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Probiotic supplementation
prevents stress-impaired
spatial learning and
enhances the effects of
environmental enrichment
Cassandra M. Flynn*, Lara M. Blackburn and Qi Yuan*

Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
Probiotics are live microorganisms that offer health benefits, influencing the

microbiota-gut-brain axis. Probiotics can improve cognitive functions, including

learning and memory, by modulating the gut microbiota, reducing inflammation,

and producing neuroactive substances. This study examined the effects of probiotic

supplementation prior to chronic stress or enrichment (EE) treatment on cognitive

function and brain physiology. Rats received probiotics or control diet starting at 6

months of age for 3 months. They were then randomly assigned to unpredictable

stress, or EE for 6 weeks, with a home cage control group on a control diet included.

Results showed that probiotic supplementation prevented spatial memory

impairments induced by chronic stress and enhanced learning when combined

with EE. These behavioral improvements were linked to increased gut microbiome

diversity. Higher levels of the microglia marker Iba-1 were found in the stressed

group compared to the EE group in the locus coeruleus, which probiotic reversed.

Differences in blood-brain-barrier integrity were observed between the stress and EE

groups, as indicated by albumin levels. Higher levels of tyrosine hydroxylase were

observed in the hippocampus of the EE groups. The interaction of probiotic

supplementation, chronic stress, and environmental EE offers a promising area for

enhancing cognitive function and brain health.
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1 Introduction

Chronic stress negatively impacts learning and behavior, and increases susceptibility to age-

related diseases, including Alzheimer’s disease (AD), by disrupting cognitive processes, healing

mechanisms, coping abilities, and overall quality of life (Polsky et al., 2022; Sotiropoulos et al.,

2011; Torraville et al., 2023). Activation of neurobiological stress responses, such as the

sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis, contributes

to higher morbidity and mortality rates, highlighting the profound impact of chronic stress on

health and aging (Schneiderman et al., 2005; Shields and Slavich, 2017).
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The locus coeruleus (LC)-noradrenergic system is critically

involved in stress-related disorders, with its dysregulation negatively

impacting health and cognition (Suárez-Pereira et al., 2022).

Noradrenergic neurons project to the hypothalamus and key

structures involved in learning and memory, therefore, stress-induced

alterations in LC health and norepinephrine release can significantly

impair brain function (Wang et al., 2017). Additionally, stress

hormones impair hippocampal function via glucocorticoid receptors,

affecting various types of memories (Lupien et al., 2018). Chronic stress

also disrupts microglial function, potentially compromising brain

homeostasis and contributing to anxiety phenotypes (Chen et al., 2024).

In contrast, environmental enrichment (EE) promotes cognitive

health and resilience by providing cognitive, sensory, and motor

stimulation that enhances brain plasticity and cognitive reserve

(Mandolesi et al., 2017; Torraville et al., 2023). EE fosters

neurobiological adaptations, such as improved learning and memory,

increased neurotrophic factors, enhanced hippocampal neurogenesis,

and improved synaptic connections (Mora et al., 2007; Van Praag et al.,

2000; Segovia et al., 2009; Leggio et al., 2005), which collectively fortify

brain health against age-related cognitive decline and neurodegenerative

diseases (Rolland et al., 2008; Marx, 2005).

Emerging research highlights the interaction between gut

microbiota and stress. The gut microbiota, comprising trillions of

microorganisms in the gastrointestinal tract, plays a critical role in

nutrientmetabolism, immunemodulation, and overall health (Thursby

and Juge, 2017). Maintaining a balanced gut microbiome is essential for

health, as disruptions, known as microbial dysbiosis, can lead to

inflammation and accelerated aging (Thevaranjan et al., 2017). Stress

alters gut microbiota composition and function by affecting

gastrointestinal motility, increasing gut permeability, and influencing

microbial growth (Ulrich-Lai and Herman, 2009; Van Wijck et al.,

2012; Galley and Bailey, 2014).

Probiotics, live microorganisms conferring health benefits, have

gained attention for their potential to modulate gut microbiota

composition, enhance gut health, and improve immunity (Liu et al.,

2021). Lactobacillus and Bifidobacterium species, extensively studied

for their stress-alleviating, gastrointestinal barrier-enhancing, and anti-

inflammatory effects, may also impact neurobiological pathways

involved in stress resilience and cognitive function (Arseneault-

Bréard et al., 2012; Moya-Pérez et al., 2017; Liu et al., 2020), though

the exact mechanisms remain unclear.

