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Immunotherapies are a revolutionary approach to treating cancer by utilizing the

body’s immune system to target and combat cancer cells. This approach offers

promising alternatives to traditional chemotherapies. Its potential to induce

long-lasting remissions and specificity for cancer cells, which minimizes side

effects, makes it a cutting-edge treatment with tremendous potential. With the

increase of the clinical usage of immunotherapy, evidence emerges of the

microbiome’s impact on both tumor growth and response to immunotherapy.

The proposed involvement of the microbiome can change treatment efficacy by

altering drug metabolism and reshaping the immune system response.

Understanding the specific interactions between tumor cells, immune cells,

and the microbiome is a critical step in the advancement of immunotherapy.

To study the complex interaction between cancer immunity and the

microbiome, various preclinical in vivo and in vitro models have been

developed. We have recently described the use of an ex vivo preclinical model

for anti-cancer treatment outcome prediction –tumor tissue equivalents

(organoids). Specifically, immune-reactive tumor organoids are proposed as a

novel tool for understanding how the microbiome influences cancer immunity

and immunotherapy. More importantly, this platform can utilize patient samples

to dissect patient-specific elements regulating cancer immune response and

microbiome influence. This review presents the rationale for using the immune-

reactive tumor organoids model to study the interactions between the

microbiome and cancer immunotherapy. It will discuss available components

of the model and analyze their interplay, summarize relevant experimental data,

and assess their validity. Additionally, it explores the potential of immune-reactive

organoids for personalized treatment approaches. Understanding the
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microbiome’s role in immunotherapy outcomes will lead to transformative

cancer treatment via a simple change of diet or other microbiome

manipulations. Ongoing research on microbiome-cancer interactions utilizing

the described model systems will lead to innovative treatment strategies and

improved patient outcomes.
KEYWORDS
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1 Cancer immunology and
immune therapy

The foundations of tumor immunology were established by Lloyd

J. Old when he described the concepts of immunosurveillance and

identified both tumor antigens and escape mechanisms (Old, 1981;

Old, 1985; Kaplan et al., 1998). They demonstrated that tumors could

be rejected by transferring immune cells from immunized mice into

naive mice providing early evidence for cancer immunotherapy using

immune cells (Old et al., 1962). These and other early discoveries

paved the way to a broad array of cancer treatments that could be

classified as cancer immunotherapies. Cancer immunotherapy, put

simply, is a type of treatment that harnesses the power of the immune

system to recognize and attack cancer cells. There are several

approaches that cancer immunotherapy can utilize, and these

therapies have revolutionized cancer treatment in since their

introduction (Kotla et al., 2009; Kronke et al., 2015). Currently, the

two main clinical therapies are checkpoint inhibitors and adoptive

cell therapy (ACT).

Checkpoint inhibitors are drugs that obstruct specific proteins

on immune cells or cancer cells to prevent the suppression of

immune responses against tumors. Current clinically approved

targets for inhibitory checkpoints include CTLA-4 and PD-1.

Researchers have found that by blocking these inhibitory

checkpoint proteins, immune checkpoint inhibitor antibodies

effectively take the brakes off the immune system, amplifying its

cancer-fighting abilities (Esfahani et al., 2020).

Adoptive cellular therapy is based on the activation and

manipulation of autologous T cells in an in vitro setting followed

by reinfusion to achieve better tumor targeting. This modality has

three main approaches: tumor-infiltrating lymphocyte therapy

(TILs), T cell receptor (TCR) gene therapy, and chimeric antigen

receptor (CAR) modified T cells (June et al., 2015).

Tumor infiltrating lymphocyte (TILs) therapy involves

expanding autologous TILs from resected tumors ex vivo and

infusing them back into patients after lymphodepletion. In animal

models, TILs from various mouse tumors have demonstrated the

ability to combat tumors in vivo (Forget et al., 2018). Human patient
02
studies by Radvanyi et al. showed TILs from melanomas reliably

recognize autologous tumors (Radvanyi et al., 2012). In various phase

I/II clinical trials for metastatic melanoma, TIL therapy resulted in

tumor responses nearing 50% (Andersen et al., 2016). As of early

2024, the Food and Drug Administration approved Lifileucel from

Iovance Biotherapeutics (Amtagvi) as the first approved solid tumor

derived autologous T cell immunotherapy.

T cell receptor gene therapy (TCR) serves as another avenue for

ACT, where patient T cells are reprogrammed to identify tumor

antigens by introducing genes that encode tumor-specific TCRs

(D’Angelo et al., 2018). One of the notable targets in this therapy

includes cancer germline antigens such as NY-ESO-1. NY-ESO-1 is

expressed in up to 52% of melanomas (Goydos et al., 2001),

neuroblastomas (Camisaschi et al., 2018), synovial sarcomas and

mixoid and round cell liposarcomas, and ovarian cancer (Robbins

et al., 2015). Research has shown promising results, with response

rates reaching up to 30% in melanoma cases (Robbins et al., 2015).

However, there are concerns that toxicities might arise from off-

tumor reactivity.

Chimeric Antigen Receptor T-cell (CAR-T) therapy is a

prominent form of adoptive cell transfer (ACT), using engineered

T cells to target tumor antigens through chimeric antigen receptors.

