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Jesús Muñoz-Rojas,
Meritorious Autonomous
University of Puebla, Mexico

REVIEWED BY

Liliana Lopez Pliego,
Meritorious Autonomous
University of Puebla, Mexico
Alma Rosa Netzahuatl
Alma Rosa Netzahuatl-Muñoz,
University of Tlaxcala, Mexico

*CORRESPONDENCE

Gita Mahmoudabadi

gitam@stanford.edu

RECEIVED 27 March 2024

ACCEPTED 17 July 2024
PUBLISHED 03 September 2024

CITATION

Mahmoudabadi G, Homyk K, Catching AB,
Mahmoudabadi A, Foley HB, Tadmor AD and
Phillips R (2024) Machine learning models
can identify individuals based on a
resident oral bacteriophage family.
Front. Microbiomes 3:1408203.
doi: 10.3389/frmbi.2024.1408203

COPYRIGHT

© 2024 Mahmoudabadi, Homyk, Catching,
Mahmoudabadi, Foley, Tadmor and Phillips.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 03 September 2024

DOI 10.3389/frmbi.2024.1408203
Machine learning models
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Metagenomic studies have revolutionized the study of novel phages. However

these studies trade depth of coverage for breadth. We show that the targeted

sequencing of a small region of a phage terminase family can provide sufficient

sequence diversity to serve as an individual-specific barcode or a “phageprint’’,

defined as the relative abundance profile of the variants within a terminase family.

By collecting ~700 oral samples from ~100 individuals living on multiple

continents, we found a consistent trend wherein each individual harbors one

or two dominant variants that coexist with numerous low-abundance variants. By

tracking phageprints over the span of a month across ten individuals, we

observed that phageprints were generally stable, and found instances of

concordant temporal fluctuations of variants shared between partners. To

quantify these patterns further, we built machine learning models that, with

high precision and recall, distinguished individuals even when we eliminated the

most abundant variants and further downsampled phageprints to 2% of the

remaining variants. Except between partners, phageprints are dissimilar between

individuals, and neither country-of-residence, genetics, diet nor cohabitation

seem to play a role in the relatedness of phageprints across individuals. By

sampling from six different oral sites, we were able to study the impact of

millimeters to a few centimeters of separation on an individual’s phageprint

and found that such limited spatial separation results in site-specific phageprints.
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Introduction

Viruses of bacteria, or phages, are among the most numerous

and diverse biological entities on our planet. They play important

roles as regulators of microbial ecosystems through rapid infection

cycles and gene transfer events (Roux et al., 2016; Touchon et al.,

2017; Gregory et al., 2019). Yet, compared to their bacterial hosts,

and despite their proven potential to transform fields such as

medicine, agriculture and biotechnology (Szafrański et al., 2017;

Svircev et al., 2018; Kortright et al., 2019; Sieiro et al., 2020; Duan

et al., 2022), phages remain as some of the least studied members of

the human microbiome (Shkoporov and Hill, 2019; Guerin and

Hill, 2020). Even across familiar habitats such as the human body,

the identity of phages and their corresponding bacterial hosts, their

population structure, their modes of transfer between habitats, their

co-evolutionary history with bacterial and human hosts, their role

in health and disease, and other important topics remain

relatively unexplored.

We chose to study phages residing in the human mouth as it

represents a multifaceted and medically important ecosystem. Studies

have revealed phages as highly abundant members of the human oral

cavity, with distinct communities at sites of disease, capable of

augmenting the bacterial arsenal of pathogenic genes (Roberts and

Mullany, 2010; Edlund et al., 2015; Santiago-Rodriguez et al., 2015;

Martıńez et al., 2021; Matrishin et al., 2023). These studies have relied

on the shotgun metagenomic approach, in part because one of the

defining features of viral genomes is the lack of a universally

conserved sequence analogous to the 16S ribosomal RNA

sequences in bacteria, which is used as a universal marker to draw

conclusions about bacterial evolution and taxonomic classification

(Woese et al., 1990; Yarza et al., 2014). This marker-based approach is

indispensable to microbial ecology because it allows a high coverage

depth of the 16S region, which in turn, enables precise and

reproducible depictions of bacterial community compositions

(Caporaso et al., 2011; Proctor et al., 2018).

Using current sequencing platforms, the trade-off for coverage

depth is typically the coverage breadth (Supplementary Figure S1).

In comparison to the marker-based approach, shotgun

metagenomics provides much greater breadth of coverage and

offers several advantages. However, it suffers from several key

disadvantages. The coverage depth is often heterogeneous and

remains comparatively low in these studies, meaning that the de

novo assembly of genomes from complex environments remains a

significant challenge (Yu et al., 2017; Johansen et al., 2022), even for

abundant members with relatively short genome lengths (Dutilh

et al., 2014; Meyer et al., 2022). Moreover, the genomes assembled

through shotgun metagenomics are often consensus genomes or an

average representation of similar genomes within an environment

(Lapidus and Korobeynikov, 2021).

Due to these technical challenges, the marker-based approach

allows orders of magnitude greater coverage depth by focusing the

reads on a small genomic segment, and thus provides a much higher

resolution view of microbial communities. The targeted approach is

therefore widely used to complement shotgun metagenomic

depictions of bacterial communities (Costea et al., 2018; Rath
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et al., 2019). Because of their high mutation rates and rapid

turnovers, viral genomes are incredibly diverse, and the study of

the sequence diversity within a virus family could be much more

deeply explored through targeted sequencing. Even within a single

“species”, viral genomes exist as a collection of related variants,

which are often described as “quasispecies’’ or as a “mutant

spectrum”. The mutant spectra of RNA viruses is well described

in early and recent studies of RNA phages and RNA viruses,

particularly for lab strains (Eigen, 1971; Weissmann et al., 1973;

Domingo and Perales, 2019; Sun et al., 2021). DNA phages, on the

other hand, are less studied within this framework, primarily

because they have lower mutation rates compared to RNA phages

(Domingo et al., 2012). Even less explored are the mutant spectra of

DNA phages within a dynamic host environment.

As such, the overarching aim of this study was to apply targeted

sequencing to understudied DNA phages in their native context, to

explore their inter-and intra-personal diversity, their spatial

patterns of distribution, as well as temporal dynamics in a large-

scale and high-resolution fashion that allows for observing their

individual variants as well as the collective mutant spectra. Thus, we

first had to choose regions within phage genomes on which to

perform targeted sequencing. While one could relatively easily

target sequences of well characterized phages, we were motivated

to create a roadmap for mining metagenomic datasets and shedding

light on understudied phages.

Towards this goal, we first developed and benchmarked

Metagenomic Clustering by Reference Library or MCRL, which is

an algorithm for the identification of non-redundant gene families

within a metagenome (Tadmor and Phillips, 2022). In a previous

study, we then applied MCRL to oral metagenomes of seven

individuals from two studies conducted in two different

continents (Xie et al., 2010; Belda-Ferre et al., 2012; Tadmor

et al., 2023). By focusing the search on the terminase (large

subunit) gene families, we were able to narrow down the search

from thousands of viral gene families to seven non-homologous

terminase families that were shared across individuals in these two

studies (Tadmor et al., 2023).

