognosis, and provide a new perspective for the management of

HIV (Klatt et al., 2013; Ortiz et al., 2016).

Herbal medicine regulates the intestinal flora, inhibits the

abnormal proliferation of opportunistic pathogens, and delays the

clinical progression of AIDS. 16S rRNA gene sequencing of 30

patients with post-ART immunodeficiency who were treated with

Shenlingguben immune granules or Artesunate tablets plus ART

showed that treated patients possessed a higher abundance of

Sutteralla species and Verrucomicrobiota after treatment, which

was positively correlated with enhancements in immune function

and the CD4+ T cell count (Wu, 2021). In a mouse model of

immunosuppression established by cyclophosphamide, the

administration of dandelion and Codonopsis significantly

improved the immune organ index, immunoglobulin levels, and

the white blood cell count, possibly in association with the

abundance of Bifidobacterium and Lactobacillus and an increase

in intestinal flora diversity (Gu et al., 2019). The relationship

between A. muciniphila abundance and herbal medicine in

PLWH requires further elucidation.
4.3 A. muciniphila, herbal medicine, and
cancer immunotherapy

Cancer immunotherapy is an innovative treatment and its

effectiveness depends on the activity of the host immune system.

The intestinal microbiota plays an important role in immune

regulation, the immune response, and tumor immunity by

affecting the tumor microenvironment. Disturbance of the

intestinal microbiota promotes tumor formation. In addition, the

microbiota may play an important role in ameliorating

tumorigenesis (Janney et al., 2020; Wang et al., 2020; Matson

et al., 2021; Schmitt and Greten, 2021). The intestinal microbiota

is closely associated with various immune cells. Some bacteria, such

as A. muciniphila, Clostridiales, and Ruminococcaceae, have been

shown to prevent systemic immune suppression by strengthening

intestinal barrier integrity and systematically reducing

inflammation. Furthermore, the microbiome governs the gut

ecosystem to circumvent primary resistance to immune

checkpoint inhibitors (Routy et al., 2018).

One study investigated whether the gut microbiome affects the

response to anti-PD-1 immunotherapy in patients with

hepatocellular carcinoma using metagenomic sequencing. The

results showed that the intestinal microbiome, specifically A.

muciniphila and Ruminococcaceae spp., can improve the efficacy

of PD-1 by enhancing immune metabolism during the treatment of

hepatocellular carcinoma. In addition, changes in the abundance of
Frontiers in Microbiomes 05
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of immunotherapy in hepatocellular carcinoma (Zheng et al., 2019),

and the long-term survival prospects (Kharofa et al., 2023). Analysis

of the fecal metagenome in long-term survivors of pancreas

adenocarcinoma showed that patients cured of this cancer had a

greater abundance of A. muciniphila, compared with patients who

completed pancreatectomy and chemotherapy (Kharofa et al.,

2023). Amuc_2172, a newly discovered antitumor component of

A. muciniphila, inhibits the viability of cells by promoting the

cytotoxic T lymphocyte-related immune response (Jiang et al.,

2023). A subcutaneous melanoma and colorectal tumor-bearing

mouse model showed that IL-2 combined with the oral

administration of A. muciniphila strengthens antitumor immune

surveillance by activating the Toll-like receptor 2 signaling pathway

(Shi et al., 2020a). These findings propose that A. muciniphila in

cancer treatment, is a novel therapeutic strategy with prospecting

application for cancer treatment in clinical practice.

The active ingredients of herbmedicine or compound interact with

intestinal flora on target organs to enhance immunity against tumors.