These chimeric receptors incorporate parts of various other

receptors to optimize cellular function. The CAR-T cells have

achieved remarkable success targeting CD19 in blood cancers,

with high response rates in lymphoma (Davila et al., 2014;

Miller and Maus, 2015). However, translating CAR-T cell efficacy

to solid tumors poses numerous challenges like the tumor

immunosuppressive microenvironment and extensive extracellular

matrix surrounds solid tumors, often physically blocking CAR-T

migration and tumor penetration (Martinez and Moon, 2019;

Donnadieu et al., 2020).

Overall, immunomodulatory drugs offer diverse approaches

within cancer immunotherapy. Often used in combinations to

maximize effectiveness, immunotherapeutic regimen design

depends on the type of cancer, the stage, and the patient’s overall

health (Wang et al., 2022). Additionally, emerging research suggests

that a patient’s microbiome can significantly influence the
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effectiveness of cancer immunotherapy, leading to the development

of therapies aimed to manipulate the microbiome and enhance the

immune response against cancer.
2 The influence of the microbiome on
cancer immune therapy effectiveness

The human microb iome , compr i s ing t r i l l ions of

microorganisms, has gained attention due to its pivotal role in

health and disease, particularly its potential influence on cancer and

cancer immunotherapy. The microbiome’s composition and

diversity can significantly influence immune responses, making it

an intriguing factor to investigate in the context of personalized

cancer treatment (Gopalakrishnan et al., 2018a).

The intersections between the microbiome and cancer can be

categorized at two levels (Jain et al., 2021). The first is between

microbiome composition and the development of tumor, and the

second between the microbiome and the immune system which in

turn can direct the immune response to cancer immune therapy.

The impact of microbes on the immune response and their

potential as therapeutic targets in cancer treatment have been

subjects of interest in recent research (Barukčić, 2017; Turna

et al., 2017; Priya et al., 2022).

Metabolites and cytokines are one of the main methods of

crosstalk between the microbiome and the immune system. The gut

microbiota produces various metabolites and cytokines that can

shape systemic immunity. For example, certain bacteria metabolize

dietary fiber into short-chain fatty acids (SCFA) like butyrate, which

have anti-inflammatory effects and promote T-cell differentiation

(Maslowski et al., 2009; Kim et al., 2014). Gut microbe released

SCFAs enter circulation and modulate systemic immune cell

differentiation and function. SCFAs can promote regulatory and

T helper cell 1 and 17 cell differentiation and hence affect the

immune therapy activity (Kim et al., 2016). Also, the bacterium B.

pseudolongum produces inosine which enhances checkpoint

inhibitor efficacy (Mager et al., 2020). This effect could be

modulated through the inhibition of ubiquitin-activating enzyme

UBA6 in tumor cells which in turn augment its sensitivity to the

cytotoxic activity of T cells (Zhang et al., 2022). Interestingly, some

metabolites like butyrate can also have concentration-dependent

opposite effects such that low levels induce T regulatory cells while

higher levels boost CD8+ T cell effector activity. In the clinical

setting, responsive cancer patients were reported to show a higher

systemic SCFA level (Arpaia et al., 2013).

Several strategies, including fecal microbiota transplantation

(FMT) and probiotic administration, have thus been adopted in

attempts to enhance cancer immunotherapy efficacy. In a study by

the Vétizou group (Mao et al., 2021) examining both mouse models

and melanoma patient samples, it was revealed that the therapeutic

efficacy of CTLA-4 blockade is dependent on key gut commensals

such as Bacteroides thetaiotaomicron and B. fragilis. Furthermore,

the presence of T cells specific for these bacteria was associated with

superior CTLA-4 response rates. Depletion of these bacterial

populations, either in germ-free mice or through antibiotic
Frontiers in Microbiomes 03
treatment, mitigated the therapeutic effect. However, repopulation

using probiotics or T-cell-targeted approaches could restore

responsiveness to CTLA-4 inhibition.

Along the lines of microbiota manipulation to enhance the

cancer immunotherapy response, another study identified that

Bifidobacterium administration, either through fecal transfer or

oral routes, was able to halt melanoma progression similarly to

PD-L1 antibody therapy. Furthermore, the combined effects of

Bifidobacterium and PD-L1 blockade together led to a significant

inhibition of tumor growth. This highlights the synergistic potential

of microbial secretants and checkpoint inhibitors in overcoming

cancer progression (Sivan et al., 2015). Another preclinical study in

germ-free mice showed that FMT from responder patients can

replicate patient response to checkpoint inhibitors; non-responder

phenotype in mice is reversible with additional FMT from

responders (Routy et al., 2018). Several clinical trials are now

testing microbiome restoration to improve immunotherapy

response. For example, in melanoma patients refractory to anti-

PD-1 treatment, FMT was tested in combination with

pembrolizumab. This combined therapy resulted in stabilized

disease or tumor regression in 2 patients out of 3 [clinical trial:

NCT 03341143]. Given these promising results, the mechanism

behind the gut microbiome modulating the cancer immune therapy

response is of great interest to optimize and direct the use of

microbiome manipulation, either at the study design level or for

therapeutic intervention.

One of the commonly reported mechanisms for microbiome

interaction with immunotherapy response is through the

presentation of pro-inflammatory antigens. The gut microbiome

interacts with host immune cells via pattern recognition receptors

like Toll-like receptors, stimulating inflammatory responses that

help shape tumor immunity (Sato and Kawakami, 2022). Gut

bacteria provide antigens that are sampled by intestinal immune

cells and transported to lymphoid tissues to initiate B cell and T cell

responses. Cross-reactivity between microbial and tumor antigens

can boost anti-tumor immunity not only locally but systematically

(Mowat and Agace, 2014).

