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Université Claude Bernard Lyon 1, France

REVIEWED BY

Yunxue Guo,
Chinese Academy of Sciences (CAS), China
Tasha M. Santiago-Rodriguez,
Diversigen, United States
Veronique Delesalle,
Gettysburg College, United States

*CORRESPONDENCE

Erica M. Hartmann

erica.hartmann@northwestern.edu

RECEIVED 05 March 2024

ACCEPTED 30 August 2024
PUBLISHED 09 October 2024

CITATION

Huttelmaier S, Shuai W, Sumner JT and
Hartmann EM (2024) Phage communities in
household-related biofilms correlate with
bacterial hosts.
Front. Microbiomes 3:1396560.
doi: 10.3389/frmbi.2024.1396560

COPYRIGHT

© 2024 Huttelmaier, Shuai, Sumner and
Hartmann. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 09 October 2024

DOI 10.3389/frmbi.2024.1396560
Phage communities in
household-related biofilms
correlate with bacterial hosts
Stefanie Huttelmaier1, Weitao Shuai1, Jack T. Sumner1

and Erica M. Hartmann1,2,3*

1Department of Civil and Environmental Engineering, McCormick School of Engineering,
Northwestern University, Evanston, IL, United States, 2Center for Synthetic Biology, Northwestern
University, Evanston, IL, United States, 3Division of Pulmonary and Critical Care Medicine, Department
of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
The average American spends 93% of their time in built environments, almost

70% of that is in their place of residence. Human health and well-being are

intrinsically tied to the quality of our personal environments and themicrobiomes

that populate them. Conversely, the built environment microbiome is seeded,

formed, and re-shaped by occupant behavior, cleaning, personal hygiene and

food choices, as well as geographic location and variability in infrastructure. Here,

we focus on the presence of viruses in household biofilms, specifically in

showerheads and on toothbrushes. Bacteriophage, viruses that infect bacteria

with high host specificity, have been shown to drive microbial community

structure and function through host infection and horizontal gene transfer in

environmental systems. Due to the dynamic environment, with extreme

temperature changes, periods of wetting/drying and exposure to hygiene/

cleaning products, in addition to low biomass and transient nature of indoor

microbiomes, we hypothesize that phage host infection in these unique built

environments are different from environmental biofilm interactions. We

approach the hypothesis using metagenomics, querying 34 toothbrush and 92

showerhead metagenomes. Representative of biofilms in the built environment,

these interfaces demonstrate distinct levels of occupant interaction. We

identified 22 complete, 232 high quality, and 362 medium quality viral OTUs.

Viral community richness correlated with bacterial richness but not Shannon or

Simpson indices. Of quality viral OTUs with sufficient coverage (614), 532 were

connected with 32 bacterial families, of which only Sphingomonadaceae,

Burkholderiaceae, and Caulobacteraceae are found in both toothbrushes and

showerheads. Low average nucleotide identity to reference sequences and a

high proportion of open reading frames annotated as hypothetical or unknown

indicate that these environments harbor many novel and uncharacterized phage.

The results of this study reveal the paucity of information available on

bacteriophage in indoor environments and indicate a need for more virus-

focused methods for DNA extraction and specific sequencing aimed at

understanding viral impact on the microbiome in the built environment.
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1 Introduction

Continuous interactions between humans and the built

environment drive reciprocal exposure to and assembly of indoor

microbiota (Young et al., 2023; Klepeis et al., 2001). Niches within

the built environment continuously accrue microorganisms sourced

from human occupants, outdoor environments, or a mixture of the

two, and many of these communities may then serve as a source of

exposure back to humans (Gilbert and Stephens, 2018). These

exposures influence health and disease, including via the

transmission of potential pathogens (Maamar et al., 2020).

Understanding the community structure and dynamics of the

built environment microbiome is key to deciphering its

relationship to human health.

Previous studies have shown variations between microbiomes of

different human-constructed environments and even between elements

of one type of indoor environment (Yooseph et al., 2013). For example,

door handles, toothbrushes, and showerheads as elements in the home

environment harbor distinct yet often intersecting taxa (Ross and

Neufeld, 2015; Zinn et al., 2020). The availability of water is a major

driver of community composition, impacting not only which taxa

survive in an environment but also their level of activity (Lax et al.,

2019). However, even within niches experiencing prolonged periods of

wetness, microbiome composition is not uniform. Whether and how

human occupants interact with a niche profoundly impacts the

proportion of human-associated organisms in the resulting

community. For example, surfaces experiencing direct contact with

human skin, e.g., touch screens or handles, tend to reflect the human

skin microbiome (Hsu et al., 2016).