Our study investigates whether probiotic supplementation can alter

the brain’s response to chronic stress and amplify the positive effects of

EE on cognition, and brain health. By exploring these interactions, we

aim to uncover mechanisms through which probiotics may mitigate

stress-induced effects and cognitive resilience and overall brain health.
2 Materials and methods

2.1 Subjects and ethics statement

Sprague-Dawley rats of both sexes were used. Rats were kept in a

standard 12-hour light–dark cycle, with food and water ad libitum

except during the probiotic feeding stage. The regular water was filtered

three times (0.2 microns) and the diet (Catalog number: Teklad 2018)
Frontiers in Microbiomes 02
was irradiated. Experimental procedures were approved by the

Institutional Animal Care Committee at Memorial University of

Newfoundland and followed the Canadian Council’s Guidelines on

Animal Care.
2.2 Experimental design

Figure 1A shows the flow of the experiment. Rats underwent

diet supplementation at 6 months of age, for 3 months. Following

that, animals underwent randomly assigned stress and EE, or cage

control paradigms daily for 6 weeks, from 9–10 months of age.

Animals then underwent a battery of behavioral tasks to assess

general behavior and cognitive function before being sacrificed for

Immunohistochemistry and Western Blot assays. A separate cohort

of animals had fecal collection following probiotic supplementation,

for 16S rRNA sequencing and gut microbiome analysis. Surfaces

were sterilized with 70% ethanol, cages and toys were autoclaved.

Rats were randomly assigned to five conditions, (1) Cage (control

without stress or EEmanipulation + control diet), (2) Stress (STR) (stress

paradigm + control diet), (3) STR + P/P (stress paradigm + probiotic/

prebiotic diet), (4) EE (EE paradigm + control diet), or (5) EE + P/P (EE

paradigm + probiotic/prebiotic diet). Groups were sex balanced.
2.3 Probiotic diet supplementation

ProBiotic-4, comprised of Bifidobacterium Lactis (50%),

Lactobacillus casei (25%), Bifidobacterium bifidum (12.5%), and

Lactobacillus acidophilus (12.5%), were purchased from Swanson

(Fargo, ND, USA). Rats received ProBiotic-4 (3 × 109 CFU) once

daily for three months at 6–9 months of age, dissolved in 30 ml water

(Yang et al., 2020), for a final concentration of 10.9 CFU/ml daily. The

prebiotics were mixed with prebiotic oligofructose/FOS Orafti® P95

powder (200mg/kg; Quadra Chemicals) (Li et al., 2023), to improve the

effectiveness of probiotics (Roy and Dhaneshwar, 2023). Regular water

was provided only after the probiotic mixture was fully consumed,

ensuring that the rats received the entire dose of the probiotics. Control

rats received regular water only. Body weight was measured bi-weekly.
2.4 Stress paradigms

Stress paradigms were implemented using a chronic unpredictable

stress paradigm for six weeks from 9–10 months of age following a

protocol similar to those previously described (Yalcin et al., 2005; Zhou

et al., 2019; Strekalova et al., 2022). Stressors were applied for the same

2 hours per day for the duration, including restraint, wetted bedding,

tilted cage, and an irregular light cycle.
2.5 EE paradigms

EE paradigms were implemented by placing 4–5 animals

together in a 60 × 60 × 50 cm Plexiglas play arena for 2 hours

per day for six weeks, at 9–10 months of age (Leggio et al., 2005).
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FIGURE 1

The effects of probiotics in combination with stress and EE on behavioral tasks. (A) Schematic of experimental design timeline. A separate cohort
with probiotic or control diet was used for fecal sampling. (B1–B4) Distance traveled (B1), time spent rearing (B2), average speed (B3) and time spent
in center (B4) measurements in an open field maze test. (C1, C2). Time spent in the closed arm (C1) and number of head dips over the edge (C2) in
an elevated plus maze (EPM) test. (D) Percentage of sucrose solution consumption over a 24 hr period. (E1, E2). Percentage of time (E1) and number
of entries (E2) in the novel arm in a Y-maze test. (F) Discrimination index in a spontaneous location recognition (SLR) task. (G) Discrimination index in
an odor discrimination task. (H) Percentage of correct nose poke in standard object discrimination (SOD) task. STR, stress; EE, environmental
enrichment; P/P, probiotic + prebiotic; N (except B4): Cage: 5F/5M; STR: 5F/5M; STR + P/P Diet: 6F/5M; EE: 5F/5M; EE + P/P Diet: 6F/4M. N (B4):
Cage: 1F/3M; STR: 4F/3M; STR + P/P Diet: 2F/3M; EE: 4F/2M; EE + P/P Diet: 3F/2M *p < 0.05, **p < 0.01. Source: (A) Created with BioRender.com.
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The play arena contained toys, exercise equipment, and treats.