A study highlighted the concept of systemic circulation of

bacterial antigens and their role in cross-reactivity with pancreatic

tumor antigens (Daillère et al., 2016). It reported that translocation

of Enterococcus hirae from the gut to lymph nodes/spleen during

cyclophosphamide chemotherapy enhanced anti-tumor immune

responses in mice. This effect was linked to an E. hirae

bacteriophage antigen cross-reactive with a tumor antigen,

highlighting microbiome antigen mimicry of tumor antigens as

an immunomodulatory mechanism (Fluckiger et al., 2020).
2.1 Clinical evidence of association
between the microbiome and cancer
immunotherapy outcomes

Multiple clinical trials across diverse cancer types like

melanoma, lung, renal, gastrointestinal, thoracic, and

hepatobiliary cancers have explored associations between the gut
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microbiome composition and outcomes with immuno-oncology

treatments, especially immune checkpoint inhibitors (ICIs) like

anti-PD-1 therapy (Gopalakrishnan et al., 2018b; Routy et al.,

2018; Jin et al., 2019; Baruch et al., 2021; Mao et al., 2021; Yin

et al., 2021; Che et al., 2022; Derosa et al., 2022; Lee et al., 2022;

Pietrzak et al., 2022). Common techniques utilized included 16S

rRNA sequencing, metagenomics shotgun sequencing, and

metabolomics profiling of longitudinally collected fecal samples

before and during ICI treatment to characterize taxonomic and

functional changes. Key findings across several studies suggested

that intrinsic microbiome diversity and richness are strongly

associated with improved rates of clinical response to ICIs

including progression-free survival, and overall survival (Jin et al.,

2019; Baruch et al., 2021; Derosa et al., 2022; Pietrzak et al., 2022).

Specific taxa enriched in responder groups included Akkermansia

muciniphila, Bifidobacterium pseudocatenulatum, Prevotella spp.,

Ruminococcaceae spp., and Bacteroides while non-responders had

increased abundance of Proteobacteria and Firmicutes species

(Zheng et al., 2019; Peng et al., 2020) (Baruch et al., 2021; Lee

et al., 2022; Pietrzak et al., 2022; Wu et al., 2022). Though no

microbiome biomarkers could consistently differentiate response

groups across diverse cohorts, these bacteria could modulate

antitumor immunity via metabolite production or immune

stimulation including tryptophan-derived metabolite indole-3-

propionic acid (IPA) that was shown to enhance the efficacy of

CD8+ T cell-mediated aPD-1 immunotherapy and via immune

stimulation (Yin et al., 2021; Lee et al., 2022). Interventions like fecal

microbiota transplantation from responders to germ-free mice or

patients heightened ICI efficacy by favorably restoring gut

homeostasis (Routy et al., 2018; Baruch et al., 2021). These

studies are summarized in Table 1. It describes the cancer type,

therapy used, microbiome intervention, antibiotic use, readouts,

outcomes, and details for the trials.

Developing microbiome-informed therapeutics to treat cancer

still has several challenges. Challenges include the resilience of the

gut microbiota which makes achieving a sustainable change in

microbiota hard (Bloom et al., 2021). Also, the relationship between

specific microbiota species and therapeutic outcomes in cancer

patients is not fully understood due to unpredicted and

undesigned outcomes of clinical trials (Matson et al., 2018). To

further compound the difficulty of utilizing microbiome elements to

enhance therapies, the is a body of evidence showing that

microbiome in older patients commonly lead to detrimental

clinical outcomes. The decreased diversity and loss of beneficial

species in the microbiomes of older hosts results in detrimental

effects such as decreased vaccine efficacy, chronic inflammation,

and chronic illness (Bosco and Noti, 2021; Ghosh et al., 2022).

Given the extensive relationship between the microbiome and

immunotherapy response, it is unsurprising that aging related

microbiome changes can effect immunotherapy response, with

potential effects being particularly noticeable in ICB therapy

(Spakowicz et al., 2021). To make the translation of the

microbiome research into microbiome-informed therapeutic

interventions in cancer patients we must improve our modeling

capabilities for elucidating underlying tumor-immune-microbiome

mechanisms and interactions.
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3 Cancer modeling

In efforts to best study tumor pathophysiology and therapeutic

responses, researchers employ a multitude of in vivo and in vitro

platforms, each with their own benefits and limitations (Table 2).

Two-dimensional plate-based cell culture and animal-based cancer

models utilize almost exclusively different methodologies to

examine disease growth and progression.

Conventional in vitro platforms include numerous tumor cell

lines used in 2D formats for genetic pathway analysis and drug

screening. While these models contribute important findings to the

field of cancer biology and produce high throughput results and

easily replicable, cell lines can have limited validity. With continual

passages, genetic and phenotypic morphology can drift from the

original tumor composition (Torsvik et al., 2014; Yu et al., 2019;

Quevedo et al., 2020). Additionally, lack of cell-cell and cell-

extracellular matrix contact in traditional 2D cultures reduces cell

capacity to faithfully model in vivo cancer-associated pathways and

interactions (Luca et al., 2013).