Studies on built environment microbiomes have largely focused

on bacterial members or non-bacterial pathogens, with a few

notable exceptions (Ibfelt et al., 2015; Prussin et al., 2019).

Despite their importance, research on the roles viruses play in

built environment is very limited. In a built environment study

sampling 738 metagenomes from residences, subways, and public

facilities, 66% (310/471) of recovered viral operational taxonomic

units (vOTUs) were found in residences (Du et al., 2023). In

another study carried on mass transit systems (MetaSUB), no

viruses were identified consistently (in >70% of samples) in 4,728

metagenomes. Results indicated that viral populations correlated

with host populations in these environments and that viral

communities were distinct between surfaces and air (Du et al.,

2023; Mason et al., 2016). As much as the bacterial content of the

built environment lacks a common “core,” the viral content seems

even more variable. In-depth studies on viromes, especially on

bacteriophages, in specific built environments are needed to

understand the ecological interactions between viruses and

bacteria which shape the built environment microbiota.

As the number of observations and the availability of data

increase, quantifying which factors shape the built environment

microbiomes and the magnitude of their impact is becoming

feasible. Among those factors, availability of water and the degree

of human interaction are likely key. Interactions between viruses

and hosts and the physical and chemical characteristics of the

environment may have important impacts, especially on

infrequently detected or less abundant community members. To
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microbiome in general and the virome in particular, we contrast

showerhead and toothbrush microbiomes, as both are characterized

by biofilm-based communities that likely harbor virus-host

interactions and are frequently wet. However, they differ in their

interaction with human occupants: while there is direct contact

between toothbrushes and the human oral cavity, showerheads

rarely receive any direct human inputs.

Previous studies have shown that showerheads contain both

pathogens and antimicrobial resistance genes (Webster et al., 2021;

Gebert et al., 2018). In addition, non-tuberculosis mycobacteria

were shown to be overabundant in showerheads with a municipal

water source. Indeed, water sources were the most important

indicator of microbial community composition. In contrast,

toothbrush microbiomes contain a mix of human oral-associated

and environmentally sourced organisms. No strong associations

were found between toothbrush microbiome composition and any

available meta-data, including oral hygiene practices and storage

location, but the antimicrobial resistance gene diversity was

strongly related to the environmentally sourced community

members (Blaustein et al., 2021).

The built environment microbiome is highly variable and

impacted by a multitude of factors. Understanding the nature and

magnitude of these impacts, including the potential role of

bacteriophage in governing microbial community structure and

function, is essential for informing design that promotes human

and environmental health, as well as the longevity of the elements

that comprise our buildings. Studying phage and their hosts using a

metagenomics approach provides a better understanding of phage-

bacteria interactions in biofilms and potentially facilitates biofilm

control. This study assessed 96 showerhead samples and 34

toothbrush samples using metagenomic sequencing. Leveraging

bioinformatic pipelines designed for virome studies, we identify

phages in these environments, study their connections with

bacterial communities, and characterize the potential roles they

play in shaping their perspective microbiomes as well as affecting

health for the humans interacting with these environments.
2 Materials and methods

2.1 Sample collection, preparation,
and sequencing

Both toothbrush and showerhead datasets were collected using

community science initiatives. Collection and processing have been

previously described in detail by Webster et al., 2021 and Blaustein

et al., 2021 for showerheads and toothbrushes respectively

(Blaustein et al., 2021; Webster et al., 2021).

Briefly, 496 showerhead biofilms were sampled by volunteers from

across the United States and submitted for amplicon sequencing with

corresponding metadata. Of these, 92 samples were selected for

metagenomic sequencing. Selection of the 92 samples was first based

on the non-zero presence of Mycobacterium determined by 16S, and

then split evenly between well versus public water sources. DNA was

extracted and used to build libraries for sequencing on an Illumina
frontiersin.org
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HiSeq 4000 at the NUSeq core facility (Northwestern University). Each

library was sequenced twice on a different flow cell to produce 184

2x150bp read datasets. Two extraction blanks were also produced and

sequenced per flow cell. Technical sequencing duplicate files were

concatenated to produce one set of forward and reverse reads per

sample for a total of 92 metagenomes and 4 blanks.

