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Impact of propionic acid-rich
diets on microbial composition
of the murine gut microbiome
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and Taj Azarian1*

1Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando,
FL, United States, 2Department of Health Sciences, College of Health Professions and Sciences,
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Propionic acid (PPA), an anti-fungal agent and common food additive, has been

shown to induce atypical neurodevelopment in mice, accompanied by

gastrointestinal dysfunction potentially resulting from gut dysbiosis. A putative

association between dietary PPA exposure and gut dysbiosis is suggested but has

not been explored directly. Here, we investigated PPA-associated alteration in

gut microbial composition that may result in dysbiosis. Using long-read

metagenomic sequencing, gut microbiomes of mice fed an untreated (n=9) or

PPA-rich (n=13) diet were sequenced to assess differences in microbial

composition and bacterial metabolic pathways. Dietary PPA was associated

with an increased abundance of notable taxa, including several species of

Bacteroides, Prevotella, and Ruminococcus, whose member species have

previously been associated with PPA production. Microbiomes of PPA exposed

mice also possessed a greater abundance of pathways related to lipid

metabolism and steroid hormone biosynthesis. Our findings demonstrate PPA’s

effect in altering the gut microbiota and associated metabolic pathways. These

observed changes highlight how preservatives listed as safe for consumption

may affect gut microbiome composition with implications for one’s health.
KEYWORDS

third-generation sequencing, nanopore sequencing, gut microbiome, propionic acid,
metagenomics, dysbiosis
1 Introduction

Often referred to as the “last human organ”, the human microbiome plays an integral

role in one’s health (Baquero and Nombela, 2012). In particular, the gut microbiome is well

recognized for its system-wide influence and role in several key functions. Commensal

organisms are prolific in the gut, occupying multiple niches, utilizing nutrients, and

outcompeting potential pathogens (Jandhyala et al., 2015). Several bacterial constituents of
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the gut microbiome produce essential nutrients such as vitamins

and assist with digestion (Rowland et al., 2018). Bacterially-

produced metabolites have also been shown to influence the

development of tissues as well as augment metabolic and

immune-related pathways (Heijtz et al., 2011; Yu et al., 2022).

The composition of the human gut microbiome is extremely

diverse, shaped by both genetic and environmental factors such as

diet, sex, medication, and health conditions (Kumbhare et al., 2019).

Maternal diet is a key component of prenatal and neonatal

development and a putative source of exposure to compounds that

can impact development (Bazer et al., 2004; Innis, 2014). Propionic

acid (PPA), a short-chain fatty acid byproduct of bacterial

fermentation and food additive, is one such compound of interest

(den Besten et al., 2013). PPA exhibits antimicrobial and antifungal

properties, for which it is used as a food preservative and to

inhibit mold and bacterial growth in industrial applications

(Wemmenhove et al., 2016). PPA exhibits variable effects

depending on the tissue. In the liver, PPA exerts an anti-

inflammatory effect by targeting expression of cytokines from

macrophages (Kawasoe et al., 2022). This modulatory effect has

also been observed on other immune cells resulting in down-

regulation of inflammation (Haase et al., 2021). However, in the

brain, a contrasting effect is observed. Previous work has shown that

PPA exposure induced ASD-like behaviors in mice (El-Ansary

et al., 2012). Other research suggests PPA may induce neural

gliosis and upregulate pro-inflammatory pathways in the brain

(Abdelli et al., 2019). Because PPA is a weak acid, it can diffuse

across the intestinal epithelium into circulation, allowing it to cross

restrictive barriers, including the blood brain barrier, as well as the

placenta (Stinson et al., 2019), highlighting PPA’s importance as a

bacterially-produced regulatory metabolite. While PPA’s potential

role as an environmental risk factor for ASD is currently under

investigation, its effects in those with ASDmay go beyond induction

of neurodivergence.

Gastrointestinal symptoms including diarrhea and constipation are

common commodities among individuals with neurodevelopmental

disorders (Cao et al., 2021). Previous work has shown that individuals

with ASD exhibit different microbiomes from healthy counterparts,

suggesting gut dysbiosis (Finegold et al., 2010). Similarly, individuals

with conditions such as inflammatory bowel diseases, obesity,

Alzheimer’s disease, among others, were shown to have distinct

microbiome profiles compared to healthy individuals (Turnbaugh

et al., 2009; Vogt et al., 2017; Henke et al., 2019). However, to date,

no causal association between the gut microbiome and neurological

conditions or symptoms has been established (Yap et al., 2021), though

several species are implicated in playing a role in several of these disease

states. For example, genera such as Akkermansia, Bacteroides,

Clostridium, Lactobacillus, Desulfovibrio, and others have been found

in greater abundance in microbiomes of those with ASD (Tomova et al.,

2015; Golubeva et al., 2017; Cristiano et al., 2018; Zurita et al., 2020).