In vivo cancer models include genetically engineered animals to

mimic human tumors, patient and cell line derived tumor

xenografts, and spontaneous tumor development in veterinary

species. While these models more readily capture the complexity

of tumor development in the whole organism, they can be limited

by their reproducibility, cost, and construction time. Murine

xenograft models, which allow for the study of human derived

tumor and associated microenvironment in a living system, are

expensive, require immunocompromised host animals, can take up

to 6 months or longer to produce, and cannot support all tumor

types (Abdolahi et al., 2022). More readily available genetically

engineered animals, typically mice, serve an important role in

tumor development and drug discovery research. However, their

predictive value in translational research can be limited by the lack

of etiologic similarity in tumor development and key microbiome

and immune system structure differences from humans (Mestas

and Hughes, 2004; Dawson et al., 2009). Spontaneous, naturally

occurring tumor animal models, particularly in nonhuman

primates, allow for effective translational study of tumor

development and tumor, immune, microbiome interaction

(Deycmar et al., 2023). Yet, these animals also incur significant

expense, can have limited throughput, and not all human tumors

are represented in other species. To bridge the limitations between

the conventional 2D tumor cell culture models and in vivo models,

tumor organoids are quickly gaining popularity.
3.1 Bioengineered tumor organoids in
cancer modeling

Cancer organoid models provide a reliable platform that bridges

the gap between the 2D cancer cell lines and animal models. The

tumor microenvironment (TME) is described as a heterogeneous

and dynamic milieu composed of stromal, cancer, and immune cells

surrounded by a dynamic extracellular matrix (ECM) undergoing

continuous remodeling that substantially impacts cancer

promotion, progression, and metastasis. ECM plays a key role in
frontiersin.org
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TABLE 1 Continued

Outcomes Ref

al calprotectin and PD-L1 levels at baseline were
with disease control; Increased Akkermansia and
Enterobacteriaceae abundance was associated with
ntrol; Fecal calprotectin levels changed in opposite
to Akkermansia/Enterobacteriaceae ratio and alpha
uring treatment; Akkermansia and Bifidobacterium
e associated with other taxa during treatment;
baseline microbiome and lower inflammation
with treatment response; Intestinal environment
ynamically during immunotherapy

(Ponziani et al., 2022)

e-response associations are cohort-dependent; No
microbial biomarker identified; Role of microbiome
ponse more complex than a simple presence/absence
. Bifidobacterium pseudocatenulatum, Roseburia spp.
mansia muciniphila, associated with responders was
but no single species could be regarded as a fully
biomarker across studies. Few microbial biomarkers
istently associated with response across all datasets.
species were increased in responders. Bacteroides
increased in non-responders.

(Lee et al., 2022)

icrobiome composition is associated with response
-1 immunotherapy in patients with advanced
ary cancers; higher abundance of certain bacteria
nospiraceae bacterium-GAM79, Alistipes sp
P5997) was associated with better clinical benefit,
n-free survival, and overall survival; higher
e of other bacteria (e.g. Veillonellaceae,
ccus calidus) was associated with lack of clinical
d worse survival outcomes; Microbiome diversity
osition were also correlated with adverse events
unotherapy, implying the microbiome may impact
well as efficacy.

(Mao et al., 2021)

seline Akk levels were associated with increased
ates and overall survival, independent of PD-L1
, antibiotics, and performance status; Intestinal Akk
panied by higher levels of other commensal
ke Eubacterium hallii and Bifidobacterium
is in some patients; This also coincided with a more
tumor microenvironment in a subset of patients;
use was associated lower Akk levels below 4.8% but
levels of Akk and Clostridium, both of which were
with resistance to ICI

(Derosa et al., 2022)
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shaping the cancer treatment response (Galdiero et al., 2018;

Arneth, 2019). Through recapitulating the heterogeneity of the

tumor microenvironment cancer organoids provide a relevant

pre-clinical model to study cancer pathophysiology. The basic

technology behind tissue organoid models utilizes extracellular

matrices to support self-organizing of different cell types in a 3D

culture and create a more physiologically relevant tissue model.

With proper use, these models can better simulate both overall

morphology and cell proliferation, differentiation, and migration

(Fair et al., 2020; Gjorevski et al., 2022; Mead et al., 2022).

Particularly in the context of cancer, bioengineered cancer

organoid consist of cancer cells embedded with stromal cells such

as the cancer associated fibroblasts (CAFs) encapsulated in

specialized ECM based support (Figure 1). These cancer cells can

be obtained from established cell lines such as shown in the study by

Oz et al., where Hep3B, Huh7, and HepG2 cell lines were

encapsulated in Matrigel to produce hepatocellular carcinoma

(HCC)-like organoids (Oz et al., 2021). Alternatively, unsorted

tumor and stromal cells derived from the patient’s tumor are

enclosed within specialized hydrogel or ECM to facilitate the

formation of organoids (Nagle P. W. et al., 2018; Mazzocchi et al.,

2018; Votanopoulos et al., 2019a; Forsythe et al., 2021). Organoids

derived from patient samples preserve the heterogeneity of the

original tumor, offering a more accurate in vitro representation of

the tissue. Various natural and synthetic ECM options are available

for organoid model generation. These include natural ECM

components like Collagen type I, Matrigel, decellularized tissues

(Giobbe et al., 2019), synthetic hydrogels and recombinant proteins.