The 36 toothbrush samples and corresponding metadata were

collected from volunteers within a 100-mile-radius of Northwestern

University, Evanston, IL, USA. DNA was extracted and prepped for

sequencing on an Illumina HiSeq 4000 at the NUSeq core facility to

create 34 metagenomes with 2x150bp reads.
2.2 Metagenome data processing
and analysis

2.2.1 Pre-processing and metagenomic assembly
Reads were quality filtered and adapter trimmed using fastp

(v0.20.1) (optional arguments: “–detect adapter for pe” –length

required 50) (Chen et al., 2018). Unpaired reads and reads that did

not meet quality cutoff scores were dropped. Cleaned reads were

decontaminated by mapping to the Gr38 human reference genome

using Bowtie2 (v.2.4.5) and parsed using samtools (v1.10.1) (Langmead

and Salzberg, 2012; Danecek et al., 2021). Data before and after quality

control were manually assessed using fastqc (v 0.11.9) and multiqc

(v1.2)(“Babraham Bioinformatics - FastQC A Quality Control Tool for

High Throughput Sequence Data,” n.d; Ewels et al., 2016).

Metagenomic sequence diversity and estimated coverage were

calculated using Nonpareil 3 (Rodriguez-R et al., 2018).

Reads were assembled on a per-sample basis using

metaSPADES (v3.15.5) (Nurk et al., 2017). Assembly quality was

checked using Quast (v.5.2.0) (Gurevich et al., 2013). Contigs were

binned using Metabat2 (2.12.1), MaxBin2 (v.2.2.7) and Concoct

(v.1.0.0) then bins were combined using the MetaWRAP (v.1.3.2)

bin refine module (Kang et al., 2015; Wu et al., 2016; Alneberg et al.,

2014; Uritskiy et al., 2018). Bin quality was checked using CheckM

(v.1.0.12) and bins with greater than 70% completeness and less

than 10% contamination were kept for further analysis (Parks et al.,

2015). GTDB-tk (v.2.1.1) was used to identify bacterial taxonomy

(Chaumeil et al., 2020).

To assess bacterial diversity, short reads were run through

MetaPhlAn (v.4.0) on a per sample basis (Blanco-Mıǵuez et al.,

2023). Diversity was also assessed using assembly. MAG abundance

was determined by aligning reads from each sample to all MAGs

using BBMap (v.39.01) with the flag: -ambiguous=best (Bushnell,

2014). To aggregate binned contig statistics into bins, bin contigs

were flagged with a bin ID prior to read mapping. After mapping,

length and base values were summed on a per bin and per sample

bases. Coverage of each bin in sample was determined by dividing

the sum of bases by the sum of length.

2.2.2 Metagenomic virus assessment
and characterization

Putative phage contigs were identified using VIBRANT (v1.2.1)

with default parameters, VirSorter2 (v.2.2.4) with default

parameters, and geNomad (v.1.5.2) with default parameters (Kieft
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et al., 2020; Guo et al., 2021; Camargo et al., 2023). Viral contigs

were checked for completeness using CheckV (v.1.0.1) (Nayfach

et al., 2021). Alignment of all three viral contig ID outputs was done

using megablast. Viral contigs were clustered at 95% nucleotide

identity and 85% alignment fraction to create representative vOTUs

using the anicalc.py and aniclust.py python scripts from the

CheckV GitHub repository. The longest sequence was selected

from each cluster as the representative for each vOTU. The

vOTUs that were designated as medium quality, high quality and

complete by CheckV were kept for downstream analysis.

To determine abundance of vOTUs across samples, cleaned

reads from all samples were first aligned to representative vOTUs

using BBMap (v.39.01) with the flag: -ambiguous=best (Bushnell,

2014). Metapop (v.0.0.42) was used to create an abundance table

(Gregory et al., 2022). Raw abundance was calculated as the average

sequencing depth truncated to the central 80% (termed as TAD).

Normalized abundance was calculated by scaling the TAD by the

number of reads mapped to viral contigs in each sample.

Open reading frames (ORFs) in above-medium quality vOTUs

were predicted using Prodigal (v.2.6.3), then taxonomy was

assigned using vContact2 (v.0.11.0) (Hyatt et al., 2010; Bin Jang

et al., 2019). Phage host predictions were made using iPHoP

(v.1.3.2) (Roux et al., 2023). The network created from iPhoP

outputs mapped vOTUs to the most likely host based on multiple

phage host pairing tools. Further, the iPhoP host database was built

from the GTDB database and was customized to add MAGs

identified in our samples. MAGs were assigned a taxonomy and

placed into the GTDB custom database, which were then paired

with sample vOTUs. Viral cluster network and phage host

interaction network were visualized using Cytoscape (v.3.9.1)

(Shannon et al . , 2003). Viral contigs associated with

Mycobacterium were searched against the representative virus

genomes (ref_viruses_rep_genomes, downloaded from https://

ftp.ncbi.nlm.nih.gov/blast/db/ on 2/16/2024) using BLASTn

(v2.12.0) (Morgulis et al., 2008; Camacho et al., 2009).