In the absence of a genomic taxonomy for viruses, we have

referred to those phages that encode members of the same

terminase family as members of the same phage family (Tadmor

et al., 2023). This notation is predicated on previous studies,

including our own (Mahmoudabadi and Phillips, 2018), that have

shown no significant sequence similarity between terminase

sequences of unrelated phages (Brüssow and Desiere, 2001;

Wangchuk et al., 2021) as well as studies that have used the

terminases to build phage phylogenetic trees (Al-Shayeb et al.,

2020; Auslander et al., 2020). Moreover, we focused our search on

terminases because they are among the most functionally-conserved

genes in double-stranded DNA phage genomes (Leavitt et al., 2013;

Lokareddy et al., 2022). Unlike several other viral genes such as

integrases and lysins, terminases lack bacterial homologs, and thus,

are considered to be unique to phages (Casjens, 2003). Additionally,

we have previously successfully used terminases to probe phage-

bacteria interactions within a complex host environment, namely

the termite gut (Tadmor et al., 2011).
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To test whether we were successful in identifying terminase

families that were prevalent enough in the human phageome to be

practical experimental targets, we searched for them across

hundreds of metagenomic samples from the Human Microbiome

Project (HMP) (Human Microbiome Project Consortium, 2012a)

spanning ~100 individuals and 18 body sites (Tadmor et al., 2023).

Remarkably, we showed that despite the individual-specific nature

of the human virome and the small number of individuals from

which these terminase families were originally identified, they are

prevalent across the HMP cohort. In this study we chose to focus on

HB1 and HA terminase families as they were the two most prevalent

families, detected in most individuals within the HMP cohort

(Tadmor et al., 2023). In the following paragraphs we summarize

some of our earlier findings, particularly those pertinent to HA and

HB1 terminase families.

To identify the putative habitats of the phages encoding these

terminase families, we searched through ~4000 environmental

metagenomes from the IMG/VR (Paez-Espino et al., 2017) and

IMG/M (Chen et al., 2019) databases comprising numerous distinct

habitats, in addition to ~100 environmental metagenomes from the

VIROME database (Wommack et al., 2012). Most terminase families

were found to be largely human-associated, and instances where

remote homologs were found in environmental phages, the human-

derived phage sequences were phylogenetically distinguishable from

their environmental counterparts. Additionally, by examining various

body sites, we showed that most terminase families were primarily

localized to the human oral cavity. The HB1 terminase family was

found as an exception given that it is detected also in the human gut,

though we showed that the oral and the gut-derived HB1 terminase

family members were phylogenetically distinct.

Through experiments where we separated the bacterial and viral

fractions of oral samples, we were able to demonstrate that the HA

phage family is likely lysogenic and infects various species of the

Steptococcus genus, whereas the oral HB1 phage family is likely lytic,

and its host species remains to be discovered. Moreover, we show the

positions of the closest HA and HB1 terminase homologs in previously

sequenced full phage genomes (Supplementary Figure S2).

Additionally, through selection pressure analysis and alignment of

functional motifs, we showed that HA- and HB1-encoding phages are

likely functionally active members of the human oral virome. Finally,

we designed primers to target these phage families using their

respective terminase families within oral samples from nine

individuals and showed that we could indeed reliably capture them

experimentally. The primers for HA and HB1 are provided again in

this study (Supplementary Table S1).

In this study, we target the HA and HB1 terminase families to

obtain at least several thousand sequences per terminase family, per

oral sample, and thereby increase the resolution or the coverage

depth by several orders of magnitude from our previous study. By

creating instructional videos and collection kits, we enabled citizen

scientists to gather ~700 samples spanning ~100 individuals

residing in different parts of the world (Figure 1). We will

demonstrate that at high resolution, the mutant spectrum derived

from members of just a single phage terminase family can already

serve as a fingerprint, or a “phageprint” – highly unique to an

individual. Phageprints were not observable through our earlier
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study of metagenomic datasets (Tadmor et al., 2023), and

demonstrate the power of combining metagenomic mining with

targeted sequencing to put a spotlight on uncharacterized phage

families and their sequence diversity in their native contexts.

By examining phage terminase families at 6 different oral sites,

and by comparing phageprints of individuals living across the globe,

we were able to study the effect of spatial separation, ranging from

several millimeters to thousands of kilometers. We found that the

spatial separation of just a few centimeters - the distance between an

individual’s gingival sites and the hard palate, for example - already

results in highly distinct phageprints for the HA phage family. In

contrast, HB1 phageprints from different oral sites within an

individual were highly similar. Additionally, we found that

neither genetics nor cohabitation seem to play a role in the

relatedness of phageprints across individuals.

Furthermore, by daily sampling of phageprints from the tongue

dorsum over the course of a month across ten individuals we

continued to see individual-specific phageprints with many

variants that persisted over time. We also identified variants that

were fluctuating concordantly in partners. Through various

diversity metrics we quantified the inter-and intra-personal

distances between phageprints as a function of space and time.

We used machine learning models to further quantify the

identifiability of an individual’s phageprint and showed

remarkably high model performances on unseen data. These

models had very high performances even as the most abundant

variants were removed and even when 98% of the remaining

variants were randomly removed.
Results

Humans harbor diverse, personal
phageprints that are persistent in time

From a methodological standpoint, targeted sequencing of

teminase families is very similar to 16S sequencing (Caporaso et al.,

2011; Human Microbiome Project Consortium, 2012b). Using

barcoded primers, we employed PCR and next generation

sequencing to attain millions of paired-end reads for each

terminase family (Figure 1). We took stringent measures against

contaminants by 1) conducting our DNA extraction, PCR and post-

PCR experiments in separate physical spaces, and 2) running five no

template control reactions for every PCR run, as well as three no-

sample DNA extraction reactions for every DNA extraction run to

ensure there are no contaminants in the DNA extraction kits. Upon

sequencing and performing several quality control filters, the reads

were demultiplexed based on their barcoded primer sequence. Using

error-correcting DNA barcodes, we were able to detect errors and

removed sequences if they contained errors in their barcode.

Furthermore, we eliminated nearly all sequencing errors by using

paired-end reads which covered the full length of both terminase

families (300 bp) and allowed only paired sequences with 100%

match across the entire sequence (see Materials and Methods).

All reads derived from the same terminase family were then

pooled and clustered based on their DNA sequence similarity into
frontiersin.org
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Operational Taxonomic Units (OTUs), or what we will

interchangeably refer to as variants. An OTU table is constructed

wherein the number of reads belonging to each OTU (columns)

within each sample (rows) is denoted. Using the OTU table, we can

plot the relative abundances of each OTU within a sample. As a

shorthand, we refer to this plot as a phageprint.