These materials have been reported to support the growth of

organoid models, providing diverse environments for studying

cancer within a controlled setting (Kozlowski et al., 2021). The

organoids’ 3D architecture was found to alter protein expression

and chemosensitivity compared to 2D cultures. Unlike 2D cancer

lines, the Cancer organoid model comes with many advantages in

cancer research and drug development. They preserve the

heterogeneity of the parent tissues and allow the study of drug

response and resistance mechanisms. Also, it is a convenient

platform to understand the cell’s crosstalk and the role of the

stromal compartment in modulating cancer progression and

shaping drug response. These models grow relatively quickly,

facilitating high-throughput screening and personalized medicine

approaches Furthermore, cancer organoids are more cost-effective

and human-relevant than animal studies, providing an edge in

genetic manipulation experiments (Table 2). Several 3D tumor

models were reported starting from the multicellular spheroids

that were generated to provide the heterogenous cancer

microenvironment. Multicellular spheroids are scaffold-free 3D

models that are easy to generate and used for cancer research

studies because of their simple production through hanging drop or

rotatory methods. They are used for several applications including

drug screening. A study by Kim et al. generated HCC multicellular

spheroids through the co-culture of HEPG2 and insulin-secreting

cell line (RIN-5F). They reported higher albumin secretion, which

reflected an augmented cell functionality in the 3D heterogeneous

culture condition (Kim J. Y. et al., 2012). In another study Hwang’s

team generated pancreatic ductal adenocarcinoma organoids
T
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through the co-culture of PANC-1 tumor spheroids with pancreatic

stellate cells encapsulated in a collagen matrix. This model enabled

them to study ECM remodeling in the context of EMT and anti-

invasiveness treatment efficacy (Hwang et al., 2019). In another

example, pancreatic cancer organoids were generated from the co-

culture of S2-013 cell line, HUVEC, and mesenchymal stem cells, all

encapsulated in Matrigel and supplemented with cancer organoid

medium to be used later for drug screening (Tanaka et al., 2022).

Gastric cancer organoids were also generated from gastric cancer

tissues after being digested and then embedded in Matrigel for anti-

cancer therapeutics screening (Steele et al., 2019). Through the same

approach, cancer organoid models were reported to be engineered

for breast cancer (Berndt-Paetz et al., 2023) and bladder cancer.

Significant research efforts have focused on enhancing the biological

relevance of cancer organoid models by addressing reported

limitations such as insufficient heterogeneity, absence of

vasculature, suboptimal ECM scaffolds, and lacking immune

components. Additional elements such as microbes and their

metabolites can be added to create a biomimetic tumor

microenvironment (Kadosh et al., 2020; Wan et al., 2021; Shelkey

et al., 2022; Xiao et al., 2022). As such, the tumor organoids better

mimic in vivo characteristics and can be applied as unique models

in biomedical research and clinical practice applications precision
Frontiers in Microbiomes 09
medicine (Myungjin Lee et al., 2013; Imamura et al., 2015; Riedl

et al., 2017; Dzobo et al., 2018; Melissaridou et al., 2019).
3.2 Patient-derived tumor organoids

Precision medicine dramatically changes the clinical approach

for disease prevention, diagnosis, and treatment from a one size fits

all approach to using a patient’s unique genetic, molecular, immune

and cellular profile to guide clinical decisions. As this methodology

gains traction in cancer therapeutic research, patient biopsy derived

tumor organoids are critical for understanding inter-patient and

intra-patient differences in tumorigenesis and treatment sensitivity

(Xing et al., 2021; Guan and Huang, 2022). Tumor biopsies,

obtained through surgical resection of primary or metastatic

tumor sites, can be used to produce patient specific tumor

organoids. These preclinical models more accurately capture

disease genomic complexity compared to traditional 2D cell line

models (Xia et al., 2019). Additionally, with increasing numbers of

patient-derived tumor organoid studies, living biobanks of tumors

are being established to aid in the discovery of subtype

heterogeneity, novel drug targets, and therapeutic screening (Fujii

et al., 2016; Yan et al., 2018; Guan and Huang, 2022).
TABLE 2 Advantages and limitations across 2D and 3D culture systems and animal models.

2D culture Animal Models 3D culture (Organoids)

A
dv
an

ta
ge
s

▪ Traditional and widely used method
▪ Scalability for high-throughput assays and
cost-effective (Ravi et al., 2015)

▪ Easily reproducible and standardized
▪ Simple for basic cancer research, genetic
manipulation, genetic pathway analysis, and
drug screening

▪ Simple to maintain and observe.

▪ Capture complexity of tumor development
in whole organisms

▪ Allow study of human-derived tumors in
living systems (xenografts)

▪ Useful for tumor development and drug
discovery research

▪ Provide a complete physiological system
▪ Allow for study of tumor-host interactions
▪ Enable investigation of metastasis and
angiogenesis

▪ Useful for testing systemic effects of
treatments (Garcia et al., 2020)

▪ Provide a holistic view of cancer biology
(Yee et al., 2015).