Notably, several of these genera contain member species known to

possess genes associated with production of PPA (Reichardt et al., 2014;

Yun and Lee, 2016; Zhang et al., 2019; Baur and Dürre, 2023). Given its

antimicrobial nature, increased levels of PPAmay play a role in favoring

PPA producers (Jacobson et al., 2018). Consequently, PPA rich

environment may be responsible for altering the gut microbiome,
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including gastrointestinal pathogens, which may serve as potential

contributors to gastrointestinal symptoms.

A central question in microbiome research is whether

differences in composition contribute to, or are a symptom of, the

disease state in question. A first step in elucidating the complex

relationship between diet, the gut microbiome, and neurological

conditions is to assess the directional impact of diet on microbial

composition. Toward this end, we used long-read metagenomic

sequencing to compare the gut microbiomes of progeny mice from

mothers provided food replete or absent PPA. Progeny mice were

maintained on the same diet as their mothers. We hypothesized that

PPA-rich diets would result in changes in gut microbial

composition and microbial functional pathways, particularly

those associated with PPA metabolism and/or PPA production.
2 Materials and methods

2.1 Animal conditions and fecal extraction

FVB/N-Tg(GFAP-GFP)14Mes/J transgenic mice overexpressing

green fluorescent protein (GFP) under the control of the glia-specific

GFAP promoter (Jackson Laboratories) were used in this study

following the University of Central Florida Institutional Animal

Care and Use Committee (UCF-IACUC) guidelines (Animal Use

Approval #: PROTO202000002). After weaning, mice were separated

into cages with each cage containing 1-5 mice of the same sex. Mice

were given ad libitum either a purified control diet (Modified Open

Standard Diet with 16 kcal% fat) or a sodium propionate-rich diet

(Modified Open Standard Diet with 16 kcal% fat with 5000 ppm of

sodium propionate). The quantity of sodium propionate given

corresponds to 5000 mg PPA per kilogram of total food. This is

the maximum PPA concentration allowable for use in the food

industry as a preservative. In preparation for this study, parent

mice were exposed to either diet 4 weeks prior to mating and

continued throughout mothers ‘pregnancy. Progeny mice [Twenty-

two mice, 9 control (6 male, 3 female) and 13 PPA (4male, 9 female)]

were weaned off their mothers and then continued the same diet

provided to their respective mothers for an additional 5 months. At 5

months of age, progeny mice were sacrificed, at which point fecal

contents were collected from the intestines and initially stored at -20°

C in 1.5 mLmicrocentrifuge tubes, then transferred to a -80°C freezer

until host DNA depletion and microbial nucleic acid extraction.
2.2 Host DNA depletion and bacterial
DNA extraction

Host DNA was depleted according to a modified protocol from

(Charalampous et al., 2019). Briefly, fecal contents were transferred

to 500 µL of InhibitEX (Qiagen, Cat No./ID: 19593) while still

frozen. At most, 1-2 pellets of stool were processed for each

extraction. Fecal contents were then homogenized mechanically

using a plastic pestle within the tube until a slurry formed. Samples

were spun at 10,000 RCF for 5 minutes or until the sample had

pelleted, after which the supernatant was aspirated, and the pellets
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were resuspended in 250µL of 1X PBS. Two-hundred and fifty

microliters of a solution of 4.4% saponin (TCI, Product No.: S0019)

was added to the samples as a detergent to weaken eukaryotic cell

membranes. Samples were mixed by gentle agitation and incubated

at room temperature for 10 minutes. Next, to break eukaryotic cells,

350µL of nuclease-free water was added to the samples which

incubated for 30 seconds, and then 12 µL of 5M NaCl was added.

Samples were then spun at 6000 RCF for 5 minutes. The

supernatant was aspirated off, and the pellets were resuspended in

100 µL 1X PBS. To remove host DNA, 100 µL of HL-SAN buffer

(12.8568 g NaCl, 4 mL 1MMgCl2, 36 mL nuclease-free H2O) and 10

µL of HL-SAN enzyme (ArticZymes P/N 70910-202) were added.

Samples were mixed by pipetting and incubated at 37°C, 800 RPM

on an Eppendorf™ ThermoMixer C for 30 minutes. After

incubation, samples were spun down at 6000 RCF for 3 minutes,

then two washes using first 800 µL, then 1000 µL of 1X PBS were

performed. The pellets were then resuspended in 100 µL of 1X PBS.

Total bacterial DNA extraction was performed using the New

England Biolabs Monarch Genomic DNA Purification Kit (New

England Biolabs, Ipswich, MA, Catalog No. T3010L). The standard

protocol provided for the kit was used with some modifications.