Males and female animals were separated into different arenas.
2.6 Fecal collection

Fecal samples were collected from a separate set of female rats

following probiotic or control diet feeding. Animals were placed in

clean autoclaved cages, where freshly voided fecal material was

collected in sterile centrifuge tubes before being stored at −80°C until

DNA extraction.
2.7 DNA extraction from feces

Isolation of microbial genomic DNA from each animal’s stool

sample was performed using the QIAamp PowerFecal Pro DNA Kit

(Qiagen, Hilden, Germany) as per the manufacturer’s instruction.

Prior to storage, quality control measures were implemented to

evaluate DNA purity via the Thermo ScientificTMNanoDropTMOne

Spectrophotometer (Thermo ScientificTM 840274100). The DNA

concentration from 1ml of each sample was determined by

absorbance at 260nm (A260), and the purity was estimated by

determining the A260/A280 ratio with the Nanodrop

spectrophotometer, then samples were stored in -20°C until shipment.
2.8 Microbiome analysis

16S rRNA sequencing was performed at the Integrated

Microbiome Resource (Dalhousie University, Halifax, Canada). Only

samples from female rats were included. The V6–V8 bacterial region of

16S rRNA genes was analyzed as previously described (Comeau et al.,

2011). The library was sequenced on an Illumina MiSeq platform.
2.9 Behavioral testing

2.9.1 Exploratory, anxiety and
depressive behavior

Rats were given one 10-minute trial to explore an open field (60

× 60 × 40.5 cm3) and recorded with ANY-Maze software

(Stoelting). Distance traveled, time spent rearing (including free

and supported rearing), average speed, and time spent in center

(indicating the level of anxiety) were recorded and analyzed offline

as previously described (Omoluabi et al., 2021).

Anxiety was measured by the open field behavior, a 5 minute

Elevated Plus Maze trial (50 × 10 cm2/arm with an 11 × 11 cm2 central

platform, 38 cm walls on the closed arms), where time spent inside

closed arms vs. open arms as well as head dips over the open arms were

analyzed. Depressive behavior was measured by 24 hours sucrose

(0.75%) percentage consumption.
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2.9.2 Spatial memory assessments
To assess short-term spatial memory, the Y-maze was used and

to assess long-term spatial memory, animals underwent the

spontaneous location recognition (SLR) task.

In the Y-maze, animals explored a black opaque Plexiglas Y-

shaped maze with three arms 120 apart (50 cm × 16 cm × 32 cm3).

For the training phase, animals had a 15-minute trial in which they

were allowed to freely explore two of three arms. Which of the arms

was closed for this training phase was counterbalanced between

groups and animals. For the testing phase, animals were re-placed

into the same “start” arm for another 15-minute trial and allowed to

explore the full maze with all three arms open, with the previously

closed arm considered to be the “novel” arm. Number of entries into

the arms and duration in each arm was recorded for analysis (Dellu

et al., 1992).

For the SLR task, rats were given 10 minutes in an open arena

(60 × 60 × 40.5 cm3) with three identical objects (1, 2, and 3) placed

at specific positions. During testing (24 hours later), rats were

placed in the same arena with two identical objects, one in the

same position as Object 1 (a familiar location, F), the other midway

between previous Objects 2 and 3 (a novel location, N). The

discrimination ratio was the difference between time spent at the

novel and familiar objects over the total time spent on both objects

(Bekinschtein et al., 2013).

2.9.3 Odor discrimination task
Discrimination of similar odors was tested with an odor

detection and discrimination task (ODAD), using perforated

micro-centrifuge tube containing filter paper with 60 ml of

odorant or mineral oil. The first three trials used odorless mineral

oil, the next three trials used odor 1 (O1, 1-heptanol, 0.001%), and

the last trial used an odor mixture that had a similar smell to O1

(O2, 1-heptanol and 1-octanol in a 1:1 ratio, 0.001%). The

discrimination index was the ratio of the sniffing time difference

between the O2 and the third presentation of O1 to the total sniffing

time (tO2-tO1-3)/(tO2+tO1-3).