With bacterial 16S data, sequences are generally clustered at

97% sequence similarity into OTUs. At this threshold, each OTU is

conventionally referred to as a bacterial species. In the absence of

convention for handling viral targeted sequencing data, we have

used here various sequence similarity thresholds for clustering

including 100% sequence similarity, thereby allowing only

identical sequences in each cluster. We found the results to be

largely robust to variations in the sequence similarity threshold (see
Frontiers in Microbiomes 04
Materials and Methods: Examining the effect of OTU sequence

similarity threshold, Supplementary Figure S3).

As an example, we show the HA phageprint from a subject’s

tongue dorsum (top surface) at two time points (Figure 2A). As

shown in this figure, and across all other phageprints we have

constructed for both terminase families, each phageprint is

dominated by a small number of variants or OTUs (typically one

or two). In addition to these OTUs, there are many OTUs with

abundance values that are low but reproducible, and some that are

fairly persistent in time within each subject. Generally, the

dominant OTUs are not the same across different subjects.

Before probing a larger number of individuals, we aimed to

quantify our pipeline’s detection and reproducibility thresholds to

understand what levels of OTU temporal fluctuation is biological
FIGURE 1

A schematic summary of the main experimental and bioinformatic methods: 1) Discovery of ubiquitous phage families by examining large terminase
sequences that occur across different metagenomic datasets described in our earlier work (Tadmor et al., 2023), 2) experimental sampling of several
cohorts for temporal and spatial analysis of phageprints in related in unrelated individuals, 3) DNA extraction from oral biofilm samples, 4) PCR using
barcoded primers followed by PCR clean-up and paired-end sequencing, 5) joining paired-end reads to eliminate sequencing errors, 6) additional
quality control steps to further eliminate errors based on Phred scores and error-correcting barcodes, 7) demultiplexing of reads based on their
barcode sequence and linking sequences to the sample they originate from, 8) gathering reads from all samples and clustering them based on
sequence similarity into Operational Taxonomic Units (OTUs), 9) counting the number of sequences belonging to each OTU from each sample (i.e.
constructing an OTU table), and rarefying the table so that each sample is represented by the same total number of sequences, and denoising the
OTU table to eliminate OTUs with relative abundances below an experimentally determined reproducibility threshold, 10) visualizing phageprints
which are the relative abundance profiles of OTUs (1 through N) in a given sample, 11) performing various downstream diversity analysis using the
constructed OTU table as the basis, 12) creating machine learning models based on full and downsampled OTU tables. These model types include
Logistic Regression (LR), Multi-Layer Perceptron (MLP), K-nearest Neighbor (KNN) and Gradient Boosting Classifier (GBC). Note that these steps are
performed separately for HA and HB1 sequences.
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versus technical. To that end, we obtained 3 different samples from

a subject’s tongue dorsum. We then performed DNA extraction and

PCR separately on each sample and sequenced these samples. The

logic behind this experiment was to capture a lumped measure of

noise arising from various experimental processes depicted in

Supplementary Figure S4. We show that the relative abundance of
Frontiers in Microbiomes 05
the variants making up each phageprint across these three samples

are highly reproducible, and the maximum standard deviation for

OTU relative abundances was less than 0.007, with the majority less

than 0.002 and close to 0. Moreover, we flagged OTUs that had

appeared in only one or two samples out of three. As expected, we

observed that the number of reproducible OTUs increases as a
A

B

D

C

FIGURE 2

The temporal dynamics of an individual’s phageprint over the course of a month (on average 25 daily samples were collected during this period).
(A, B) HA phageprints from subject 37 at two different time points, (A) 0th time point, right after brushing tongue dorsal and teeth surfaces and
(B) 24 hours after the initial time point (no brushing in between time points). Each phageprint is derived from the analysis of 4000 sequences. OTUs
are defined at 98% sequence similarity. (C) HB1 phageprint temporal dynamics on subject 1’s tongue dorsum. The x-axis contains OTUs ordered
according to the depicted phylogenetic tree of the OTU sequences (the phylogenetic tree is provided largely to serve as a schematic). Each OTU is
composed of identical sequences (i.e. 100% sequence similarity threshold). The y-axis depicts the relative abundance of each OTU, and the z-axis
shows the fluctuations in relative abundance of each OTU in time. (D) Depictions of HB1 phageprint temporal dynamics in different subjects. The
format of these plots is the same as that panel (C), and the order of OTUs is based on their phylogenetic distance and identical across all plots. All
samples are collected from the tongue dorsum. Note that subject 2 and 4 are partners, and their phageprints share some main features.
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function of the relative abundance threshold, and all OTUs with

greater than 0.001 relative abundance were reproducible across all

three samples (Supplementary Figure S5). Thus, we arrived at 0.001

relative abundance as the reproducibility threshold for OTUs, and

denoised OTU tables by eliminating OTUs that did not meet this

threshold across any of the samples. We have performed similar

benchmarking studies on a larger number of subjects and included

separate sequencing runs to account for any variation that may be

introduced by a sequencing run (Supplementary Figure S6). In

short, through stringent quality control filters and benchmarking of

our experimental and bioinformatic workflow, we showed that

phageprints are highly reproducible (see Materials and Methods).

To further explore the temporal dynamics of these phageprints,

ten subjects collected biofilm from the tongue dorsum every 24

hours for a month though on average subjects returned samples

from 25 days as they missed to sample some days. The HB1

phageprint temporal dynamics on a subject’s tongue dorsum is

depicted in Figure 2. Here, to provide a more detailed view, we

cluster the HB1 sequences into OTUs based on 100% sequence

similarity, or in other words, we are depicting the relative

abundance of individual sequences.

Given the dynamic nature of an ecosystem like the human

mouth, it is counter-intuitive that over a month, the main features

of each phageprint is preserved in all subjects. However, as we will

investigate further, there are fluctuations that are biological rather

than technical. A global trend is that the dominant OTUs typically

remain dominant throughout the sampling period in all subjects

(Figure 2). This observation is especially interesting in light of the

wide range of diets and oral hygiene practices across subjects

(Supplementary Figure S7).

To make quantitative pairwise comparisons between

phageprints we employed several commonly used metrics such as

Bray-Curtis and Unifrac, and in doing so, we distill the comparison

of thousands of sequences from any two samples to a single score.

All distance metrics paint similar pictures of the HB1 terminase

family, depicting it as highly individual-specific and persistent in

time (Supplementary Figure S8; Figure 3). Because phageprints in

different individuals have such distinct compositions, abundance-

based metrics are especially suitable for describing them. However,

even the binary Jaccard distance metric which does not consider

variant abundances point to a similar conclusion. As is expected

from the heat maps shown in Supplementary Figure S8, the intra-

personal distances are markedly lower than the inter-personal, with

the notable exception being subjects 2 and 4, who are

partners (Figure 3).
Machine learning models detect with high
precision and recall an individual’s
phageprint even when phageprints are
heavily downsampled

In addition to these distance metrics, we were motivated to

build machine learning models whose performance could further

quantify the predictability of an individual’s phageprint within the
Frontiers in Microbiomes 06
temporal cohort. We first built several types of machine learning

models, including Logistic Regression (LR), K-Nearest Neighbor

(KNN), Gradient Boosting Classifier (GBC), and Multi-Layer

Perceptron (MLP), each of which perform a binary classification

of an individual’s phageprint from the rest (i.e. one-versus-rest

models). The input to these models was the OTU table, where the

rows are samples (i.e. day 1 to 30 for each subject) and the

columns are the OTUs. Across the temporal cohort consisting

of ten individuals, ~7300 HB1 OTUs were collectively detected.