Before beginning, nuclease-free water was incubated and kept at

60°C for the final elution. Ten microliters of Proteinase K and 3 µL

of RNase A were added to each sample. Next, 100 µL of cell lysis

buffer was added and mixed by gentle agitation. Samples were then

incubated at 56°C, 1400 RPM for at least 1 hour and up to 3 hours

on an Eppendorf™ ThermoMixer C. Incubated samples were spun

at 12,000 RCF for 3 minutes, and then the supernatant for each

sample was transferred to a separate 1.5 mL microcentrifuge tube

that contained 400 µL of binding solution. Tubes were then pulse-

vortexed for 5-10 seconds at 1 second intervals. All liquid contents

(approximately 600 µL-700 µL) for each sample were transferred to

filter columns placed in a flowthrough collection tube. Initial

binding of DNA was achieved by spinning the tubes at 1000 RCF

for 3 minutes before pulling all remaining liquid down by spinning

at 12,000 RCF for 1 minute. Sample columns were transferred to

new collection tubes, after which two washes were performed. For

the first wash, 500 µL of wash buffer were added to each tube. Tubes

were inverted 3-5 times prior to being spun at 12,000 RCF for

1 minute. The liquid was removed from the collection tube and then

the column was returned to the same collection tube. For wash 2,

500 µL of wash buffer were added to the filter, however no

inversions were performed. Samples were spun at 12,000 RCF

for 1 minute. Filters were transferred to 1.5 mL LoBind® tubes

and 100 µL of the pre-heated nuclease free water was added. Filters

were incubated for 1 minute at RT before being spun at 12,000 RCF

for 1 minute. Eluted DNA was stored at -80°C.
2.3 Library preparation and sequencing

Quantification of DNA concentration was measured using a

Qubit™ 4.0 Fluorometer. DNA was prepared using the Qubit™

1X dsDNA High Sensitivity kit according to the manufacturer’s
Frontiers in Microbiomes 03
instructions (Cat. No.: Q33231). DNA fragment length

distributions were measured using either the Aglient™ 4150 or

4200 TapeStation. DNA was prepared using the Agilent™

Genomic DNA Reagents (Ref. No.: 5067-5366) and a Genomic

DNA ScreenTape (Ref. No.: 5067-5365). Library preparation was

performed using the Oxford Nanopore Technologies™ (ONT) Rapid

PCR Barcoding Kit (SQK-RPB004) according to the manufacturer’s

protocol. DNA was sequenced on an ONT GridION™ Mk1

sequencer using a Min106D flowcell (R 9.4.1). The following

settings were set for sequencing: high-accuracy basecalling,

minimum q-score of 9, barcoding, and barcode trimming. Samples

were sequenced for up to 72 hours, after which basecalled data was

transferred for post-processing and analysis.
2.4 Bioinformatics pipeline

Bioinformatic processing was carried out using methodology

described previously (Greenman et al., 2024). FASTQ files obtained

from sequencing were separated into directories for each respective

sample. The following pipeline was used to process the data before

bioinformatic analyses: First, FASTQ files for a sample were

concatenated together into a single FASTQ file. Next, filtering

of reads shorter than 1000 bps was accomplished with Filtlong v.

0.2.1 with –min_length 1000 as the only modified option from the

defaults (Wick, 2024). Before further filtering, reads were QC’d with

NanoPlot v. 1.41.3 with the following parameters: –fastq –plots dot –

N50 -o <output_directory> (De Coster and Rademakers, 2023).

Host contaminant reads were removed by aligning reads to the

mouse reference genome GRCm39 (GCF_000001635.27) with

minimap2 v. 2.24-r1122 using the following parameters: -L -ax

map-ont <mouse_reference_genome> <reads> (Li, 2018). The

generated alignment file was converted to BAM format with

samtools v. 1.16.1 using samtools view -b (Danecek et al., 2021).

Samtools view -b -f 4 was then used to identify unaligned reads

indicating those reads were not from the host genome. Unaligned

reads were converted back to FASTQ format with samtools bam2fq

using default parameters. NanoPlot was run again on the further

filtered reads using the previously described settings. After filtering,

metagenomic data was assembled using metaflye v. 2.8.2-b1689 with

the following parameters: –nano-raw <filtered_reads> –meta

(Kolmogorov et al., 2020). All other parameters were left to their

defaults. Following assembly, the filtered reads were mapped to the

assembly using minimap2 with the parameter -ax map-ont used to

generate an alignment file in SAM format. Polishing of the assembly

using the filtered reads and alignment file was first performed with

racon v. 1.4.20 using the following parameters: -m 8 -x -6 -g -8 -w

500 -u (Vaser et al., 2017). After racon, further polishing was

performed with medaka v. 1.7.2 using medaka_consesus with

default parameters except -m which was given r941_min_hac_g507

to denote the flowcell chemistry and high-accuracy basecalling used

for our data (“nanoporetech/medaka,” 2024). The filtered reads,

referred to henceforth as microbial reads, and the final, polished

assembly were used in downstream analyses.
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2.5 Taxonomic classification, bacterial
relative abundance estimation,
and diversity