2.9.4 Odor associative learning
Rats were food deprived for 3–6 days before the onset of the

experiments and food deprivation continued during the

experiment. Rats were placed in an open arena (60 × 60 × 40.5

cm3) with 2 scented sponges, and Reese’s puff cereal was used as a

food reward. This procedure consisted of a habituation phase,

followed by an associative training phase. In the habituation

phase, rats were exposed to an unscented sponge placed in

random locations, baited with food.

In the associative training phase, rats were placed in a

designated home corner and presented with 2 scented sponges

(locations varied each trial randomly) and given a maximum of 300

s to retrieve the cereal pellet from a retrievable center hole in one

scented sponge. Percentage of correct responses was counted as the

number of correct responses over the number of total nose pokes.
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2.10 Immunohistochemistry and imaging

LC tissue was extracted after decapitation and stored in 4%

paraformaldehyde before being transferred to 20% sucrose in 0.1 M

phosphate-buffered saline (PBS). Fifty mm sections at 150 mm
intervals were collected in PVP cryoprotectant for free-floating IHC.

All histology and IHC followed established procedures (Ghosh

et al., 2019; Omoluabi et al., 2021). Primary antibodies used included:

Ionized calcium-binding adaptor molecule 1 (Iba1) (019-19741, Wako,

1:2000), and Albumin (16475-l-AP, ProteinTech, 1:1000). Alexa Fluor

secondary antibodies (Invitrogen, 1:1000) were used.

Bright-field and fluorescence microscopy used an Olympus

BX53 (Olympus) and EVOS M5000 imaging system (Thermo

Fisher Scientific), respectively. Image analysis was conducted with

ImageJ. The light intensity and exposure parameters were

standardized across all captured images. In the LC, the numbers

of positive stained cells for Iba-1 were counted and normalized to

the region of interest (/mm2). Albumin expression was measured as

the mean density of the fluorescence in the LC, normalized to the

background level in the lateral vestibular nucleus (Kelly et al., 2019).

Three sections of each marker within the same rostral to caudal

range were used from all animals and counts from the two

hemispheres were averaged. Analysis was conducted by

experimenters that were blind to the experimental conditions.
2.11 Western blotting

Hippocampal tissue was extracted after decapitation and stored

frozen. Brain tissue processing followed established protocols

(Morrison et al., 2013). Total protein concentration was quantified

by standard Pierce BCA protein assay kit (Thermo Scientific, 23225).

Equal amounts of protein (20 mg) were separated by SDS-PAGE on

10% gels and were then transferred to Immobilon-P Transfer PVDF

membranes (Merck Millipore, IPVH00010). Following transfer, the

membranes were briefly rinsed with 1× low salt TBS-T (containing

1.5M NaCl, 1M Tris Base and 0.1% Tween 20) and blocked for 1 hr

with 5% nonfat skim milk at room temperature. They were then

incubated for 2 hrs at room temperature with the following antibodies:

Glucocorticoid receptor (GR; AB92627, Abcam, 1:2000), Tumour

Necrosis Factor alpha (TNFa; AB6671, Abcam, 1:2000), tyrosine

hydroxylase (TH; MAB318, Millipore Sigma, 1:2000). The

membranes were rinsed in TBS-T (containing 5M NaCl, 1M Tris

Base and 0.1% Tween 20) and incubated for 1.5 hrs at room

temperature, with either horseradish peroxidase-labeled anti-rabbit

immunoglobulin G (IgG; 31460, 1:4000) or anti-mouse IgG (31430,

Thermo Fisher Scientific, 1:4000). The protein bands were visualized

using chemiluminescent substrate (ThermoFisher Supersignal West

PICO, 34577) on a digital image scanner (ImageQuant LAS 4000) and

quantified with the ImageJ software.
2.12 Statistical analysis

All data are shown as mean ± standard error of the mean.

Statistical analysis was conducted with OriginPro 2022b software.
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The 16S rRNA data were analyzed using statistical tools provided by

MicrobiomeAnalyst.ca. For the analysis of the sequencing data, QIIME

used was for initial quality filtering, operational taxonomic unit (OTU)

picking, and taxonomic assignment. Following this, in

MicrobiomeAnalyst, we applied several data processing steps to

ensure the integrity and accuracy of our results. Features with

identical values across all samples were excluded to enhance

differential analysis, and those appearing in only one sample were

removed as artifacts. We employed a low count filter, setting a

minimum count threshold of 4, with a 20% prevalence filter to

exclude features likely resulting from sequencing errors or low-level

contamination. Additionally, we applied a low variance filter, excluding

features with minimal variance across conditions, as measured by the

inter-quantile range (IQR). Data were scaled using the default Total

Sum Scaling (TSS) method to normalize sample sizes. Importantly, the

data were not rarefied or transformed prior to analysis.