▪ A middle ground between 2D cell culture
and animal models, providing a more
physiologically relevant environment for
studying cancer (Xu et al., 2018)

▪ Amenable to genetic manipulation and
drug screening

▪ Allow cultivation of multiple cell types and
inclusion of stromal components

▪ Exhibit scalability for high-throughput
assays (Taelman et al., 2022)

▪ Recapitulate 3D tissue functionality
▪ Patient-derived organoids allow for
personalized medicine approaches

▪ Recapitulate histopathological and
molecular diversity of original tumors
(Chen et al., 2022)

Li
m
it
at
io
n
s

▪ Limited validity due to genetic and
phenotypic drift (Torsvik et al., 2014;
Yu et al., 2019; Quevedo et al., 2020)

▪ Lack of cell-cell and cell-extracellular
matrix interactions (Luca et al., 2013)

▪ Reduced ability to model in vivo cancer-
associated pathways (Luca et al., 2013).

▪ Not accurately represent in vivo tumor
heterogeneity (Subia et al., 2015)

▪ Lacks the ability to mimic complex 3D
structures and physiological environments
found in vivo (Ravi et al., 2015).

▪ Expensive and Time-consuming (up to 6
months or longer for xenografts)
(Abdolahi et al., 2022)

▪ Limited reproducibility
▪ May not support all tumor types
(Abdolahi et al., 2022)

▪ Differences in tumor development,
microbiome, and immune system from
humans (Mestas and Hughes, 2004;
Dawson et al., 2009)

▪ Ethical concerns and regulatory challenges
▪ Species-specific differences may limit
translatability to humans

▪ Genetic and environmental variability can
affect results

▪ May not fully recapitulate human tumor
microenvironment

▪ Not always representative of human biology
(Garcia et al., 2020).

▪ More complex and expensive than 2D
cultures

▪ May not fully capture tumor
microenvironment complexity

▪ Standardization and reproducibility can be
challenging

▪ Lack of systemic components (immune
system, vasculature)

▪ May not fully replicate all aspects of in vivo
tumor growth and metastasis.
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Recent publications from Forsythe et al., 2020, 2022, and 2023,

and Votanopoulos et al., 2019a, highlight the application of tumor

organoids from sarcoma, peritoneal mesothelioma, colorectal, and

appendiceal cancers for chemotherapeutic efficacy screening on an

individual patient basis (Votanopoulos et al., 2019a; Forsythe et al.,

2020; Forsythe et al., 2022a; Forsythe et al., 2023). These studies

underscored the improved chemo-response modeling of tumor

organoids compared to 2D cell lines when comparing

chemotherapeutic responses (Forsythe et al., 2020). Beyond their

usefulness to model patient-specific chemo-response, tumor

organoids created from different metastatic sites within the same

patient showed differential therapeutic response, demonstrating the

ability to model intra-patient lesion-specific chemo-response and

the underlying disease clonality (Forsythe et al., 2023).
3.3 Immune-reactive organoids as a
model system

By integrating patient matched immune cells such as T cells,

macrophages, and dendritic cells, tumor-immune cell organoids

have emerged as an important platform to study tumor-immune

interactions critical to tumor progression and therapeutic response.

As previously mentioned above, numerous studies have utilized

autologous immune enhanced patient derived tumor organoids in

efforts to predict clinical immune checkpoint inhibitor success
Frontiers in Microbiomes 10
(Votanopoulos et al., 2019a; Forsythe et al., 2020; Forsythe et al.,

2022a; Forsythe et al., 2023). On a more mechanistic level, tumor-

immune cell or immune-reactive organoids serve the purpose to

study immune cell infiltration into the tumor mass (Tsai et al.,

2018). This is essential for investigating the spatial distribution of

immune cells within the TME and the immuno-biologic reactions

in the tumor microenvironment.

Immune-reactive organoid platforms can be established by

incorporating immune components through one of two primary

strategies: 1) retaining endogenous immune cells that are intrinsically

present in parental tissue, and 2) co-culturing autologous immune

cells with tissue-matched tumor organoids (Figure 2).

3.3.1 Retention of endogenous immune cells
from parental tissue strategy

In this strategy, an unsorted cell population, including

endogenous immune cells from normal or cancerous tissue, was

mixed and encapsulated into various ECM or hydrogels to create

tumor immune organoids.

In this innovative approach of immune reactive organoid culture

system, efforts are made to maintain an environment conducive to

the survival and proliferation of both the tumor cells and resident

immune cell population, specifically macrophages and natural killer

cells. Several non-tumor organoids have demonstrated the success of

these models. A recent study derived mouse adipose organoids via

enzymatic digestion of C57BL/6 visceral fat tissue, grown in ultra-low
FIGURE 1

Flow chart diagram describing the application of immune-reactive tumor organoids to study the effects of microbial metabolites on cancer
immunity and immunotherapies.
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attachment plates to form spheroids. This culture system was able to

retain resident macrophage cells, which are critical participants in

lipid metabolism. The resulting immune-enhanced model enabled

studying innate immune-adipocyte interplay (Taylor et al., 2020). In

another work, Kue et al. reported a lung organoid model cultured at

an air-liquid interface that retained endogenous lung tissue-resident

immune subsets including T-cells, B-cells, natural killers, and

myeloid cells (Choi et al., 2023). This immune-enhanced lung

organoid provided a significant advance in modeling tissue-resident

immunity through an integrated immune-reactive organoid and was

used to study T cell activation and responses to SARS-CoV-2 virus

exposure. Wan et al., described the use of this organoid culture

approach in generating high-grade serous ovarian cancer (HGSC)

immune reactive organoids. They used this model to evaluate the

efficacy of simultaneous use of PD-1 and PD-L1 Immune Checkpoint

Blockades in HGSC (Wan et al., 2021). In another study, Neal et al.,

developed patient derived tumor organoids with endogenous

immune and stromal elements for in vitro immunotherapy

modeling (Neal et al., 2018). They found that the inclusion of the

native tumor infiltrating lymphocyte population allowed for

functional activation, expansion, and cytotoxic response to PD-1/

PD-L1 checkpoint blockade therapy.