This table was split for training (70%) and testing (30%) such that

models would be trained on 70% of the time points from each

individual. To quantify the performance of the models, we

performed ten iterations of random train/test splits and report

the median and the 95% confidence intervals for the Area Under

the Precision-Recall curve (AUPR) and the Area under the

Receiver-Operator Curve (AUROC).

All model types performed remarkably well with very high

performances for both the Logistic Regression and the Multi-Layer

Perceptron model types (Figure 4; Supplementary Table S2). We

performed the same exercise on an OTU table built from HA

terminase family OTUs, and arrived at similarly high model

performances (Supplementary Figures S9, 10; Supplementary Tables

S4, S5). It is important to note that we excluded subject 4 from this

particular analysis because we wanted to measure the model’s

performance for unrelated individuals, as partners’ coevolving

phageprints would be a confounding factor. We also provide models

built that include both partners and demonstrate that they have high

performances even when highly similar phageprints are included in the

dataset (Supplementary Figure S11). For example, using the GBC

model type, the lowest AUPR and AUROC median values obtained

across subjects were 0.98 and 0.92, respectively.

Given that phageprints are dominated by one or two OTUs, it

is reasonable to assume that the exclusion of these dominant

OTUs would dissolve the individual-specific and time-persistent

nature of phageprints. To formally test this assumption, we

removed the top ten most abundant OTUs of each sample from

the entire dataset. A total of ~600 OTUs were removed from the

dataset, removing on average two thirds of the reads from each

sample. Upon removing these OTUs, we rescaled the OTU table

such that the relative abundance of the remaining OTUs would

again add up to 1. To our surprise, the exclusion of the top most

abundant OTUs still resulted in nearly perfect classification

(Supplementary Tables S6, S7). We further randomly

downsampled to 2% of the total remaining OTUs, resulting in

just 226 OTUs, and rescaled the resulting OTU table as previously

described. The performance of the models still remained nearly as

high as before (Supplementary Tables S8, S9).

The reason for the repeated observation of phageprints even

when drastically subsampled, is due to the fact that many low-

abundance OTUs have individual-specific patterns of occurrence.

By hierarchical clustering of this small subset of the original OTU

table (Supplementary Figure S12), most samples from the same

individual cluster together, and thus, machine learning models can

easily pick out an individual’s phageprint from others even using a

small fraction of the total data for each subject.
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Less than 1% of OTUs are shared across
all subjects

We measured the sharing of OTUs across subjects by

collapsing the OTU table into a table of subjects by OTUs

rather than samples by OTUs, such that if an OTU was

identified at any point within the sampling period (~30 days), it

is given a value of 1, and 0 otherwise. With this binary table, we

created an UpSet plot where the number of OTUs unique to each

subject as well as the number of OTUs shared between different

sets of subjects is shown (Supplementary Figure S13).
Frontiers in Microbiomes 07
Less than 1% (~0.8%) of all OTUs were detected across all

subjects. The relative abundance of these generalist OTUs per

subject is hierarchically clustered and shown in Supplementary

Figure S14. Again, we see that partners cluster most closely together

even based on this small subset of OTUs. Finally, a much higher

percentage of total OTUs, about 85%, are detected in at least two

subjects, and the rest are only detected in one individual. Based on

these results, we can conclude that while the same variants may

appear in different subjects, the individual specificity of phageprints

emerge in large part because the relative abundances of variants is

often individual-specific.
FIGURE 3

HB1 phageprint temporal dynamics quantified using pairwise distance metrics and visualized using (A) heatmaps and (B) box-and-whisker plots. The
pairwise distance metrics include: Pearson distance (1- Pearson correlation), Binary Jaccard, Abundance Jaccard, Bray Curtis and unweighted
Unifrac. Top: The heatmap scale applies to all heatmaps shown. Subjects 02 and 04 are partners. Samples from each subject are chronologically
ordered. Bottom: Intra-and inter-personal distances between HB1 phageprints in 10 subjects, over the span of a month. The outliers defined as
those outside of the 1.5 x IQR (inter-quartile range) are denoted by “+”. The box-plots corresponding to the comparisons between the couple in this
study are highlighted.
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While phageprints are largely persistent in
time, they are temporally dynamic with
partners sharing some concordantly
fluctuating OTUs

To further examine the temporal aspect of this data, we plotted

the number of days that each OTU was detected within each subject

(Supplementary Figure S15; Supplementary Table S10). The average

number of days an OTU was detected in this temporal study ranged

from 5 to 7 days depending on the subject, though there were many

OTUs within each subject that appeared across nearly all time points.

We dubbed OTUs detected in at least 20 days as highly persistent

OTUs. This threshold was chosen because it represents two standard

deviations from the mean number of days an OTU is detected,

averaged across all subjects (Supplementary Table S10).
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To further quantify the temporal dynamics of OTUs in each subject,

we measured the coefficient of variation for persistent OTUs

(Supplementary Figure S16), and selected outliers, which represent

highly dynamic yet persistent OTUs for each individual.

Supplementary Figure S17, shows some representative plots of such

outlier OTUs, and demonstrates these fluctuations. Moreover, we

examined the OTUs that are shared between partners (subjects 2 and

4) and plotted their relative abundance. Interestingly, we discovered that

certain OTUs are concordant in their temporal fluctuations in these two

individuals. We demonstrate some representative plots for such OTUs

(Supplementary Figure S18). We also found OTUs whose dynamics are

very similar across most time points except for a few when one partner’s

OTU rises by several folds and falls back down (Supplementary Figure

S19). Future studies are needed to shed light on the underlying

mechanisms giving rise to such fluctuations.
A

B C

FIGURE 4

Machine learning one-versus-rest models built to distinguish between one person’s HB1 phageprints from the rest. (A) A schematic of the prediction
task. (B, C) Model performance results. Salmon (B) and blue (C) panels represent boxplots of the Area Under the Precision Recall (AUPR) Curve and
the Area Under the Receiver Operator Curve (AUROC) values, respectively. The null values are shown as dashed lines, which for AUROC is equal to
0.5 and for AUPR is equal to the prevalence of the positive class. The four model types shown on the y axes are Logistic Regression (LR), Gradient
Boosting Classifier (GBC), K-Nearest Neighbor (KNN), and Multi-Layer Perceptron (MLP). For each model type 10 models are built based on 10
different splits of the data into training and testing portions. Subject IDs are shown at the top of each panel, such that “06 vs. rest” for instance,
corresponds to model performances on test data distinguishing subject 6 phageprints from all other subjects’ phageprints.
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Comparative analysis of phageprints across
siblings, couples, and unrelated individuals
residing on different continents.