A recent attempt to evaluate the effects of sini Decoction(SND) and gut

microbes on colorectal cancer revealed that SND upregulates the

expression of CD8+ T lymphocytes, increases the relative contents of

beneficial bacteria (including A. muciniphila), and ameliorates the

degree of malignancy of the tumor, which demonstrates that SND

changes the intestinal microbiota composition in mice (Wang et al.,

2021). Huoxue Yiqi Recipe-2 is a classic herbal medicine prescription

described in the “Synopsis of Prescriptions of the Golden Chamber”,

which increases the abundance of A. muciniphila and may therefore

enhance the therapeutic effect of PD-L1 (Teng et al., 2020).Wenzi Jiedu

Recipe (WJR) has been proven to be clinically useful in the treatment of

colorectal cancer. The 16S rDNA sequencing method was used to

analyze the changes of gut microbes revealed that WJR significantly

enriched for Oscillibacter and Bacteroides_acidifacien in tumor-bearing

mice with colorectal cancer. Meanwhile, WJR significantly increased

the proportion of CD8+ T cells and the expression of immune-

associated cytokines IL-10, IFN-g, and TNF-a (Qiu et al., 2022). The

above studies suggest that traditional Chinese medicine can improve

tumor immunotherapy by adjusting the intestinal microecological

structure. It is anticipated that clinical outcomes for patients with

cancer will improve in the near future with the introduction of cancer

immunotherapy combined with A. muciniphila.

Recently, medical researchers have proved that herb medicine

can enrich intestinal bacteria and enhance immunity. However, the

relationship between intestinal flora and TCM syndrome type in

immunotherapy needs further research.
4.4 A. muciniphila, herbal medicine, and
immune-related liver injury

The liver is a key, frontline immune tissue that maintains the

homeostasis of the systemic immune response and overall tissue

health (Li et al., 2015). Immune-related liver injury(IRLI) is

mediated by the immune response and characterized by

inflammatory cell infiltration, inflammatory granuloma

formation, and damage to the structure of the hepatocyte cords
frontiersin.org
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(Nakano et al., 2010). IRLI is an important factor in the

development of liver fibrosis, cirrhosis, and even liver tumors,

and determines the outcome of the disease (Zhan and An, 2010).

Various lines of evidence have linked gut microbiota dysbiosis with

barrier autoimmunity and beyond, especially in the setting of

immune-related liver injury (Abe et al., 2018; Wei et al., 2020).

The gut microbiota and harmful substances initiate the downstream

immune signal of liver cells through toll-like receptor 4 and other

pattern recognition receptors, directly cause an inflammatory

response, thereby aggravating inflammation-induced liver injury

(Hritz et al., 2008).

Accumulating evidence indicates that the severity of immune-

mediated liver injury is related to the microbiome. Dysbiosis is the

cause of the development of immune hepatitis. Klebsiella and

Enterococcus are up-regulated and bifidobacteria, ruminococcus

and Lactobacillus are down-regulated in patients with immune

hepatitis, which leads to a decrease in the ratio of bifidobacteria

to Enterococci (Liu et al., 2022). An animal model of acute liver

injury was induced by the injection of concanavalin A into the tail

vein. Administration of A. muciniphila decreased hepatocellular

apoptosis and the concentrations of pro-inflammatory cytokines

and chemokines. This may be because the decreased concentrations

of Fas, DR 5, and CB1 receptor enhanced the expression of Bcl-2,

occludin, and Tjp-1 (Wu et al., 2017). Amuc_1100 (Amuc) may

exert an immunomodulatory function by upregulating the mRNA

levels of Nlrp3 and Asc in the liver of S. typhimurium-infected mice

(Shi et al., 2020b; Song et al., 2023)

In concanavalin A-treated mice, the administration of

zhenqiyigan decoction results in decreased serum concentrations

of ALT, AST, and superoxide dismutase, increased expression levels

of Fas, FasL, Bax, and PCNA, and regulates the balance of Thl/Th2,

indicating that zhenqiyigan decoction plays a protective role in

promoting the apoptosis of damaged hepatocytes and stimulating

hepatocyte regeneration (Xiaoli, 2016).A study found that

geniposide and chlorogenic acid, the active ingredients of Qushi

Huayu decoction, can reduce the expression of genes required for

lipid synthesis in the liver of rats with non-alcoholic fatty liver

disease, and reduce serum LPS levels in rats. This may be because

the increased abundance of Bacteroides and Clostridium induces

Treg cell production that inhibits intestinal inflammation and

improves intestinal barrier function in rats (Feng et al., 2017).