A key advantage of strategies retaining endogenous immune cells

is the preservation of physiologic immune composition diversity and

heterogeneity reflective of parental tissue. This better captures the

complex dynamics of immune cell interplay with other organoid
Frontiers in Microbiomes 11
components versus simplified co-culture approaches. However,

maintaining the reproducibility of heterogeneous models with

consistent phenotypic stability remains an ongoing challenge.

3.3.2 Co-culture with autologous immune
cell types

The most common coculture approaches for the generation of

immune-reactive organoids involve coculturing tissue-derived cells

with autologous immune cells, including those derived from

peripheral blood or secondary lymphoid tissues such as lymph

nodes and spleen (Votanopoulos et al., 2019b; Forsythe et al., 2022b;

Shelkey et al., 2022).

Shelkey et al. developed an immune-reactive organoid system

that included murine colon adenocarcinoma and breast cancer cell

lines. Tumor organoids were cocultured with T-lymphocytes

derived from murine lymph node tissue. These tumor immune

organoids were fabricated by encapsulating the tumor and immune

cells in a modified collagen based hydrogel (Shelkey et al., 2021). In

another study, they reported generating a similar immune reactive

system via coculture of the 4T1 TNBCmurine cell line and matched

splenocytes. Both models were used as platforms for testing the

influence of bacterial metabolites on the efficacy of checkpoint

inhibitors PD-1 and CTLA-4. They reported a beneficial effect of

the bacterial metabolite on immune cell viability and potency. They

also concluded there was a synergistic effect of the bacterial

metabolite on the immunotherapy regimen (Shelkey et al., 2022).
FIGURE 2

Development of tumor organoids to test immune response pathways, tumor cytotoxicity, and microbiome impact. Organoids are created by
encapsulation of dissociated tumor cells in extracellular matrix hydrogels (left panel). To create immune-reactive organoids, immune cells can be
isolated from either autologous peripheral blood/secondary lymphoid organs (lymph node or spleen) or isolated from the tumor. Immune cells can
then be directly incorporated into the 3D matrix (middle panel). As an additional component, microbes or their metabolites and products such as
cytokines and short-chain fatty acids can also be added to the organoid cultures (right panel). Once culture systems are established, testing such as
the addition of immunotherapy treatments can be performed to analyze subsequent immune activation and tumor cell death within the organoids.
Figure created in BioRender.
frontiersin.org

https://doi.org/10.3389/frmbi.2024.1411322
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


El-Derby et al. 10.3389/frmbi.2024.1411322
Immune reactive organoid models are also generated from patient-

derived tumor samples to model the tumor microenvironment and

predict immunotherapy response. A patient-specific, immune-enhanced

organoid platform for melanoma was developed by co-culturing either

lymph node cells or peripheral blood mononuclear cells into matched

patient tumor-derived organoids (Votanopoulos et al., 2019b). Organoid

response to immunotherapy drugs like nivolumab and pembrolizumab

showed 85% predictive accuracy compared to actual patient clinical

outcomes. This study advanced personalized immune therapy regimens

using patient-derived organoids. Similar investigations into tumor

immunobiology utilized a patient-derived organoid model of gastric

cancer co-cultured with PBMC-derived immune cells. Here, Chakrabarti

et al., 2021 found thatHER2 regulates PD-L1 expression in gastric cancer

to drive tumor-immune cell evasion (Chakrabarti et al., 2021). These

findings support further research into combinatorial therapy for gastric

cancer, as well as the use of organoid/immune co-cultures to screen for

targeted therapeutic approaches.

In the same vein, immune cells can be sourced from the tumor

sample itself via coculture of tumor-infiltrating lymphocytes (TILs).

TILs are isolated from tumor samples, expanded ex vivo, then

reintroduced to tumor cells to potentially enhance anti-tumor

cytotoxicity toward specific antigens (Magré et al., 2023). One

study reported a co-culture system between patient-derived rectal

cancer tumoroids and matched TILs that were isolated, expanded,

and reintroduced. This immune reactive system was used to assess

the immune response to checkpoint blockade inhibitors. The study

showed a restored TIL cytotoxicity and increased PD-1 expression

upon treatment with anti-PD-1 antibody (Kong et al., 2018).

The co-culture system permits the pretreatment and genetic

modification of immune cells, such as CAR-T cells, to target

specific antigens. This aspect is crucial for advancing the

mechanisms and methods in immunotherapy (Yu et al., 2021).

Furthermore, these systems facilitate research into immune cell role

in shaping tumor behavior and drug responses at both the cellular

and the more expansive tissue-mimetic organoid levels. A notable

example of this approach is the work by Jiang et al., who elucidated

the role of macrophages in modulating Gemcitabine resistance in

pancreatic adenocarcinoma. They generated an immune-reactive

model using a co-culture of patient-derived tumor samples and

tumor-derived macrophage cells. This study revealed the critical

role of the CCL5-p1-AREG axis feedback loop between

macrophages and pancreatic cancer cells (PCCs) in conferring drug

resistance (Jiang et al., 2023).