Given the ubiquitous presence of HA and HB1 in both our

cohort and in metagenomic datasets we wondered whether subjects

residing in the same country might have more similar phageprints.

Neither from abundance-based nor phylogenetic distance

comparisons did we find an indication that individuals residing in

the same city or country share more similar phageprints (Figure 5).

Instead, we continued to find that individuals typically have highly

unique phageprints.
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Even siblings who were either living in the same household or had

previously, do not have any more similar phageprints than unrelated

individuals. In fact, one of the four sibling groups is identical twins

(Figure 5). However, 3 out of 4 partners in this study exhibited highly

similar phageprints (Figure 5). The dissimilar couple may be due to

celiac disease diagnosed in one of the partners, which is known to alter

oral ecology (Tian et al., 2017). These results suggest that genetics and

cohabitation do not significantly impact a person’s oral phageprint.

Thus, we suspect phageprints of partners coevolve while phageprints

of even cohabiting individuals evolve independently through time. To

further test these trends, larger studies encompassing a greater number

of individuals and regions in the world are needed.
A

B

FIGURE 5

HB1 phageprints across 61 individuals residing across different parts of the globe. Samples are obtained from the tongue dorsum. (A) Pearson
distance (1 – Pearson correlation) is shown as a heatmap. A subset of individuals residing in the U.S. are either partners or siblings. Green and red
boxes are drawn around samples from each sibling group and partners, respectively. (B) Intra- and inter-country distances from pairwise
comparisons made using Bray-Curtis and unweighted Unifrac distance metrics. The outliers are denoted as points outside of the 1.5 x IQR
(interquartile range). Related individuals are excluded from this analysis.
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Within the same individual there are site-
specific phageprints

Thus far, all phageprints shown are those sampled from the

tongue dorsum. In order to examine the spatial patterns of

phageprints we obtained additional oral samples covering 9

individuals and 6 oral sites [courtesy of Bik et al., (2010)].

Figure 6 shows the HB1 phageprints of a subject at four oral sites

where the HB1 terminase family was found. Clearly, different oral

sites in this subject have very similar HB1 phageprints. When

examining all HB1 positive samples, an immediately recognizable
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pattern is that the HB1 phageprints from different oral sites within

an individual are highly correlated.

As in the case of the HB1 phage family, there is low to non-

existing correlation between the HA phageprints of different

individuals at the same oral site (Figure 6), reinforcing the notion

of highly personal phageprints. However, unlike HB1, not all oral

sites within the same subject are highly or even moderately

correlated (see subjects 3, 12, and 17). In subject 12, for example,

the tongue dorsum has a correlation close to zero with supragingival

and subgingival sites, which are nearly perfectly correlated.

Similarly, in subject 3, the hard palate and the tongue ventral
A

B C

FIGURE 6

Phageprints across different oral sites. (A) HB1 phageprints across four different oral sites in subject 16 zoomed in at 1x, 10x and 100x. (B, C) Pearson
correlation coefficient matrix of (B) HB1 and (C) HA phageprints spanning 9 and 11 subjects, respectively. Phageprints are color-coded based on the
individual they originate from. Phageprints that have been replicated experimentally at least twice and averaged are denoted by an asterisk. Each
phageprint is derived from the analysis of 4000 sequences associated with an individual and a particular oral site. Samples are color-coded based on
the individual they originate from. OTUs were defined at 98% sequence similarity and OTUs with less than or equal to 0.001 relative abundance
across all phageprints were filtered out. Oral sites shown are the tongue dorsum (TD), buccal mucosa (BM), supra-gingiva (SP), sub-gingiva (SB), hard
palate (HP), and ventral surface of the tongue (TV).
frontiersin.org

https://doi.org/10.3389/frmbi.2024.1408203
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Mahmoudabadi et al. 10.3389/frmbi.2024.1408203
surface have nearly identical phageprints while they have a very low

correlation with the phageprint from the tongue dorsum. However,

unlike subject 12, the tongue dorsum in subject 3 seems to be an

intermediate site, having a moderate correlation with all other sites

that are distinct from each other. In subject 17 as well, buccal

mucosa serves as the intermediate environment with a phageprint

that exhibits a moderate correlation with the disparate phageprints

of subgingival and the hard palate. Phage-host network

representations for HB1 (Supplementary Figure S20) and HA

(Supplementary Figure S21) phage terminase families across this

cohort demonstrates the cause of weak or strong correlations

between different oral sites.
Discussion

This study provides a high-resolution window into two families

of phage terminases in the human mouth. It contains a large global

cohort of related and unrelated individuals, completely separate

from the cohort we used to identify the two phage families through

publicly available datasets. We combined the advantages of

metagenomics with targeted sequencing to characterize phage

terminase families with a resolution that is unavailable through

metagenomic studies. As a result, we were able to observe the phage

mutant spectra which despite the temporal fluctuations of each

variant were largely personal and persistent in time. Cohabitating

siblings and even identical twins did not have phageprints that were

any more similar than those of unrelated individuals. The only

factor we observed that contributes to phageprint relatedness is

direct contact between two habitats, as is demonstrated by the

similarity between oral phageprints of partners that even have

certain instances of concordantly fluctuating variants.

While others have studied the mutant spectra of RNA

pathogenic viruses such as SARS-COV2 and RNA phages

(Domingo et al., 2012; Bloom et al., 2023), the mutant spectra of

DNA phages, especially in vivo, have not been deeply explored.

Even though DNA phages have orders of magnitude lower

mutation rates compared to their RNA counterparts, we showed

that emergence of phageprints is directly the result of the

remarkable sequence diversity within DNA phages.

Moreover, previous metagenomic studies have shown that

certain features of the human microbiome are stably associated

with individuals over extended periods and could be individual-

specific (Fierer et al., 2010; Oh et al., 2014; Metcalf et al., 2017). One

study that has rigorously tested the identifiability of individuals

based on bacterial metagenomic datasets (acquired through the

Human Microbiome Project), developed “metagenomic codes”

based on the principle of a hitting set (Franzosa et al., 2015). As

the authors point out, these metagenomic codes are capable of

identifying on the order of 100s of individuals. However, they note

that instances of false positives rise as more individuals are added

(Franzosa et al., 2015). Additionally, metagenomic codes were only

able to identify ~30% of individuals at a second sampling time point

taken ~30-300 days later (Franzosa et al., 2015).

As far as we know, targeted studies that explore the oral

phageome and its potential in human identification are missing
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from the literature. Using a phage-based targeted approach for

human identification has a significant advantage. Namely, the

space of possible unique barcodes has not been exhausted. We

have only sampled a small region of one terminase family using

only thousands of sequences per sample. Deeper sequencing of

that one region, or the addition of more terminase families, or

other phage gene families- of which there are many in the human

phageome- can likely generate an astronomical number of

unique phageprints from which individuals could potentially

be identified.