FastANI was used to calculate assembly-wide average

nucleot ide identi ty (ANI) of vOTUs connected with

Mycobacterium genus (Jain et al., 2018). Output was visualized

using Python library Matplotlib. Functions of the predicted ORFs

were annotated using EggNOG-mapper (v2.1.12) (Cantalapiedra

et al., 2021; Huerta-Cepas et al., 2019). All the ORFs that did not

have EggNOG-mapper hit or were not annotated with any

functions in categories of Clusters of Orthologous Genes (COG),

KEGG KO or BRITE, Carbohydrate-Active enZYmes (CAZy),

Pfam, Gene Ontology (GO), or Biochemical Genetic and

Genomic (BiGG) databases were denoted as “uncharacterized/

hypothetical” ORFs. All ORFs were clustered with 60% coverage

and 30% amino acid sequence identity using MMseqs2 (v14.7e284)

with a clustering mode that includes protein fragments in the

clusters (Steinegger and Söding, 2017). Nucleotide sequences of

vOTUs were searched for antibiotic resistance genes using

Resistance Gene Identifier (RGI v6.0.2) with the Comprehensive

Antibiotic Resistance Database (CARD v3.2.6) (Alcock et al., 2023)

and virulence factors using BLASTn (v2.12.0) with the Virulence

Factor Database (VFDB) full dataset (Alcock et al., 2023; Liu et al.,

2021). Antibiotic resistance gene hits were filtered by MAPQ score
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≥ 50, sequence identity ≥ 30%, and percentage length of reference

sequence ≥ 80%. Percent alignment to virulence factor were set at ≥

30% to get counts of loose hits as the average alignment percentage

was low.

To construct a phylogenetic tree, Genomad protein annotations

were searched for Major Capsid Proteins (MCP). Genes identified

as MCP were parsed into an amino acid fasta file, aligned using

Muscle (v.5) (Edgar, 2021) with default parameters, and organized

into a newick tree using FastTree (v.2.1) (Price et al., 2010). The tree

was visualized in R using TreeIO (Wang et al., 2020).
2.3 Data visualization and
statistical analysis

All downstream analyses were conducted in R, unless otherwise

noted. Alpha diversity indexes and Bray-Curtis dissimilarity

matrices were calculated within sample type for both the bacterial

and viral community using the R package vegan (v.2.6.4) (R Core

Team, 2020; Oksanen et al., 2022). Principal coordinates analysis

(PCoA) was performed with the dissimilarity matrices to visualize

viral and bacterial beta diversity. Permutational multivariate

analysis of variance (PERMANOVA) was conducted with Bray-

Curtis dissimilarity matrices on collected metadata for different

sample types. The Benjamini-Hochberg procedure (also known as

false discovery rate (FDR), adjusted p value referred to as BH

adjusted p value hereon) was applied to adjust the p values of

PERMANOVA results (number of permutations = 9999). In

addition, Mantel tests were conducted to measure the Spearman
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correlations between viral community, bacterial community, and

numerical sample metadata matrices.
3 Results

3.1 Quality and quantity of viral contigs are
not determined by sequencing depth

From 92 showerhead and 36 toothbrush metagenomes, we

assembled a total of 72,024,810 scaffolds, of which 1,229,013 were

greater than 1 kbp (Supplementary Table S1). We identified a total

of 8,885, 44,647, and 27,743 viral contigs, using Vibrant, VirSorter2,

and geNomad, respectively (Supplementary Figure S1, Table S2).

After combining the three outputs and dereplication, there were a

total of 54,358 unique viral contigs, of which 39,503 were greater

than 1 kbp in length. Using CheckV, 22 vOTUs were identified as

complete (estimated 100% complete), 232 as high quality (estimated

>90% complete) and 362 as medium quality (estimated 50-90%

complete) for a total of 616 vOTUs from both toothbrush and

showerhead samples that were greater than 2.5 kbp in length

(Figure 1A). Metapop further removed 2 vOTUs, which did not

reach a 70% length coverage and 10x mean depth coverage

threshold for a total of 614 vOTUs. All other vOTUs were low

quality or not determined and were not used in this analysis.

The quantity and quality of viral contigs was not consistent across

sample types, even when normalizing for the number of samples and

sequencing depth. We consistently have more viral contigs in each

toothbrush sample (75% of viral contigs with above-medium quality
FIGURE 1

Metagenomes from showerhead and toothbrush show different characteristics. Length of dereplicated, quality filtered viral contigs (A). Number of
vOTUs identified from each sample in relation to number of clean reads (B). Nonpareil estimated average coverage, sequencing efforts (C), and
sequence diversity (D) for each sample.
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were identified in toothbrush metagenomes). Toothbrush samples

had more reads that passed quality control on a per sample basis,

which may have partially contributed to a larger number of above-

medium quality viral contigs. Showerhead samples showed much

lower counts of above-medium quality viral contigs on a per sample

basis compared to toothbrush samples in the same sequence number

range (Figure 1B), indicating the identification of viral contigs from

showerhead samples is likely saturated. The N50 did not impact the

number of vOTUs identified in either sample type (showerheads: R =

0.095, p = 0.37; toothbrushes: R = 0.18, p = 0.3).