From these examples and numerous others, tumor organoid

platforms are increasingly recognized as a novel means to both

improve our understanding of immunotherapy mechanisms and

drive therapeutic progress.
4 Tumor organoids models for
studying the microbiome and
cancer immunotherapy

Recent developments in biomaterials have resulted in more

physiologically accurate culture methods that can be used to study
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complex human systems (Rossi et al., 2018). Specifically, advances in

immune population and microbiome ex vivomodels have allowed for

composite models to examine interactions between the two systems

(Figure 1). Organoids have been used to model many aspects of the

microbiome and immune environment including different bacterial

species, viral infections, and effects on various cellular niches (Min

et al., 2020). Anti-PD-1 and anti-CTLA-4 have been tested in

microfluidic devices to model efficacy (Aref et al., 2018). Organoids

and spheroid culture have also demonstrated their use as a model for

studying ICI efficacy (Jenkins et al., 2018; Neal et al., 2018).

Microbiome derived factors and viable immune responses can

therefore be combined to create a model that can demonstrate the

interplay between microbiome derived metabolites and ICI in an

organoid system (Shelkey et al., 2022). Chip systems have even been

constructed that incorporate microbiota compartments to produce

immunomodulatory effects on the tissue present with specific species

causing identifiable inflammatory responses through factors like

metabolite production and reactive oxygen species (De Gregorio

et al., 2022). It is even possible to modulate the microbiome in

chip-based systems to cause inflammation and bacterial outgrowth,

which can then be monitored in ways that incompatible with animal

models (Kim et al., 2016). The high throughput nature of ex vivo

culture makes it ideal for conducting large scale studies that work to

isolate individual components underpinning the mechanisms of

action for complex systems (Rae et al., 2021). Further advances in

advanced cell culture models will continue to contribute to

understanding immunotherapy-microbiome interactions.
5 Future perspectives and challenges

Ex vivo culture of cells and tissue constructs is continuously

advancing with applications in precision medicine, immune

modeling, and organ system replication. Organoids have proven

to be particularly effective at predicting cancer patient response to

therapeutic treatment (Nagle P. W. et al., 2018; Mazzocchi et al.,

2018; Votanopoulos et al., 2019a; Forsythe et al., 2021). Advances in

microfluidic production have allowed multiple organ systems to be

integrated in one construct to demonstrate how all of the different

systems interact (Skardal et al., 2017; Ingber, 2022). These systems

are also significantly better for continuous monitoring of cell

populations of interest (Kim et al., 2016). Microbiome

modulation and analysis in correlation with cancer immune

therapy and cancer progression has been investigated in several

clinical studies to evaluate the positive outcomes and drawbacks.

These studies also aim to estimate the potential of antibiotics that

affect gut microbiome composition and the subsequent influence on

either cancer promotion or response to therapeutics. There have

previously been difficulties in producing ex vivo culture models that

are exposed to live bacterial populations, with tissue and live

bacterial interactions being limited to animal models. Some

researchers compensated by focusing on bacterial metabolites that

could be used in aseptic culture; however, intestine-on-a-chip

models have now been produced that are able to sustain

equivalent microbiomes in culture with intestinal epithelium.
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These models replicate oxygen gradients, intestinal barriers, and

can be utilized going forward for the controlled testing of

therapeutics (Jalili-Firoozinezhad et al., 2019; Shin et al., 2019).

Different versions of the gut-on-a-chip model can even model

peristaltic movements while maintaining a normal microbial

population (Kim H. J. et al., 2012). With the continuous advances

in cell culture technology producing models that were previously

impossible, it is likely that more ex vivo models better able to

reproduce the complicated cancer immunotherapy-microbiome

interactions will be produced. These models can more easily be

leveraged for high-throughput studies both for mechanistic

investigation and predictive precision medicine, resulting in better

patient care. These results will continue to supplement and

corroborate the ongoing clinical trials that aim to elucidate the

interactions between the microbiome and cancer immunotherapy.
6 Conclusion

With several drugs in the clinical pipeline andmore clinical trials in

progress, immunotherapies are a promising therapeutic for a wide

array of tumor types (Cloughesy et al., 2019; Ni et al., 2021; Rothschild

et al., 2021; Vignali et al., 2022; Garon et al., 2023; Huang et al., 2023;

Boesen et al., 2024). To continue to grow the list of available

immunotherapies, advanced testing platforms are necessary. Tumor

organoids, particularly those derived from human primary specimens,

are an increasingly important platform to personalize current therapies

and model various tumor microenvironment interactions to accelerate

novel drug development. In particular, the capacity to co-culture

microbiome, immune cells, and tumor organoids provides critical

insight into complex interplays which regulate immunotherapy

responses. As we highlight in this review, these dynamic mechanisms

cannot be accurately modeled in traditional 2D culture systems, and

animal models fail to provide fully translational findings. As

microfabrication technologies continue to evolve and improve the

organoid systems, these ex vivo assays are a crucial tool to
Frontiers in Microbiomes 13
innovate immunotherapy treatment strategies through understanding

of the microbiome-immune-tumor interactions and improve

patient outcomes.
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