To provide more concrete estimates, in our study of more than

100 individuals, we found only one case of unrelated individuals

whose phageprints had similar correlation coefficients. This is due

to the coarse-graining associated with Pearson correlation

matrices, where the most abundant OTU significantly impacts

the correlation value between two phageprints. As we showed by

the removal of the top ten most abundant OTUs and further

random downsampling to 2% of the remaining OTUs, even

significantly reduced phageprints remain highly predictive of

their subject of origin. However, if we conservatively assume

that each terminase family can provide just 50 unique patterns

or phageprints using one of the coarsest analysis metrics, namely

the Pearson correlation, then the combination of phageprints

from six short regions (~300 bp each) of non-homologous

terminase families, equivalent to ~2 Kb of phage DNA, could

provide a greater number of possible patterns than the size of the

current human population (506, or 15 billion phageprints). Much

larger cohorts would be needed to validate these estimates and

they are provided as a crude attempt to illustrate the immense

diversity of sequences we carry that is not our own.

Moreover, our previously described method for finding

ubiquitous human oral phages relied on relatively small

metagenomic datasets, which contained sequences from just seven

individuals (Tadmor et al., 2023). Yet, on the basis of markers

designed from this small dataset we were able to identify the same

phage terminase families in at least 10 times as many individuals

from across the globe within the HMP cohort as well as this study’s

separate global cohort of ~100 individuals. This finding further

confirms that certain phage families are a stable feature of the

human oral microbiome. Studies of phages from various natural

environments also report the finding of phage families that are

distributed across similar types of habitats despite vast geographical

distances and barriers that exist between these habitats (Holmfeldt

et al., 2013; Paez-Espino et al., 2016). The ubiquitous presence of the

identified phage families in individuals, together with their temporal

persistence, seems to suggest that they likely play important roles in

this environment.

An important limitation of metagenomic based discovery of

phage families is that host information is often deduced via

homology searches between phage sequences and prophages

within publicly available bacterial genomes. Gaining more exact

information about the host dynamics is very challenging because it

first requires the development and validation of species-level or

perhaps strain-level bacterial markers - as opposed to generic

makers like 16S- that would exclusively target the host species of

the HB1 and HA phage families. Even with such markers at hand,
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untangling the specific host of a particular phage variant without

single-cell isolation will be difficult at best. This is because, within a

single infection event, one could expect numerous variants and so

there will not be a one-to-one pairing of phage and bacterial

variants. Single-cell single-phage studies will likely provide the

necessary platform for gaining precise pairing of phage and host

variants, however these studies do not lend themselves to the spatio-

temporal exploration of phages and their hosts in their native

contexts. Thus, new methodologies are needed to provide high-

resolution exploration of bacterial and phage dynamics without the

loss of contextual and population-level information.
Conclusion

Metagenomic studies have transformed our understanding of

phages, though they often fall short in providing the depth of

sequencing needed to observe the population structure and

dynamics of individual variants within a phage family. Through

targeted sequencing of two non-homologous oral phage terminase

families, we show that the abundance profile of variants within each

family provides unique individual-specific and temporally

persistent barcodes or “phageprints”. Analyzing oral samples

from ~100 individuals across several continents, we observed

consistent trends: dominant variants coexist with less abundant

ones. Machine learning enabled precise differentiation of

individuals in the temporal cohort, even when phageprints were

downsampled to contain only a small subset of the rarer variants.

Notably, factors like residence, genetics, and diet do not appear to

impact phageprint similarity. We showed that minimal spatial

differences within oral sites produced site-specific phageprints for

one of the terminase families. Moreover, through daily monitoring

of phageprints, we identified the highly dynamic yet persistent

variants and showed that partners’ shared variants can have

concordant temporal fluctuations.
Materials and methods

Subject recruitment and sample collection

For the bulk of our sample collection, we relied heavily on

citizen scientists. We made an educational video to introduce a

diverse audience to the fascinating world of phages, explain our

study and to recruit volunteers. We also created an instructional

video for prospective volunteers on subject disqualifying criteria

and subject rights, and to provide a step-by-step demonstration of

sample collection, storage, and shipment. Among other exclusion

criteria, subjects could not have taken antibiotics for the preceding 3

months and subjects could not have active cavities or gum disease.

Qualified subjects were sent a kit and were asked not to brush

their teeth or tongue for a minimum of 8 hours prior to sample

collection to allow for a substantial buildup of plaque on the tongue

dorsum. Subjects were instructed to 1) wear gloves, 2) scrape their

tongue (dorsal surface) several times using the tongue scraper, 3)

deposit their sample into the collection tube, 4) place the tube back
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into the bag, and 5) store the bag in their freezer along with ice gel

packs prior to an overnight shipment of their samples. They were

also instructed to report any sources of error that occurred at any

step, and to send their samples along with their signed consent form

and questionnaire. For the temporal study, subjects failed to sample

all 30 days. The mean and median number of sampling days were

25. Our sample collection and processing protocols were approved

by Caltech Institutional Review Board (IRB protocol 14-0430) and

Institutional Biosafety Committee (IBC protocol 13-198).

Nine subjects included in this study are those included in a

previous study of oral microbial diversity by Bik et al., (2010).

Briefly, samples were collected from individuals by a dentist who

examined subjects for their oral health, thereby excluding subjects

with active cavities, gingivitis, or periodontal disease. For each

subject, samples from different oral sites were collected using

sterile curettes and deposited separately in 1.5 mL collection tubes

containing PBS buffer. The 6 oral sites sampled include plaque from

tongue dorsum, tongue ventral, buccal mucosa, hard palate, supra-

gingiva, and sub-gingiva.
The sample collection kit and measures
against sampling contamination

To obtain samples, we developed a sample collection kit and

prepared kit contents within the PCR flowhood. Before and after

every kit preparation session, the flowhood surfaces and pipettes

were wiped using sterile wipes, DNA AWAY™, and 95% ethanol.

At the end of each session the surfaces were also UV-sterilized (60

minutes). Each kit contains plastic tongue scrapers (Yellow

CeraSpoon Safe Ear Curettes, Bionix) that were first autoclaved

and then UV-sterilized for 60 minutes, 1.5 mL gamma-sterilized

and pre-packaged collection tubes certified as pyrogen- RNase-

DNA- and ATP-free (VWR), each containing 200 uL sterile 1X PBS

buffer (VWR), along with pre-packaged sterile gloves (VWR). Each

collection tube and tongue scraper pair was placed inside a sterile

bag and the bags were placed in another bag. The next steps were

performed outside of the flowhood. Each collection bag was put

inside a Styrofoam box along with ice gel packs. Ice gel packs and

Styrofoam boxes were not reused to prevent cross contamination

between individuals in case of a spill, which would already be highly

unlikely due to multiple layers of packaging. Upon arrival of

samples, collection tubes were taken out of their original bags,

wiped with 95% ethanol and DNA AWAY™ using sterile wipes and

placed into a new sterile bag. Gloves were frequently exchanged

both during this step and before proceeding to the next collection

tube to prevent cross contamination. In addition to standard lab

attire such as gloves and lab coat, a face mask was worn to prevent

contamination during kit preparation and sample storage.
Measures against PCR and DNA
extraction contamination