Research on the regulation of gut microbiota dysbiosis in IRLI

by herb medicine is well underway, which will provide a novel

direction for targeting the gut microbiota to explore potential

therapeutic strategies for IRLI. However, more studies are still at

the efficacy observation stage and fail to address the in-

depth mechanism.
5 Mechanisms of action of
A. muciniphila and herbal medicine
in immune-related diseases

A large body of experimental and clinical evidence has

accumulated on the use of gut microbiota strategies to improve
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health. Several models have been proposed based on the available

evidence for the mechanisms underlying the effects of A.

muciniphila in the treatment of IRDs (Figure 1).
5.1 Maintenance of the intestinal barrier

The gut microbiota exerts a number of functions including

preventing epithelial damage, maintaining the integrity of the

intestinal barrier, and preventing pathogens from invading the

mucosal tissues. The intestinal mucous layer plays an important

role in protecting against mechanical, chemical, and biological

attack, and contributes to maintaining a steady state (Cornick

et al., 2015; Etienne-Mesmin et al., 2019). The mucus layer can

directly attach to lectin-like proteins by immune cells as a result of

the glycan immune effect. Mucus is part of the innate intestinal

mucosal barrier that reduces the exposure of antigens and bacteria

to the intestinal epithelial cell-based immune system, and its

protective effect is also due to its synergistic action with the

immune system to serve as the first line of immune defense

against potentially harmful compounds (Pelaseyed et al., 2014;

Corfield, 2015; Johansson and Hansson, 2016). The gut

microbiota is important in the formation and regulation of the

intestinal mucus layer. The mucosal surface is enriched in A.

muciniphila, which protect against pathogen adhesion by

increasing mucus production and occupying available binding

sites on the mucins, thus preventing pathogen invasion (Kim and

Ho, 2010; Donaldson et al., 2016). Probiotics might also affect the

mucus barrier. A. muciniphila is a key bacterium that modifies

the mucus layer to communicate with host cells and stimulates the

production of mucus (Everard et al., 2013; Shin et al., 2014; Wu

et al., 2017; Alvarado et al., 2019; Bárcena et al., 2019; van der Lugt

et al., 2019). A muciniphila expresses specific outer membrane

proteins, thus potentially strengthening the intestinal barrier

(Paone and Cani, 2020). A. muciniphila-derived extracellular

vesicles influence gut permeability through the regulation of tight

junctions (Chelakkot et al., 2018). A recent study revealed that after

gavage of A. muciniphila into ApcMin/+ mice, the thickness of the

intestinal mucus layer returned to normal, accompanied by an

increase in the number of A. muciniphila in the mucus layer and

goblet cells, which might be related to changes in the intestinal

immune system, permeability, and microbial metabolites caused by

A. muciniphila colonization (Dingemanse et al., 2015). Similarly, a

study found that supplementation with A. muciniphila improved

glucose sensitivity, inflammation, antioxidant capacity, and

intestinal barrier function in mice (Ma et al., 2023). Herbal

medicine has been shown to be involved in the repair of epithelial

barrier integrity by upregulating the expression of the tight junction

protein zonula occludens protein 1 (ZO-1) and occludin contents

(Alharris et al., 2022). This implies that A. muciniphila may exert a

beneficial regulatory role in host immune function by protecting the

intestinal barrier. Herbal medicine can increase the thickness of the

mucus layer, the expression of tight junction proteins, and the

population of A. muciniphila in the intestine. Meanwhile,

supplementation with herbal medicine reduced endotoxemia and

the expression of various pro-inflammatory factors in mice (Zhu
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et al., 2018). Therefore, it is reasonable to believe that there is a