In addition to sequencing depth, the abundance of viruses could

also artefactually impact our ability to identify viral contigs. We

would expect low relative abundance viruses to be less likely to

produce reads and thus less likely to be detected and assembled. The

number of reads mapped to above-medium quality vOTUs did not

impact the number of above-medium quality vOTUs identified in

toothbrushes (R = 0.029, p = 0.87); however, a correlation was

observed in showerheads (R = 0.26, p = 0.011).

Toothbrush samples showed lower metagenomic coverage

(Figure 1C) and higher upper bound and range of metagenomic

sequence diversity (Figure 1D) compared to showerhead samples,

indicating more diverse microbiomes. Under these conditions, we

would expect that increased sequencing depth would increase the

number and quality of viral contigs. However, our data indicate that

this is not the case. The number and quality of viral contigs

identified in these datasets is not determined by sequencing

depth. To capture more of the viral component of the microbial

community, specific enrichment techniques are likely necessary.
3.2 Viral populations in showerhead and
toothbrush microbiomes are distinct

Both showerheads and toothbrushes receive tap water as input

for the microbial community, thus we may expect some overlap in

community composition (Figures 2A, C). We compared relative

abundances of top ranked bacterial taxa and normalized abundance

of top ranked viral taxa across both sample types (Figures 2B, D). Of

614 vOTUs, 314 were detected in only one sample and no vOTU

was shared across all 126 metagenomes. Viral taxa featured low

average relative abundance with low frequency appearing in both

showerhead and toothbrush samples (Supplementary Figure S2),

although some vOTUs had high relative abundance in several

microbiomes (Figures 2B, D). This feature of frequency-

abundance relationship differed from that of bacterial community

on toothbrushes (Blaustein et al., 2021), indicating that there might

not be a core group of viral taxa that characterizes the niche

environment viromes. There was no overlap in the top 15 most

abundant vOTUs in showerhead and toothbrush samples,

indicating distinct viral populations exist in the two different

types of household biofilms. This discrepancy reflects the

overwhelming contribution of the human microbiome to

toothbrushes: with the exception of Brevundimonas, all of the

most abundant bacterial taxa detected on toothbrushes are

commonly associated with humans, primarily in the oral cavity

(Figure 2C). In our previous comparison of the bacterial
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found in both sample types, with both taxa being more frequently

detected on toothbrushes (Blaustein et al., 2021). Nevertheless, for

the 154 vOTUs for which major coat protein sequences could be

predicted, the phylogenetic distribution was split across both

sources, rather than clustered by source (Supplementary Figure S3).
3.3 Apparent connections between viral
and bacterial communities

We hypothesized that more diverse bacterial communities

would harbor more diverse bacteriophages. Positive correlations

(Pearson correlation, p < 0.05) were observed for the richness of

viral and bacterial communities in both showerhead and toothbrush

microbiomes, but not for Shannon or Simpson indexes, both of

which take evenness into account (Figure 3). Thus, while a greater

number of hosts translates to a greater number of viruses in a

community, the evenness of the host distribution is not imparted

onto its viral counterpart.

The toothbrush viral community is not as dispersed as the

showerhead viral community (Figures 4A–C). There were 16

showerhead samples and 3 toothbrush samples containing

singleton vOTUs (defined here as vOTUs found only in one

sample). Bacterial communities also showed a similar trend of

higher sparsity in showerhead samples (Figures 4D–F). This

could be result of the geographical distribution of the samples, as

the showerhead samples were taken nationwide of the United States

while the toothbrush samples were taken within 100 miles of

Northwestern University. In addition, the two sample types

represent very different environments where showerheads were

nutrient limited, and toothbrushes contacted human-related

microbiomes, food residues and chemicals.

Among the showerhead sample metadata (Supplementary Table

S3), only the source of household water was shown as a significant but

very weak predictor of the difference in showerhead viral community

composition (PERMANOVA R2 = 0.026, BH adjusted p < 0.01).

Metadata collected along with toothbrush microbiomes are all

categorical factors, none was significantly associated with the

toothbrush viral community composition (PERMANOVA, BH

adjusted p > 0.05). Similar results were observed for the marker

genes based bacterial community profiles, where the only significant

but weak association was between the source of household water and

the showerhead bacterial community (PERMANOVA R2 = 0.046, BH

adjusted p < 0.01) in our datasets. The previous study on toothbrush

microbiomes also showed very weak effects of biotic and abiotic factors

shaping the bacterial community composition (Blaustein et al., 2021).