A common source of contamination in PCR originates from

previously amplified template sequences that enter new PCR
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reactions. To prevent this type of contamination, four physically

separated workstations were developed for DNA extraction (station

A1), PCR preparation (station A2), PCR and gel electrophoresis

(station B1), and PCR cleanup (station B2). A and B specify two

different buildings at Caltech while 1 and 2 refer to two different

rooms within the same building. The flow of materials was from

building A to B and never vice-versa. Every station had its own set

of lab equipment, materials, and storage space. Disposable lab coats

(Sigma-Aldrich®) were worn and disposed of at the end of every

procedure to ensure that DNA was not carried between stations via

clothing. Facemasks (Fisher Scientific) were also worn at all times to

prevent any oral or nasal droplets from entering reactions. Prior to

the start of every DNA extraction, lab equipment and bench tops

were cleaned using sterile wipes and DNA AWAY™ (Thermo

Scientific), a surface decontaminant that eliminates DNA and

DNAses. PCR preparations and aliquoting of reagents were

carried out in a PCR flowhood (AirClean® Systems) equipped

with a UV light and laminar airflow capabilities. Lab equipment

required for PCR preparation was designated to the PCR

preparation flowhood. At the end of every experimental session

and when introducing new equipment into the flowhood, all

surfaces were first wiped with DNA AWAY™ solution and then

exposed to UV radiation for 60 minutes. Prepackaged, sterile gloves

were used for PCR preparation. To prevent sample-to-sample

contamination during DNA extraction, PCR preparation, and

PCR cleanup, gloves were frequently exchanged. Most

importantly, 5 No Template Control (NTC) reactions

accompanied every PCR run. Similarly, to test the presence of

contaminants in extraction reagents, for every extraction

experiment, 3 reactions were carried out without the addition of

any sample. PCR using phage primers was performed on these

extraction control reactions.
DNA Extraction (station A1)

DNA extraction of human oral samples was done according to

the manual from MoBio PowerBiofilm® DNA Isolation Kit. The

advantage to using this kit for DNA extraction and purification is

that it combines the use of chemical and mechanical (bead-beating)

treatments for an increased efficiency in biofilm disruption, lysis,

and removal of inhibitors such as humic acid. The final

concentrations of DNA were measured using Nanodrop. The

concentration range of the total extracted genomic DNA was

typically between 5 to 50 ng/µL.
PCR preparation (station A2) and PCR
(station B1)

Each PCR reaction contained 12.5 µL of PerfeCTa® qPCR

SuperMix, ROX™ (Quanta Biosciences), a premix containing

AccuStart™ Taq DNA polymerase, MgCl2, dNTPs, and ROX

reference dye for qPCR applications. Additionally, each reaction

contained 10.5 µL of RT-PCR Grade Water (Ambion®) which is

free of nucleic acids and nucleases, 1 µL of extracted DNA at 1 ng/
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µL, 0.5 µL of forward and 0.5 µL of reverse primers, each at 50 ng/µL

(synthesized by IDT). A higher than recommended primer

concentration was used because the phage primers used are 32-64

fold degenerate. The thermocycling protocol was made according to

PerfeCTa qPCR SuperMix recommendations: 1) a 10-minute

activation of AccuStart™ Taq DNA polymerase at 95°C, 2) 10

seconds of DNA denaturation at 95°C, 3) 20 seconds of annealing at

60°C, and 4) 30 seconds of extension at 72°C, 40 cycles repeating

steps 2 to 4, followed by 5 minutes of final extension at 72°C. To

clarify, we performed a traditional PCR even though we used a

qPCR mastermix.
Gel electrophoresis (station B1) and PCR
cleanup (station B2)

Phage PCR products were visualized using 2% agarose in TAE

buffer. After gels were cast, 5 µL of each PCR product was mixed

with 1 µL of 6X loading dye and loaded into a well. 5 µL of 100 base-

pair ladder was used, and the gel electrophoresis instrument was set

to run for 30 minutes at 100V. Phage PCR positive hits were

purified using the QIAquick PCR Purification Kit (QIAGEN). 20µL

of PCR products were used and purified according to the QIAquick

PCR Purification manual.
Sequencing

Upon PCR cleanup, double stranded DNA concentration in

each sample was measured using the Qubit instrument. Qubit

measurements were performed in Building C due to practical

considerations rather than a necessary treatment for preventing

contamination. Samples were combined into one reaction (~2 mg
dsDNA) and submitted to GENEWIZ, Inc for library preparation

and MiSeq 2x300bp Paired-End sequencing. To enable

multiplexing, unique DNA barcodes were appended onto the

forward primer sequences (Supplementary Table S1) used to

amplify each phage terminase family. These barcoded primer

sequences were synthesized by IDT. Using this scheme, ~100

samples were submitted per MiSeq sequencing run and by

matching the barcode sequence to the sample ID, information

about who and where the sample came from was accessible. More

specifically, Hamady error-correcting 8-letter barcodes (Hamady

et al., 2008) were used. Hamady DNA barcodes are an example of

Hamming code wherein the addition of parity bits allow for

detection and correction of errors within the barcode sequence.

In the case of Hamady barcodes, up to 2 errors in the barcode

sequence can be detected and one error can be corrected.
Quality control steps to eliminate
sequencing errors

We used Illumina MiSeq’s 2x300bp paired-end configuration

(GENEWIZ, Inc). Each sequencing run produced about 20-25

Million paired-end reads. Paired-end reads were joined using
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join_paired_ends.py script from QIIME (Quantitative Insights Into

Microbial Ecology) (Caporaso et al., 2010) package, and unless

noted otherwise scripts used are part of QIIME. If paired reads had

any mismatches across their overlapping bases, the paired reads was

eliminated from any further analysis (QC step #1). The overlap

between the paired reads nearly entirely covers the HA and HB1

sequences (~300 bases long), hence eliminating most

sequencing errors.

Upon joining reads and eliminating those with mismatches in

the region of overlap, seqQualityFilters.py, an in-house script, was

used to perform QC step #2: taking joined reads from QC step #1,

and eliminating any sequences that have one or more bases marked

by a Phred score below 30. Excluded from QC step #2 were the first

two bases in the beginning and end of each sequence, which for the

majority of reads have much lower quality scores.

Using seqQualityFilters.py, sequences were placed in 2 different

bins according to their primer sequences, and any sequence that did

not have the correct barcode length, or the correct primer sequences

at the expected positions, was eliminated (QC step #3).