Alpha diversity was assessed using the Chao1 index, and

differences between the two groups were evaluated with a t-test.

Beta diversity was quantified using the Bray-Curtis index, and

statistical significance was determined via PERMANOVA.

Additionally, heat tree analysis, which leverages the hierarchical

structure of taxonomic classifications, was used to visualize and

compare taxonomic differences between microbial communities.

The differences were quantitatively represented using median

abundance and statistically evaluated using the non-parametric

Wilcoxon Rank Sum test, with FDR (false discovery rate)-

adjusted P-value cutoff set at 0.1, and log LDA (linear

discriminant analysis) score set at 2.0. Behavioral results were

analyzed by two-way ANOVA (group × sex). IHC and Western

blotting results were analyzed by three-way ANOVA (treatment ×

diet × sex). Post-hoc Tukey tests were used for group comparisons.

Homogeneity of variance was assessed with Levene’s test. Normality

of the data was assessed with Shapiro-Wilk test, and met before t-

tests or ANOVAs. One outlier in the TH measurement with

Western blotting (> mean ± 2SD) was removed from the

final analysis.
3 Results

3.1 EE increased exploratory behavior while
stress induced anxiety

The open field task revealed significant differences between

groups in distance traveled (F4,41 = 4.732; p = 0.0031; Figure 1B1),

rearing (F4,41 = 3.781; p = 0.01; Figure 1B2), speed (F4,41 = 5.119; p =

0.0019; Figure 1B3), and time spent in center (F4,17 = 8.439; p =

6.09E-4; Figure 1B4). Both EE groups regardless of diet type

traveled significantly longer distance than the STR group (p <

0.01). In terms of exploration, EE animals spent significantly

more time rearing compared to cage control animals (p < 0.05).

Similarly, the EE groups had higher travel speed compare to cage (p

< 0.05), and STR (p < 0.01) groups. A sex difference was observed

(F1,41 = 4.395; p = 0.042), with females moving at a higher speed

than males. STR animals showed a significantly lower time spent in

the center compared to cage groups (p < 0.05), regardless of diet
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type. There was no significant diet × sex × time interaction on body

weight (Supplementary Figure 1).

Anxiety levels were then measured using the elevated plus maze,

with a significant difference observed between groups for time spent

in the closed arm (F4,41 = 5.394; p = 0.0014; Figure 1C1), no

significance was observed between sexes. EE animals spent

significantly less time in the closed arm than caged animals

regardless of diet type (control diet, p < 0.05; probiotic diet, p <

0.01). When measuring head dips, another indicator for anxiety

level, a significant difference was found between groups (F4,41 =

35.7789; p = 7.18E−13; Figure 1C2). Similarly, EE and EE + probiotic

groups showed significantly higher levels of this behavior over cage

(p < 0.01). Interestingly, probiotic supplementation significantly

increased this exploratory behavior in STR animals compared to

control diet-fed ones (p < 0.01). No sex differences were observed.

The sucrose preference test assessed the level of anhedonia, as

animals with anhedonia are less interested in palatable food. Our

result revealed no significant differences in the consumption of

sucrose water between groups, or sexes (Figure 1D).
3.2 Probiotic supplementation rescued the
spatial learning deficiency in STR rats, and
enhanced memory of EE rats

In the Y-maze task, a group × sex interaction was observed in

duration of time spent in the novel arm (F4,41 = 2.908, p = 0.033;

Figure 1E1), although no significant difference was found in the post-

hoc Tukey test. However, there was a significant difference between

groups for the number of entries in the novel arm (F4,41 = 6.441, p =

4.06E−4; Figure 1E2). Following stress, animals displayed a deficit

compared to cage control groups (p < 0.01) and EE groups (p < 0.05

or p < 0.01), and this was prevented by probiotic feeding (p < 0.01).

In the SLR task, there was a significant difference between groups

(F4,41 = 14.508, p = 1.83E−7; Figure 1F). A memory deficit was observed

for STR animals compared to cage control animals (p < 0.01). Like the

Y-maze task, this deficit was restored, with a significant increase in

discrimination observed in STR + probiotic group (p < 0.01). Probiotic

feeding in EE animals led to a significantly better discrimination ability

than cage (p < 0.05) and STR (p < 0.01) animals.