For taxonomic classification, both reads and assembled contigs

were classified using Kraken2 v. 2.1.2 (Wood et al., 2019). A report

and output file were both generated for reads and assemblies. The

option –use-names was used for analysis of both reads and

assemblies. For reads, the options –gzip-compressed and –paired

were specified. Bracken v. 2.8 was used to estimate relative

abundances of taxa within the metagenomes (Lu et al., 2017). A

kmer database of 1000mers was first created using bracken-build

with the following parameters: -d <kraken2_db> -k 35 -l 1000. Once

built, bracken was run on reports generated with kraken2 on filtered

reads with the following parameters: -d <bracken_db_folder> -i

<kraken2_report> -o <bracken_report> -r 1000 -l <P/G/S> where

either P, G, or S is chosen depending on what taxonomic rank is

analyzed. To minimize the impact of false positive classifications, a

minimum relative abundance threshold of 1e-4 (1/10,000 reads) was

employed. Relative abundances (fraction_total_reads) reported by

Bracken were transformed using a center-log ratio (CLR)

transformation before statistical analysis (Aitchison, 1982). The

CLR was chosen for transforming data because it is scale-invariant

and sufficient for non-sparse datasets (Gloor et al., 2017).The

natural logarithm was used in the CLR transformation. Count

data reported by Bracken were normalized by relative-log

expression (RLE) (Anders and Huber, 2010). Figures were

generated using a combination of matplotlib v. 3.7.1, seaborn v.

0.12.2, and statannotations v. 0.5.0 (Hunter, 2007; Waskom, 2021;

Charlier et al., 2022). Normalized bacterial counts were used to

calculate the Bacillota/Bacteroidetes ratio per sample. Values

reported in tables were rounded to 4 decimal places. Simpson’s

index of diversity was calculated using the alpha_diversity.py script

supplied in the KrakenTools suite v. 1.2 (Lu et al., 2022). Bracken

reports were supplied to the script and “Si” for Simpson’s index was

provided for the -an argument. Substantial differences in abundance

were defined as CLR mean differences being ≥ 1 or ≤ -1. A CLR

mean difference of ±1 indicates a 2.7-fold greater abundance in a

sample type. The sign (+/-) determined whether the taxon was more

abundant in PPA or control samples respectively. Significance was

determined using a Mann-Whitney U test (Virtanen et al., 2020).

Multiple-testing correction was conducted by applying the

Benjamini-Hochberg procedure using Statsmodels v. 0.14

(Benjamini and Hochberg, 1995; Seabold and Perktold, 2010). A

p-value of ≤ 0.05 after correction was used as a threshold for

determining statistical significance.
2.6 Functional annotation and gene relative
abundance estimation

Gene annotation and relative abundance estimation were

accomplished with a modified version of the protocol described by

Maranga et al (Maranga et al., 2023). First, all assemblies had contigs

shorter than 500 bps removed using SeqKit v. 2.5.1 (Shen et al., 2016).
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The filtered assemblies were then concatenated into a pan-

metagenome. Pprodigal v. 1.0.1, a parallelized version of Prodigal v.

2.6.3, was used to identify open reading frames (ORFs) with the

following parameters: -d <nucleotide_file> -f gff -i <pan-

metagenome> -o <output_file> -T 24 -p meta -C 10000 (Hyatt

et al., 2012; Jaenicke, 2024). The nucleotide file generated was then

filtered with python to remove all partial genes. Next, CD-HIT v.

4.8.1 was used to cluster genes with the following parameters: cd-hit-

est -i <filtered_nucleotide_file> -o <non-redundant_gene_catalog> -c

0.95 -s 0.85 -aS 0.9 -n 10 -d 256 -M 350000 -T 24 -l 100 -g 1 (Fu et al.,

2012). The resulting non-redundant gene catalog was used for gene

abundance estimation and annotation. Relative gene abundance was

estimated with KMA v. 1.4.9 (Clausen et al., 2018). First, an index file

was made using KMA index with the following parameters: -i <non-

redundant_gene_catalog> -o <index_db>. Then, using the index

generated along with each sample’s microbial reads described in

the bioinformatics pipeline section, KMAwas run using the following

parameters: -i <microbial_reads> -o <output_directory> -t_db

<index_db_path> -bcNano -bc 0.7 -ef -t 24. Gene counts were then

normalized using CLR for principal component analysis (PCA) using

Sci-kit learn’s PCA class (Pedregosa et al., 2011). Annotation of

predicted genes was performed using eggNOG v. 2.1.12’s emapper.py

script and eggNOG database version 5.0.2 on the non-redundant

gene catalog with the following parameters: –itype CDS –cpu 24 -i

<non-redundant_gene_catalog> –data_dir <eggNOG_db_directory>

–go_evidence non-electronic –output <output_file_prefix> –

output_dir <output_directory> –target_orthologs all –

seed_ortholog_evalue 0.001 –seed_ortholog_score 60 –

query_cover 20 –subject_cover 0 –translate –override –temp_dir

<temp_file_directory> (Cantalapiedra et al., 2021). KMA

results were filtered to select for genes that had sufficient

Template_Coverage and Template_Identity (≥ 90%) and prevalence

(Depth ≥ 3). KMA Depth results were transformed using CLR as

described earlier. Results from KMA were then matched using the

contig source for each gene to the contig ID in the functional

annotation and taxonomic classification results. As with taxa,

substantial differences in gene abundance were defined by genes

possessing a CLR mean difference ≥ 1 or ≤ -1, with the sign (+/-)

determining a gene’s abundance being greater in PPA or control

samples respectively.