The previous showerhead microbiome study that recruited more

samples showed that location, climate, water chemistry, water supply

and source, and household variables had weak effects (with less than

2% of the variation explained) on the bacterial community composition

(Webster et al., 2021). Although documented environmental factors

showed minimal to no impact on both viral and bacterial communities

in our sample sets, the bacterial community composition had a

significant correlation with the viral community composition in both

showerhead and toothbrush environments (Mantel statistics r = 0.302
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and 0.560 for showerhead and toothbrush, respectively; p = 0.001 for

both environments).
3.4 Genomic evidence of host-
phage interactions

Of 614 quality vOTUs, 532 vOTUs were predicted to associate

with hosts in 32 bacterial families. All 32 families contained
Frontiers in Microbiomes 06
taxonomy-assigned MAGs in either a showerhead or toothbrush

sample. The aggregate phage-host network showed a clear split

between sample types; most vOTU-bacterial family pairs appeared

in either showerhead or toothbrush microbiomes. Both environments

harbor some vOTUs that are associated with Burkholderiaceae,

Caulobacteraceae, Pseudomonadaceae, Sphingomonadaceae, and

Xanthomonadaceae (purple triangles in Figure 5), which are

bacterial families identified in both environments with high relative

abundances (Supplementary Table S4) except for Pseudomonadaceae.
FIGURE 2

Bacterial (A, C) and viral (B, D) community relative abundances in showerhead (A, B) and toothbrush (C, D) samples.
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As the showerhead samples in this study were selected for those

with the presence of Mycobacterium, it is not surprising that 44

vOTUs were found to connect with genus Mycobacterium.

Although the vOTUs were dereplicated with 95% nucleotide

identity and 85% alignment fraction, similarities among the

mycobacteriophages were still expected to some degree. However,

no clusters were observed based on the average nucleotide identity

(Figure 6), meaning the mycobacteriophages found in this study,

even from similar niche environments (showerheads), possess high

diversity in their genomic contents. BLAST against the

representative virus database (ref_viruses_rep_genomes) showed

that only 19 out of 44 vOTUs associated with Mycobacterium

yielded hits with > 1 kbp alignment length, and all had less than

85% identity to the database Mycobacterium phage sequences
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(Supplementary Table S5) . This indicates that novel

mycobacteriophages might have been recovered from the

metagenomes of showerhead and toothbrush samples.

Zooming in the phage-host network analysis at the MAG level,

most of the mycobacteriophage vOTUs were interlinked with multiple

Mycobacterium MAGs (Supplementary Figure S4A). The vOTU with

the highest truncated average depth (TAD) among all samples

(vOTU_1) is specifically paired with a MAG recovered from the

showerhead sample (NTM00995) where vOTU_1 has the highest

TAD (Supplementary Figure S3B), indicating potential active

infection in that microbiome. The best BLAST hit of vOTU_1 is

Mycobacterium phage IdentityCrisis, whose host is Mycobacterium

smegmatis mc²155 according to The Actinobacteriophage Database

(https://phagesdb.org/phages/IdentityCrisis/).
FIGURE 3

Richness (A), Shannon index (B), and Simpson index (C) of viral and bacterial communities. Pearson correlation coefficients and p-values were
calculated for showerhead samples only (blue), toothbrush samples only (purple).
FIGURE 4

Beta diversity of bacterial communities (A–C) and viral communities (D–F). Bray-Curtis distances calculated from arcsine square root transformed
relative abundances were used for ordinations.
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FIGURE 5

Phage-host network reveals that while most interactions are predominantly specific to a single environment (showerhead or toothbrush),
Sphingomonadaceae, Burkholderiaceae, and Caulobacteraceae are identified in common. Center nodes are bacterial taxa from GTDB plus the MAGs
recovered from our metagenomes collapsed to family level.
FIGURE 6

Average nucleotide identity (ANI) of vOTUs connected to genus Mycobacterium. Note that ANI much below 80% will not be reported by FastANI.
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3.5 General functional content of phage-
related contigs