Additionally, nearly half of remaining sequences had to be reverse

complemented so that all sequences were oriented in the 5’ to 3’

direction. Using the same script, primer and barcode sequences

were removed, and barcode sequences were written to a separate file

(to be used as input to split_libraries_fastq.py). At this point

sequences that did not have the correct length were filtered out

(QC step #3) . Sequences were demul t ip lexed us ing

split_libraries_fastq.py and reads with errors in the barcode

sequence were eliminated (QC step #4).
Phage terminase OTU relative abundance
plots or “phageprints”

After demultiplexing quality-controlled reads, sequences were

clustered according to a specified sequence similarity threshold

using UCLUST de novo clustering algorithm (Edgar, 2010) used in

pick_otus.py script. Using make_otu_table.py, OTU tables were

generated. An OTU table summarizes counts of sequences

assigned to each OTU across each sample. We refer to this per-

sample sequence count as the OTU size. As long as an OTU of size 1

or greater exists in at least one sample, it is included in the OTU

table. In this way, the counts of OTUs for samples containing the

same phage terminase family remains the same, though their size

could vary widely across different samples. The relative abundance

of each OTU within each sample was calculated via

processOtuTable.py, another in-house script. In plotting the

relative OTU abundance values for different samples, we arrived

at complex, individual-specific patterns. We named these

plots “phageprints”.

The most abundant sequence from each OTU was retrieved

using pick_rep_set.py to serve as a representative sequence. HB1

representative sequences were aligned using Geneious, using a gap

open penalty of 30 and gap extension penalty of 15 and a 65%

similarity cost matrix. No gaps were introduced. The alignment is

shown in Supplementary Figure S22.
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Examining the effect of OTU sequence
similarity threshold

In analyzing 16S sequences, clusters or Operational Taxonomic

Units (OTUs) are conventionally defined at 97% sequence

similarity threshold. To examine the effect of sequence similarity

threshold for phage OTU formation, we tested OTU sequence

similarity thresholds of 98%, 97%, 95%, 90%, and 80%.

Supplementary Figure S3 is a matrix of Pearson correlation

coefficients calculated during the pairwise comparison of HB1

phageprints using different sequence similarity thresholds for

defining OTUs. Very similar Pearson correlation matrices are

obtained as the sequence similarity threshold is lowered from

98% to 80%. However, because the number of clusters is reduced

as we reduce the sequence similarity threshold, with lower sequence

similarity thresholds, the chance that individual-specific variations

are lumped into the same cluster is increased. If noise-induced

sequence variations are effectively accounted for, higher sequence

similarity thresholds for defining OTUs can enable a more accurate

and detailed depiction of a person’s phageprint. For this reason, we

used a sequence similarity thresholds of 98% or 100% in this study.
Detecting experimental noise

How reproducible is a phageprint plot? Supplementary Figure S4

summarizes the sources of noise from all experimental processes

performed during this study. First, it’s important to capture sampling

variation. How consistently can we capture a phageprint from an

individual’s oral site given that we are sampling different parts of the

biofilm each time? Another factor that could contribute to sampling

variation are the personal differences in the rate of biofilm mass

accumulation on the tongue dorsum. Secondly, we need to ask

whether processes of lysis and DNA extraction allow for the

availability of the same template DNA sequences in the same

relative abundances across different extraction runs.

Moreover, we need to evaluate the OTU abundance variations

that could result in PCR due to both errors as well as other

stochastic events. For example, it’s possible that very rare

template sequences are left out of the initial cycles of PCR and

their relative abundance at the end of PCR is lower than their

relative abundance prior to PCR, and thus PCR could serve as a

biased amplifier. PCR purification is similar to extraction and

sampling in that it does not introduce sequence errors; however it

is unlike these processes because after PCR billions of template

copies are created and it’s unlikely that the loss of a fraction of

templates during PCR purification will dramatically change OTU

relative abundances. Finally, Illumina MiSeq sequencing is another

error-prone process not only at the level of base-calling, but at the

level of bridge amplification.

To quantify how reproducible a given phageprint is, we

obtained 3 different samples from a subject’s (subject 37) tongue

dorsum. We then performed DNA extraction and PCR separately

on each sample and sent samples for sequencing (sequencing run

#2). The logic behind this experiment was to capture a lumped
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measure of noise arising from various processes depicted in

Supplementary Figure S4. After performing quality control steps

1-4, demultiplexing reads based on their barcode sequences,

clustering reads based on 98% sequence similarity threshold for

OTU formation, rarefying the OTU table to 4000 reads per sample,

and calculating the relative abundances of OTUs, we measured the

standard deviation in the relative abundance of each OTU across

these three samples (Supplementary Figure S5). We show that the

relative abundance values across these three samples are highly

consistent, with the majority of OTUs having standard deviations

below 0.002 and the maximum standard deviation observed was

~0.007 relative abundance.
Identifying non-reproducible OTUs and
OTU relative abundance
detection threshold

To identify OTUs that were non-reproducible across the three

samples from subject 37’s tongue dorsum (HB1 marker), we flagged

OTUs that had appeared in only one or two samples out of three. We

then plotted the histogram of non-reproducible OTUs as a function

of their relative abundance (for those OTUs appearing in 2 out 3

samples, the higher relative abundance value was used). The

thresholds defining each bin, b, were selected to be the following:

0>b1≥0.00025 (OTU of size 1 sequence since the total number of

sequences per sample is 4000), 0.00025>b2≥0.0005 (2 sequences),

0.0005>b3≥0.00075 (3 sequences), 0.00075>b4≥0.001 (4 sequences),

and 0.001<b5 (5 or more sequences). We demonstrate that the

number of non-reproducible OTUs drops as a function of OTU

relative abundance, and all OTUs with more than 4 sequences (0.001

relative abundance) are reproducible (Supplementary Figure S6). To

conclude, we arrived at 0.001 relative abundance as the detection

threshold for OTUs.

In addition to capturing a lumped sum of noise across all

experimental processes for subject 37 tongue dorsum sample, for

samples from subjects 3, 6, 10, 16, and 17, we performed a second set

of PCR on previously extracted DNA samples, and submitted those

samples for sequencing (Supplementary Figure S7). In addition to

these replicates, we acquired new samples from the tongue dorsum

for subjects 31, 35, 37, and 38, and submitted these samples for the

second sequencing run. Overall, we were able to demonstrate that

with the quality filtration steps we developed, phageprints are highly

reproducible even when they are generated from different PCR and

sequencing steps (Supplementary Figure S7).
Phage-host networks

OTU tables were input to createNetwork.py, an in-house script

that creates node and edge tables. The nodes represent samples and

phage OTUs, and a directed edge connects samples to the OTUs

that they host. The weight of this connection is based on the relative

abundance of the OTU in that sample. Gephi (Bastian et al., 2009)

was used to visualize the resulting networks, and to obtain the

degree distribution.
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Machine learning models

We used the scikit-learn (Pedregosa et al., 2011) package within

Python to create different machine learning model types and report

performance metrics such as AUPR and AUROC. The input to

these models were various versions of the HA and HB1 OTU tables,

containing samples as rows and OTUs as columns. To obtain 95%

confidence intervals of performance metrics for a given model type,

we used random splits to create 10 different models based on 10

different instances of training (70% of samples) and testing (30% of

samples) portions of the input dataset. No extensive parameter

tuning was explored as default parameter values already resulted in

very high model performances. We provide our notebook that

delves into building machine learning models along with all other

types of analyses presented in this paper in our Jupyter notebooks

(see Data availability statement).
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