Comparison of gene pathway abundance was performed by first

clustering genes according to their unique Kyoto Encyclopedia of

Genes and Genomes (KEGG) orthology (KO) ID assigned by

eggNOG. Genes without a KO or genes with multiple KOs were

removed prior to analysis. The average abundance of each KO in a

sample was then calculated before statistical analysis. PPA

metabolism genes were defined as any genes assigned the string

ko00640 in the KEGG_Pathway column, indicating its role in

propanoate metabolism according to KEGG. Identification of genes

associated with PPA production are listed in Supplementary Table 1

(Reichardt et al., 2014; Yang et al., 2017). Permutation testing was

performed to identify PPA metabolism and production genes

significantly more abundant in each sample type. One thousand

permutations were performed for each gene analyzed. A p-value of

0.05 was used as a threshold for determining statistical significance.
frontiersin.org

https://doi.org/10.3389/frmbi.2024.1451735
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Greenman et al. 10.3389/frmbi.2024.1451735
Functional annotations were assigned to individual genes within a

cluster according to the annotation for the representative gene of that

cluster. Identification of taxa associated with PPAmetabolism and/or

PPA production was accomplished by matching contig IDs from

Kraken2’s output file to identical contig IDs preserved during

functional annotation with eggNOG. Significance testing was

performed using a Mann-Whitney U test as described previously.

Multiple-testing correction was performed using the Benjamini-

Hochberg procedure. A p-value of ≤ 0.05 was used as a threshold

for determining statistical significance.
3 Results

3.1 Altered microbial composition in
PPA samples

The diversity of murine gut microbiomes was assessed using

Simpson’s diversity index. Control and PPA samples were not

significantly different in terms of genera and species diversity

(Genera p-value: 0.18, Species p-value: 0.16) (Figure 1). Next,

microbial compositions were compared using PCA. Figure 2

shows clustering of samples according to their sample type,

indicating a difference in what species make up the microbiome

of PPA and control samples. At the genus level, this clustering

was not as strong, suggesting PPA affects specific bacteria

(Supplementary Figure 1).

Using RLE transformed count data, a significant decrease in the

median Bacillota/Bacteroidota ratio between control and PPA

samples was observed (Control: 9.66, PPA: 3.02; p-value =

0.0011). This difference resulted from PPA mice possessing a

greater abundance of Bacteroidota relative to the control,

although not significantly different (Control mean CLR: 5.51,

PPA mean CLR: 6.62; p-value = 0.054) while Bacillota abundance

was similar (Control mean CLR: 7.76, PPA mean CLR: 7.60; p-value

= 0.18).

Analysis of abundances in classified members of the gut

microbiome revealed 1 phylum and 77 species that differed

significantly between PPA and control samples (Supplementary

Table 2). Fifty-nine species were substantially more abundant in

PPA samples, whereas only 16 species were more abundant in

control samples (Figure 3).
3.2 Functional annotation of murine
gut metagenomes

Following analysis of gut microbial compositions, functional

annotation of microbiomes was performed. A total of 378,355

unique genes were identified across all samples after filtering out

low quality genes. The transformed abundances of these genes were

used in PCA, revealing strong clustering of sample type based on

their functional profiles (Figure 4).
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We next examined the abundances of KEGG KOs across sample

types. A total of 3,648 unique KOs were identified, of which 196

were significantly more abundant in control samples and 106 were

more abundant in PPA samples (Figure 5). One-hundred and forty-

five genes in control samples and 61 genes in PPA samples showed a

substantial difference in abundance. Pathways associated with lipid

metabolism and amino sugar metabolism were significantly more

abundant in PPA samples (Supplementary Table 3). Control

samples showed significantly more abundant pathways associated

with nitrogen metabolism and sulfur relay systems (Supplementary

Table 3). PPA samples had a significantly higher abundance of

genes associated with amino sugar/nucleotide sugar metabolism

(ko:K21279) and Inositol phosphate metabolism (ko:K07291)

(Figure 5). Control samples possessed significantly more genes

associated with benzoate metabolism (ko:K22270), nitrogen

metabolism (ko:K00368), and glycolysis/gluconeogenesis (ko:

K00131) (Figure 5).

Among annotated genes, 1,601 significantly differed in

abundance (p ≤ 0.05) between sample types with genes being at

least 2.7 times more abundant in either. Of those genes, 4 were more

abundant in control samples and 1,597 were more abundant in PPA

samples. Because PPA has antimicrobial properties, we examined

the abundance of PPA metabolism and production genes between

sample types. Out of 1332 genes associated with PPA metabolism,

27 were significantly more abundant in control samples and 12 were

more abundant in PPA samples. Out of 223 genes associated with

PPA production, 1 gene was significantly more abundant in PPA

samples. Figure 6A further demonstrates the higher prevalence of

PPA metabolism-associated genes with significantly higher

abundances of a substantial effect size being present in the control

samples, while 6B highlights the singular gene with a significantly

greater abundance observed in PPA samples.
3.3 Taxa associated with PPA metabolism
and/or production

Taxa possessing genes associated with PPA metabolism and/or

production were identified by matching a contig’s taxonomic

identity to the contig ID for a given gene. At the genus level, 130

genera were found to possess genes associated with PPA

metabolism and 61 possessed genes associated with PPA

production (Supplementary Table 4). No genera however showed

a significant difference in abundance (p > 0.05).