crucial link between A. muciniphila and herbal medicine that

maintains the integrity of the intestinal barrier.
5.2 Adjusted microbiome

Disorders of the gut microbiota increase intestinal permeability

and lead to systemic inflammation by activating immunity, ultimately

causing disease. Oral administration of A. muciniphila significantly

decreased inflammatory cell infiltration, the mRNA expression of

inflammatory factors, and improved dysbiosis of the intestinal flora
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in mice (Mulhall et al., 2022; Zhang et al., 2022a). Analysis of 16S rRNA

amplicon sequences showed that Akkermansia induced significant

intestinal microbiota alterations, including the increased abundance

of Akkermansia, Muribaculaceae, and Parabacterbides goldsteinii, and

the decreased abundance of Escherichia_Shigel la and

Enterobacteriaceae (Xu et al., 2023). Proteomic and metabolomic

analyses revealed that A. muciniphila activates glucose and lipid

metabolism in gut epithelial cells, leading to an increase in ATP

production (Song et al., 2021). Herbal medicine acts through a

variety of immunomodulatory pathways to suppress inflammation,

including modulating microbial composition and reducing intestinal

inflammation and permeability (Ma et al., 2018; Chhabra et al., 2021;
FIGURE 1

Potential mechanisms of herb medicine and action of Akkermansia muciniphila in immune-related diseasesThe potential mechanisms of herb medicine
and action of A. muciniphila in controlling IRDs are (1) regulate the gut microbiota promote the probiotic functor and reduce chronic inflammation (2);
intestinal homeostasis are associated with increased numbers of goblet cells, enhanced mucus barrier (3); A. muciniphila derived extracellular vesicles
(AmEVs), a bilayer structure composed of lipid, protein, lipopolysaccharides as well as other molecules, and Amuc_1100 also regulate intestinal barrier
permeability by altering tight junction protein expression through activating TLR2 pathway (4); maintenance of gut barrier integrity through the reduction
of LPS synthesis and reduce the express of pro-inflammatory factors (5); increase the differentiation of Tregs in CD4+ T cell population, reduce chronic
inflammation and upregulate TLR4-mediated immune response, and regulate the immune system. IRDs, immune-related diseases; SCFAs, short-chain
fatty acids; LPS, lipopolysaccharide; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon; TLR, Toll-like receptor.
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Alharris et al., 2022; Medina-Larqué et al., 2022; Lu et al., 2023).