There was a large span of vOTU sizes and predicted ORFs in each

vOTU sequence , inc lud ing the group o f po t en t i a l

mycobacteriophages identified from our samples (Figure 7A). This

mirrors the remarkable diversity of mycobacteriophage reported by

other studies (Hatfull, 2022). A considerable portion (45.9%) of the

ORFs found in the vOTU sequences were singletons based on

relatively generous thresholds of 30% amino acid sequence identity

and 60% coverage, which highlights the diversity of gene contents of

viral communities (Figure 7B). The general functional content of the

phage-related contigs featured ORFs of uncharacterized/hypothetical

proteins and proteins falling into the “function unknown” category of

the clusters of orthologous genes (COG, Figure 7C). ORFs

categorized for functions like replication, recombination and repair,

transcription, and nucleotide transport and metabolism were

abundant in the vOTUs, which is expected for viruses. Searching

the ORFs against the databases of antibiotic resistance and virulence

factors did not result in many hits with confidence (Supplementary

Figure S5), indicating these viruses are unlikely to carry cargo with

known adverse human health effects. However, this result further

highlights the highly uncharacterized and diverse features of the viral

contigs recovered from our samples.
4 Discussion

4.1 The built environment microbiome

The built environment can refer to several different types of

human constructed and occupied environments, from more private
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spaces like our homes and offices, to less private settings like public

transportation or other public use spaces. Each of these distinct

settings is further defined by a collection of niche environments that

are subject to varying conditions of sunlight, water, chemical input

and human interaction.

In our current study, toothbrushes and shower heads look

nothing like each other and represent very different niches. They

are, nevertheless, both biofilm-dominated engineered environments

that happen to be found inside of buildings and that have important

implications for human exposure. An evident characteristic of the

virome in both showerhead and toothbrush environments is the

lack of shared community members, which is not only observed

between sample types (Figure 4A), but also between different

samples within a niche: the abundance heatmap of all above-

medium quality vOTUs showed that even viromes of the same

sample type do not share many taxa (Supplementary Figure S6).

This trend is different for bacterial communities, where more

similar patterns were observed across samples of the same type

(Supplementary Figure S7). With bacterial taxonomy assignments,

one can observe clearly that the toothbrush environments feature

human microbiome related genera such as Klebsiella, Streptococcus,

and Veillonella (top 3 ranked genera in toothbrush samples),

whereas showerhead environments feature both genera

demarcated from Mycobacterium (that is, Mycolicibacterium and

Mycobacteroides) and genera commonly found in soil or drinking

water (Sphingopyxis, Sphingobium, and Aquabacterium). Similar

niches in different built environments may select for similar

communities to some extent, but from one built environment to

another, the detailed features of the microbial assemblages are likely

determined by the impacts of environmental factors at each specific

built environment. All this to say, the built environment

microbiome is not a monolith.
FIGURE 7

Statistics and characteristics of open reading frames (ORFs) in viral contigs. Number of ORFs and vOTU sequence size (A). Distribution of the sizes of
the ORF clusters at 30% amino acid similarity and 60% coverage and the proportions of annotated ORFs (B). Number of ORFs classified in different
Clusters of Orthologous Genes (COG) categories per vOTU sequence (C).
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4.2 Impacts of environmental factors

A possible explanation for the lower alpha diversity of

showerhead viromes is that showerheads receive very limited

inputs (only receiving household water, and the input source is

relatively stable) compared to toothbrushes, and the showerhead

bacteria communities were hosts of less diverse, less well-known

communities of phages. The insignificant effects for most of the

environmental factors on viral community could reflect a relatively

small sample size in addition to the high variation across the

microbiomes in indoor environments. Since the correlations

between bacterial and viral community composition matrices

were significant, and the source of household water had a much

weaker effect on the viral community than on the bacterial

community, it is possible that bacterial communities were affected

by environmental factors and then modulated the phage

communities as their host organisms.
4.3 Implications of the host-
phage interactions

While we were able to construct a vOTU-bacterium interaction

network from metagenomes of the built environment niches,

longitudinal sampling would be needed for elucidating the

dynamics of the host-phage interactions in these niches. From

our snapshot of the host-phage networks from built environment

microbiomes, clusters of viral contigs associated with bacterial

families contain potential human pathogens, calling for the

attention on the implications of the viruses on built environment

microbiomes and human health. As these viruses seem unlikely to

carry antibiotic resistance or virulence genes as cargo, the viruses

themselves may not be a high priority for concern. Conversely, they

may be an interesting source of phages for therapeutic application

(Stachler et al., 2021).