At the species level, 144 were found with genes associated with PPA

metabolism and 68 bacteria were found with genes associated with PPA

production (Supplementary Table 5). Within the PPA metabolizers, 8

bacteria showed a significant increase in abundance between sample

types with all of them having a sizable effect change (Supplementary

Table 6). All of the PPA metabolizers with a substantial difference in

abundance identified were more abundant in PPA samples. Species-

level classification revealed members whose genera did not significantly

differ between sample types, including several Bacteroides and
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Ruminococcus species, as well as Duncaniella dubosii, Muribaculum

intestinale,Monoglobus pectinilyticus, and Sodaliphilus pleomorphus.

Among PPA producers, the abundance of 4 were significantly

different between sample types. Those with a notable difference in

abundance included Bacteroides nordii, Duncaniella dubosii,

Muribaculum intestinale, and Ruminococcus bovis.
4 Discussion

In this study we investigated the effects of dietary PPA exposure

on the murine gut microbiome. PPA may elicit a number of

responses among bacteria since it is produced by select species,

used as a nutrient source by others, or have an antimicrobial effect.

As a result, its addition to the gut environment through dietary

supplementation likely has a differential effect depending on

tolerance, susceptibility, and ability to use it as a nutrient.

Sensitive species are likely removed and replaced by those with

higher PPA-tolerance or ability to use it as a food source, resulting

in changes in the composition of the gut microbiome. Our results

identified significant differences in microbial composition with no

effect on overall microbial diversity. The greatest effect was observed

at the species level, with over 70 taxa differing significantly in
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abundances between PPA and control samples (Supplementary

Table 2). Further assessment of the composition of the PPA

exposed sample showed greater heterogeneity in microbial species

compared to the unexposed sample, suggesting that PPA may

augment bacterial growth characteristics and limit the taxa that

survive in a PPA-rich environment. As a result, PPA may induce

alterations selectively instead of producing widespread disruptions

to gut microbiome diversity.

Food preservatives such as PPA have previously been shown to

alter the abundances of gut microbiome constituents without affecting

overall diversity (Nagpal et al., 2021). Here, we observed the most

notable difference among species of the Bacteroides, belonging to the

phylum Bacteroidota (previously Bacteroidetes), which were

significantly more abundant in PPA exposed mice. Increased

Bacteroides has been linked with increased mucus degradation,

which may increase risk of infection and promote inflammation

(Cornick et al., 2015; Desai et al., 2016; Penzol et al., 2019). In one

study, newborn male mice treated with Bacteroides fragilis were found

to exhibit ASD-like social behavior (Carmel et al., 2023), and other

research has demonstrated that species of Bacteroides can alter

immune activity, resulting in autoimmune inflammatory

cardiomyopathy (Gil-Cruz et al., 2019). Species belonging to the

genera Ruminococcus, Prevotella, and Parabacteroides were also
FIGURE 1

Alpha diversity of genera and species compositions of murine gut microbiomes. Boxplots depict Simpson’s index of diversity of genera (A) and
species (B) in PPA and Control samples. Significance was determined using a Mann–Whitney U test with correction for multiple tests by Benjamini-
Hochberg procedure. ns, non-significant p–value (p > 0.05).
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significantly higher in abundance in the PPA exposed mice (Coretti

et al., 2018). Certain Ruminococcus species have been linked to

disorders like Chron’s Disease through production of a pro-

inflammatory cytokines (Henke et al., 2019), and Prevotella species,

such as Prevotella copri, have been associated with metabolic-related

conditions like hypertension and insulin sensitivity (Pedersen et al.,

2016; Li et al., 2017). Last, we found that the ratio of Bacillota

(previously Firmicutes) to Bacteroidota was significantly lower in

PPA exposed mice compared to control mice due to higher overall

abundance of Bacteroidota species. This ratio has previously been

shown to be a significant indicator of gut homeostasis, and disruptions

in this ratio have been linked to several disease states (Turpin et al.,

2016; Takezawa et al., 2021; An et al., 2023), including inflammatory

bowel disease (Stojanov et al., 2020). Taken together, species belonging

to phylum Bacteroidota appear to be the most significantly impacted

by increased dietary PPA. This may result from higher tolerance to

PPA or the ability to use PPA as an energy source, which has been

shown true for at least one member species, Hoylesella enocea (Hitch

et al., 2022). Alternatively, maternal PPA exposure may augment

prenatal development, allowing for the guts of progeny mice to be

more easily colonized by Bacteroides; however, our study design did

not allow for this assessment.