Andrographolide prevents type 2 diabetes by modifying the gut

microbiota composition, elevating the Bacteroidetes/Firmicutes ratio,

enriching microbial species such as A. muciniphila, and increasing the

short-chain fatty acid concentration (Su et al., 2020). Oothecamantidis,

a commonly prescribed herbal medicine for chronic kidney disease,

mitigates renal fibrosis in mice by modulating glutamine metabolism,

remodeling the gut microbiota, increasing the levels of some probiotics

(including A. muciniphila), and downregulating apoptosis and

inflammation-associated pathways (Wang et al., 2023). Dysbiosis of

the gut microbiome and related metabolites has been intimately

associated with disease. In a 5/6 nephrectomized rat model, 16S

rRNA sequencing and untargeted metabolomic analysis showed a

marked decline in microbial diversity and richness, accompanied by

significant changes in 291 serum metabolites, which were mediated by

altered enzymatic activities and dysregulation of lipids, amino acids,

bile acids, and polyamine metabolism. Administration of poricoic acid

A and Poria cocos ameliorated microbial dysbiosis and lowered the

serum levels of microbial-derived products, including glycine-

conjugated compounds and polyamine metabolites (Feng et al.,

2019). Sodium houttuyfonate (SH), a derivative of the medicinal

herb Houttuynia cordata Thunb, could maintain gut microbiota

homeostasis, thereby improving intestinal function. Administration

with SH weaken the oxidative stress and inflammatory response and

enhance the intestinal mucosal integrity in micemodel. 16S rRNA gene

sequencing results showed that SH regulate the abundance and

diversity of microbiota with an increase of beneficial bacteria,

including SCFAs producing bacteria and probiotics (Cheng et al.,

2023). Taken together, research shows that herbal medicine might

have beneficial biological effects on A. muciniphila, which plays an

important therapeutic role by regulating the population, distribution,

and metabolites of intestinal microbiota to promote its

probiotic function.
5.3 Enhancement of immune function

A. muciniphila strains increase the differentiation of Tregs from

CD4+ T cell populations and alleviate chronic inflammation by

reducing the concentrations of IL-8, TNF-a, and IFN-g through the

enhancement of anti-inflammatory Tregs (Zhai et al., 2019). Toll-like

receptor 4 functions as a sensor mediating the crosstalk between the

intestinal commensal microbiome and host immunity. A study

exploring the relationship between Toll-like receptor 4 and intestinal

microbial ecology found that A. muciniphila ameliorated colitis by

upregulating the immune responses mediated by RORgt+ Treg cells

(Liu et al., 2022). Butyrate serves as an energy source for intestinal

epithelial cells and has anti-inflammatory effects. A. muciniphila is

beneficial in maintaining the homeostasis of the intestinal microbiome

by producing butyrate, thus promoting anti-inflammatory immune

functions (Huang et al., 2022). A study found that the therapeutic

outcome of IL-2 was significantly potentiated when A. muciniphilawas

increased in mice with subcutaneous melanomas and colorectal

tumors. Mechanistically, Amuc, derived from the outer membrane

protein of A. muciniphila, activates the Toll-like receptor 2 signaling
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pathway, which is conducive to the antitumor immune response (Shi

et al., 2020a). Although research shows that A. muciniphila regulates

the immune system, the mechanisms underlying the effects of A.

muciniphila on the regulation of anti-inflammatory immune functions

require further investigation.

Herbal medicines can improve the body’s immune response by

indirectly exerting an immune regulation effect or directly acting on the

intestinal epithelial cells (Xu et al., 2015). Yi-Yi-Fu-Zi-Bai-Jiang-San

(YYFZBJS) is a classical prescription that can regulate T lymphocytes

and improve immunity. Diversity analysis of fecal samples

demonstrated that YYFZBJS regulated animal’s natural gut flora,

including Bacteroides fragilis, Lachnospiraceae and so on. Intestinal

lymphatic, and mesenteric lymph nodes, accumulated CD4+ CD25+

Foxp3 positive Treg cells were reduced by YYFZBJS in Apc Min/+

mice. In conclusion, YYFZBJS regulate inflammation expression by the

gut microbiota mediated immune cells and increased immune function

(Sui et al., 2020). GeGen QinLian decoction (GQD), a Chinese herb

formula. 16S rRNA sequencing revealed that GQD can restore the

intestinal flora, resulting in an increase in A. muciniphila,

Desulfovibrio_C21_c20 and Lactobacillus_salivarius, and a decrease in

Escherichia_coli. GQD inhibited the NOD/RIP2/NF-kB signaling

pathway in the intestine and affected the expression of downstream

related inflammatory cytokines in mesenteric lymph nodes and serum

in mouse. In addition, GQD treatment showed systemic protection by

restraining the inflammatory differentiation of CD4 + T cells. In

conclusion, GQD can affect systemic immunity by restore intestinal

flora (Deng et al., 2021).