As the niche environments in this study are generally nutrient

limited, we do not expect viral contig ORFs encoding functions

related to carbon cycle and nutrient removal to have high

abundance as is observed in wastewater treatment viral contigs

(Y. Chen et al., 2021). Although higher abundance of antimicrobial

resistance genes in the phage DNA fraction compared to bacterial

DNA fraction (Subirats et al., 2016) and significant relationship

between the profiles bacterial/phage-comediated antimicrobial

resistance genes (Yang et al., 2021) were reported in wastewater

treatment systems, our study only showed a few instances of

antimicrobial resistance in viral contigs recovered from the built

environment metagenomes. It is possible that the highly diverse

genomic content of the built environment viruses hinders our

ability to identify known antimicrobial resistance genes. Whether

interactions between phages and their host have noteworthy

implications on human health risks such as antimicrobial

resistance dissemination in the built environments requires

further investigation.
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4.4 Confounding variables

Technical artefacts, including sample collection and processing and

specific sequencing method, are well-known confounding factors for

microbiome studies (Adams et al., 2015). Similarly, challenges in

sampling low biomass environments and the technical difficulties of

producing enough uncontaminated DNA for analysis are well

documented for studies focusing on bacteria (Shen et al., 2021). These

challenges are exacerbated for viruses, particularly because adsorption of

bacteriophages on polypropylene labware affects the reproducibility of

phage research (Richter et al., 2021). Although sequencing depth was not

observed to impact our ability to identify viruses within a sample type in

this study, the quality of sequencing and assembly overall likely

influences presence/absence of viruses between different sample types

within the built environment. However, sequencing depth alone is

insufficient to fully reveal the viral community. In existing

metagenomic studies in the built environment generated to query the

bacterial community, we are likely only capturing a fraction of the

existing virome. Differences in signal to noise ratio of virus to bacterial

hostsmight impact the number of low signal viruses detected, viral contig

assembly, and ultimately the number and quality of viral contigs

identified (Kosmopoulos et al., n.d.).

Even in the absence of artefacts, identifying viruses from

metagenomes is limited by database bias. For environments like

toothbrushes, many of the viruses identified are linked with human-

associated bacterial hosts. While this is to be expected, it is unclear

whether the environmental contribution, e.g., from tap water, is

underestimated or if unknown viruses escape detection due to their

lesser degree of documentation. When considering the

showerheads, Mycobacteriophages have the highest representation

in RefSeq, and are therefore easier to identify with higher certainty

(Hatfull, 2020). It is thus unsurprising that we were able to recover

many Mycobacterium related phages, but they may be

overrepresented because we know to look for them and our tools

will identify them. Moreover, viral metagenomic literature

generated before 2022 uses morphology-based taxonomy families,

Podoviridae, Myoviridae and Siphoviridae to describe the tailed

phage community (Turner et al., 2023). As the viral bioinformatic

field continues to grow dramatically and viral taxonomy continues

to develop, datasets need to be re-analyzed to confirm prior results

and facilitate ongoing comparisons.

Linking viral communities to metadata also presents a challenge.

Different niches and different studies prioritize different types of

metadata, making statistical analysis between studies impossible in

some cases. Given the diversity of niches within the built environment,

it is perhaps unrealistic to expect harmonization of metadata. The

MixS-BE standards include metadata considered to be important for

interpreting built environment microbiome results, e.g., the number of

occupants in a building. However, it is unclear how relevant that or

other prescribedmetadatamight be to themicrobial community within

a showerhead or on a toothbrush (Glass et al., 2014). The integration of

categorial data, such as material types, with numerical results is a

further statistical challenge.
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Finally, one important question that we cannot answer with

these data is how these environments are changing over time. Phage

host interactions are dynamic, and even with tools that allow us to

estimate whether a phage will infect a certain host, longitudinal or

manipulative studies are needed to corroborate actual infection. In

the case of showerheads and toothbrushes, viruses may be transient

within the community. The genetic content of viruses, and whether

they are transient in a system might inform how stable these

communities are, and how vulnerable they might be to change.

These challenges all highlight the continued need for expanded

method development, longitudinal sampling, and virus-specific

analyses to further probe the role of these incredibly diverse

entities in the microbial communities that surround us.
5 Conclusion

We constructed the network of viral contigs and their potential

bacterial hosts from showerhead and toothbrush microbiomes.

Although the two niche environments are both in bathrooms of

households, the microbiomes, especially the viral communities, are

distinct with unique features. These observations suggest that there is

little communication between these compartments within the built

environment. Viral composition and abundance in the built

environment appear not to be directly affected by environmental

factors but may be modulated by their bacterial hosts’ response to

environmental factors. High disparity and genomic content diversities

are the dominant characteristics of the viromes in this current study.

No evidence shows risks of viral contigs carrying antibiotic resistance

genes or virulence factors in these built environments, but the high

diversity of phage taxa and functional genes merits further study to

elucidate their implications on human health or utility for

biotechnology or therapeutics. With a limited number of built

environment metagenomes to compare to, a future study might

compare the built environment viral community with natural

environments or other engineered environments like wastewater,

which have benefited from larger and more robust studies.
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