Assessment of metagenome content found significant differences

in abundances of genes associated with PPA metabolism and

production, with PPA exposed mice possessing a greater

abundance of PPA production genes and unexposed mice PAA

metabolism (Figure 6). These results suggest that the effect of PPA

on microbial composition may not solely be due to its utilization,
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otherwise PPA metabolism-associated gene abundance should show

greater abundance in the gut microbiomes of PPA exposed mice. One

explanation is that PPA mediates bacterial abundance mainly

through its antimicrobial effects as opposed to bacteria utilizing it

as a nutrient. Previous work has demonstrated that, in the case of

Salmonella Typhimurium, PPA inhibited growth in a dose-dependent

manner (Jacobson et al., 2018). Exposure to higher levels of PPAmay

select for bacteria that are resistant to its antimicrobial properties

while not necessarily being able to metabolize or produce it. For

example, several Parabacteroides species displayed significantly

greater abundance in PPA samples, however no genes linked to

PPA metabolism or production were found to be associated with

them (Supplementary Tables 2, 4, 5). Furthermore, production of

PPA as a fermentation byproduct occurs across a wide range of

bacteria (Gonzalez-Garcia et al., 2017). Greater bacterial diversity

may account for the greater abundance of PPA metabolism-

associated genes in control samples (Averina et al., 2020). Also,

only 27/1332 (2.14%) genes were predicted to be ones associated with

only PPA metabolism. Many genes associated with PPA metabolism

are also a part of other metabolic pathways. This provides further

evidence for the greater abundance of PPA metabolism-associated

genes in control samples; these genes may be functioning in pathways

that do not result in PPA being used or produced as a byproduct.

Here, only one gene associated with PPA production showed a

significant difference in abundance between sample types. Unlike

PPAmetabolism-associated genes, marker genes for PPA production

were chosen because they directly participate in bacterial PPA

production pathways. All species that showed significant increased

abundances and the ability to produce PPA were found in PPA

exposed mice. This supports the prediction that PPA selects for PPA

producers, thus an increased capacity for PPA production is

predicted. Gene abundance, however, does not necessarily correlate

to gene expression; therefore, it is possible that while a larger

abundance of PPA metabolism-associated genes were in control

samples, the rates of expression may vary (Shi et al., 2014).

Research into PPA production-associated gene expression is

required to support an association between PPA-production gene

abundance and PPA production.

Several differences were observed when the results of functional

annotation for PPA and control metagenomes. PCA analysis of

gene content resulted in discrete clusters forming between PPA and

control samples (Figure 5). Intra-sample clustering revealed that

control gene content was more diverse, whereas PPA samples

clustered near each other. Clustering by gene content was

comparable to clustering by species composition. Differences in

the abundance of metabolic pathways thus coincide with changes in

the abundance of specific species and strains therein. In PPA

samples, two pathways that saw significantly higher abundance

were those associated with amino sugar/nucleotide sugar

metabolism (ko:K21279) and multiple lipid-metabolism pathways

(ko:K00647, ko:K03801; Supplementary Table 3). The gene

associated with ko:K21279 is known to be associated with

Bacteroides, one of the genera with species that were significantly

more abundant in PPA samples. This enzyme may enable immune
FIGURE 2

PCA results of species-level mouse gut microbiome compositions.
PCA plot depicts the distributions of samples according to their top
two principal components. Colors denote the sample type, with
PPA-exposed mice in purple and control mice in yellow. Principal
components 1 and 2 are listed with their explained variance ratios as
percentages on the x and y-axis respectively.
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avoidance through expression of capsular polysaccharides (Wang

et al., 2008). This could contribute to the observed increased

abundance of Bacteroides in PPA-exposed mice. This

complements the finding that increased fatty acid synthesis was

observed in PPA microbiomes. Bacteria utilize the FASII pathway

ko:K00647 (fabB) to produce fatty acids that can impact host

metabolic pathways (Yao and Rock, 2015; Johnson et al., 2020),

and altered lipid metabolism may play a role in neurodevelopment

(Yu et al., 2020). Another pathway showing increased abundance in

PPA samples was steroid hormone biosynthesis (ko:K12343).

Growing evidence shows an interconnected relationship between

the gut microbiota’s ability to influence and be influenced by
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hormone levels, thus increased steroid levels may have

downstream health effects (Tetel et al., 2018).

This study is not without limitations or considerations. One

important distinction is that animals were not physiologically

evaluated. Therefore, association of microbiome changes with any

disease cannot be concluded directly. Another consideration is that

mice in this study were kept on the same diet as the mothers. Future

work may include identifying if switching from a PPA-rich to a

PPA-free diet ameliorates its effects on the microbiome. One

limitation our study shares with many others is the limited

sample size. Although valid inferences can be drawn, larger

sample sizes provide more statistical power when analyzing
FIGURE 3

Differential abundance of taxa in PPA and Control murine gut microbiomes. Volcano plots depict differences in the abundances of genera (A) or
species (B) between PPA and control samples. Gray points indicate taxa whose abundances between taxa did not significantly differ. Colored points
indicate a significant difference in abundance (p–value ≤ 0.05). The top 20 taxa with the greatest difference in abundance between sample types are
red and light blue for control and PPA samples respectively. Yellow and purple points were at least 2.7 times more abundant in control or PPA
samples. Black points indicate taxa with a significant difference in abundance, whose CLR mean difference was between -1 and 1. P–values were
calculated using a Mann–Whitney U test with correction for multiple tests by Benjamini-Hochberg procedure. Bold CLR mean difference values
indicate a significant difference in abundance.
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results. We also caution on drawing conclusions related to the