In summary, herb medicinal can positively regulate the

intestinal microorganisms, promotes probiotic colonization,

inhibit the growth of pathogenic microorganisms, influence the

differentiation and apoptosis of intestinal cells, thereby improve

the intestinal barrier function and immune function. However, the

intestinal microbiota is a dynamically changing and complex

population. In-depth research is needed in the study of herbal

medicines acting on the gut flora to modulate the immune system

for the treatment of IRDs.
6 Conclusions and perspectives

When the intestinal barrier is destroyed, the permeability of

intestinal mucosa increases, bacterial translocation causes systemic

inflammatory response, while the occurrence and development of

IRDs are mostly closely related to the inflammatory response of the

body. A. muciniphila plays an important role in protecting the

intestinal barrier. It is crucial to understand the link between A.

muciniphila and IRDs. The abundance of A. muciniphila may be

reduced by the interaction between the organism and the gut

microbiota when the host’s immune function is suppressed. A.

muciniphila has a complex relationship with the immune responses

of the host and is a potential therapeutic target for IRDs linked to

the microbiome. A. muciniphila also exerts probiotic properties and

has been used in therapeutic interventions with satisfactory results.

The mechanism of action of herbal medicine in treating IRDs is

associated with repairing the intestinal barrier, regulating the

intestinal microbiota and its metabolites, or regulating the
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immune response to alleviate disease. Using herb medicine

regulating the gut microbiota to maintain it in a relatively stable

state has great potential and clinical research value in the treatment

of IRDs. However, several key issues remain unresolved. Most of the

mechanistic studies on the related effect of A. muciniphila and herb

medicine have been performed using animal models. Given the

differences in the genetics and external environment between

animal models and humans, the mechanisms of action of A.

muciniphila in humans are yet to be proven. There is an urgent

need for more animal trials combined with clinical studies to further

elucidate the mechanistic basis for the effects of A. muciniphila in

the treatment of IRDs and to develop novel therapeutic targets.

Future studies should focus on how the active components of herbal

medicine are metabolized by intestinal flora, and whether these

metabolites have synergistic or antagonistic effects on the treatment

of autoimmune diseases, this will enable the discovery of new

beneficial metabolites of the intestinal flora, which will provide a

new direction for clinical drug treatment of IRDs.
Author contributions

XD: Writing – original draft. P-FM: Conceptualization, Writing

– review & editing. X-XM: Conceptualization, Writing – review &

editing. J-YY: Conceptualization, Writing – review & editing. L-PL:

Conceptualization, Writing – review & editing. L-RX: Writing –

review & editing.
Frontiers in Microbiomes 09
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Henan Province COVID-19 Traditional Chinese

Medicine Scientific Research Special Project (2022ZYFY02), Henan

Province Special Project of Traditional Chinese Medicine

Scientific Research (2019AZB006, 2019JDZX2096, 2022JDZX154),

and the Science and Technology Research Project of Henan

Province (222102310570).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Abe, K., Takahashi, A., Fujita, M., Imaizumi, H., Hayashi, M., Okai, K., et al. (2018).
Dysbiosis of oral microbiota and its association with salivary immunological
biomarkers in autoimmune liver disease. PloS One 13 (7), e0198757. doi: 10.1371/
journal.pone.0198757

Alharris, E., Mohammed, A., Alghetaa, H., Zhou, J., Nagarkatti, M., and Nagarkatti,
P. (2022). The ability of resveratrol to attenuate ovalbumin-mediated allergic asthma is
associated with changes in microbiota involving the gut-lung axis, enhanced barrier
function and decreased inflammation in the lungs. Front. Immunol. 13, 805770. doi:
10.3389/fimmu.2022.805770

Alvarado, D. M., Chen, B., Iticovici, M., Thaker, A. I., Dai, N., VanDussen, K. L., et al.
(2019). Epithelial indoleamine 2,3-dioxygenase 1 modulates aryl hydrocarbon receptor
and notch signaling to increase differentiation of secretory cells and alter mucus-
associated microbiota. Gastroenterology 157 (4), 1093–108.e11. doi: 10.1053/
j.gastro.2019.07.013

Ansaldo, E., Slayden, L. C., Ching, K. L., Koch, M. A., Wolf, N. K., Plichta, D. R., et al.
(2019). Akkermansia muciniphila induces intestinal adaptive immune responses during
homeostasis. Science 364 (6446), 1179–1184. doi: 10.1126/science.aaw7479
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