association between changes in the gut microbiome and any disease

(Yap et al., 2021). Confounding factors, including age, sex, and diet

can all have significant effects on microbial composition. These

factors may explain inconsistencies observed in the literature

regarding gut microbiome association with complex conditions

(Johnson et al., 2019; Lagod and Naser, 2023). For example,

members of the genus Bacteroides have been shown to have either

an increased or decreased abundance in animals and individuals

with ASD (Angelis et al., 2013; Kushak et al., 2017).Similarly,

studies of gut compositions in individuals with inflammatory

bowel diseases have reported both increased and decreased

abundance for the same taxa (Walters et al., 2014; Forbes et al.,

2018; Upadhyay et al., 2023). To limit the influence of sex-related

bias, we attempted to have equal representation of sexes such that

differences were likely the result of diet. One challenge in functional

annotation was the removal of redundant gene sequences. Our gene

clustering approach required 95% sequence identity with an 85%

length similarity, and 90% alignment coverage to mitigate spurious

clustering. However, in some instances, we observed COGs with the

same annotation (e.g., MUT) (Figure 6). Further investigation is

needed to determine if these are distinct orthologs associated with

specific genera or a limitation in the gene cluster approach. Another

limitation with functional annotation dealt with possible

misclassifications; the bacterial gene mmdA is a known enzyme
FIGURE 4

PCA results using functional profiles of mouse gut microbiomes.
PCA plot depicts the distributions of samples according to their top
two principal components. Colors denote the sample type, with
PPA-exposed mice in purple and control mice in yellow. Principal
components 1 and 2 are listed with their explained variance ratios as
percentages on the x– and y–axis respectively.
FIGURE 5

Differential abundance of KOs in PPA and control murine gut microbiomes. Volcano plot depicts differences in the abundance of functional groups
(KOs). Gray points indicate KOs whose abundances did not significantly differ between sample types (p–value > 0.05). Colored points indicate a
significant difference in abundance (p–value ≤ 0.05). The top 20 KOs with the greatest difference in abundance between sample types are red and
light blue for control or PPA samples respectively. Yellow and purple points are KOs at least 2.7 times more abundant in control or PPA samples,
respectively. Black points indicate KOs with a significant difference in abundance, whose CLR mean difference was between -1 and 1. P-values were
calculated using a Mann–Whitney U test with correction for multiple tests by Benjamini-Hochberg procedure. NaN indicates a KO was not a part of
a pathway in KEGG. Bold CLR mean difference values indicate a significant difference in abundance. For details on pathways the KOs listed belong
to, see Supplementary Table 3.
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associated with the PPA synthesis, yet KEGG does not associate it

with the propanoate metabolism pathway. Instead, orthologs scpB

and mmcD are. Numerous genes not having assigned KOs could

result in PPA-associated genes being unaccounted for when

estimating gene abundance. Future work would benefit from

analyzing the meta-transcriptome, which may offer greater insight

into the functional profiles of the gut microbiota and tie gene

expression to potential downstream effects. For work related to

specific neurodevelopmental conditions or inflammatory bowel

diseases, physiological and behavioral evaluation of animals

should be performed to associate changes in microbial

composition with said condition. Complementary research of gut

microbiome transplantation into germ-free mice to observe

whether the microbiome is a factor or feature of a condition

would also be beneficial.
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In conclusion, we demonstrated the role of dietary PPA as an

factor that contributes to variation in microbial composition of the

gut microbiome. An FDA-approved preservative, PPA’s prevalence

in various food products offers routes for extended exposure that

can lead to disruption of normal gut flora. We identified

abundance changes to several bacterial species, demonstrating

PPA’s ability to affect the composition of the gut microbiome.

An altered microbiota can translate to altered levels of certain

metabolic pathways, potentially contributing to physiological

changes linked to host health. Future studies are needed to

examine whether alterations to microbiome composition from

dietary PPA induces dysbiosis or the development of other

conditions. This study provides a foundation toward future

investigations into how PPA’s effect on gut composition affects

one’s health.
FIGURE 6

Differential abundance of PPA-associated genes in murine gut microbiomes. Volcano plots depict differences in the abundance of genes associated
with PPA metabolism (A) and PPA production (B). Gray points indicate genes whose abundance did not significantly differ between sample types
(p–value > 0.05). Colored points indicate a significant difference in abundance (p–value ≤ 0.05). The 20 genes with the greatest difference in
abundance are red and light blue for control or PPA samples respectively. Yellow and Purple points were at least 2.7 times more abundant in control
or PPA samples. Black points indicate genes with a significant difference in abundance, whose CLR mean difference was between -1 and 1. P-values
were calculated using a Mann–Whitney U test with correction for multiple tests by Benjamini-Hochberg procedure. Genes correspond to the
representative genes in the non-redundant gene catalog. Gene names consist of the symbols for a gene’s KO according to KEGG. Bold CLR mean
difference values indicate a significant difference in abundance. A dash (-) indicates no symbol was available for a gene according to KEGG.
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