Olfactory impairments were tested using a similar odor

discrimination task. No differences were observed between

groups. Interestingly, in general, male rats performed better than

female rats (F1,41 = 4.2, p = 0.046; Figure 1G). Additionally, an

olfactory dependent rewards association task revealed no

differences between groups or sexes (Figure 1H).
3.3 Probiotic supplementation enriches
microbiome diversity in the gut

Levels of alpha diversity and beta diversity were obtained from 16S

rRNA sequencing. Using the Chao1 index, alpha diversity level, a

metric measuring the richness (number of taxa), or evenness (relative

abundance of those taxa) was analyzed. A significant increase in

microbiome alpha diversity was observed in the probiotic diet groups
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compared to control diet groups (t = −2.405, p = 0.027; Figure 2A).

Levels of beta diversity, representing the diversity and variability of

community composition, showed a non-significant increase in beta

diversity was observed in the probiotic diet groups, compared to

control diet groups (F17 = 1.566, p =0.066; Figure 2B).

Changes in the taxa species induced by Probiotic-4 mixture feeding

were further assessed (Supplementary Table 1). At the genus level,

bacterial taxa were analyzed for abundance levels between groups to

observe any effect from the introduction of probiotics (Figure 2C). The

heat map in Figure 3C shows average levels of each taxon and

significance levels of the probiotic diet groups compared to the

control diet using the Wilcoxon test. A labeled taxa is indicative of a

significant difference between groups. Overall, 5 taxa genera were

increased in abundance in the probiotic diet groups, and one was

decreased, compared to control, demonstrating a significant difference

in gut microbiome makeup from specific bacterial taxonomic groups.

This includes the increase of Actinobacteria (including Bifidobacterium

and Rothia species), Ruminococcaceae, Monoglobales,

Streptococcaceae, and Barneseillaceae, as well as a decrease of

Lachnoclostridium abundance.
3.4 Stress increased levels of microglia in
the locus coeruleus compared to EE,
which was reversed by
probiotic supplementation

LC is critically involved in stress response and novelty-

associated EE (Prokopiou et al., 2022; Suárez-Pereira et al., 2022).

We therefore tested LC inflammation levels using Iba-1 microglial

marker. We also measured blood-brain barrier (BBB) integration

with albumin staining. Stress has been shown to impair BBB and

probiotic supplementation has been associated with improved BBB

(Torraville et al., 2023).

For Iba-1 levels, there was a significant treatment × diet

interaction (F1,29 = 4.866, p = 0.035; Figures 3A1, 3A2), with STR

animals showing a significant increase compared to animals in EE

groups (p < 0.05 or p < 0.01) which was reserved by probiotic

supplementation (p < 0.05). Albumin levels showed a significant

difference between treatment groups (F1,29 = 4.811, p = 0.036;

Figures 3B1, 3B2), with significantly higher levels in STR animals

compared to EE animals (p < 0.05). A sex difference was also

observed in albumin levels (F1,29 = 4.788, p = 0.037), with females

showing higher levels of albumin than males.

Furthermore, measurements of GR (Figure 4A), inflammation

marker TNFa (Figure 4B), and norepinephrine marker TH

(Figure 4C) were conducted in the hippocampus. There were no

significant differences among groups in the levels of GR and TNFa.

TH levels were higher in the EE treated rats than the STR rats (F1,30
= 8.941, p = 0.006; Figure 4C).
4 Discussion

Current research underscores the intricate relationship between

stress and the gut microbiota, with probiotic interventions emerging as
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a promising strategy to modulate these interactions. Our study

explored the effects of administrating probiotics prior to stress or EE

on cognition and inflammation. We observed increased anxiety in

animals exposed to chronic stress, while the EE paradigm promoted

exploration and reduced anxiety. Probiotic supplementation enhanced

gut microbiome diversity, alleviated anxiety, prevented spatial learning

impairment in stressed rats, and boosted learning in the EE group.

Additionally, chronic stress increased microglial activity (Iba-1) in the

LC, a change that probiotics prevented. BBB integrity was lower in

stressed animals compared to those in the EE group. Higher tyrosine

hydroxylase levels in the hippocampus of enriched groups may

correlate with better LC function and axonal release. These findings

suggest a mechanistic link between reduced stress, improved gut health,
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and decreased brain inflammation. Chronic stress can significantly

impact the immune system through the microbiota-gut-brain axis, as

evidenced by systemic inflammatory increases coinciding with stress

and changes in microbiota composition and barrier function (Pasiakos

et al., 2016; De Palma et al., 2015; Moya-Pérez et al., 2017). In addition,

this response triggers a dysregulated HPA axis, as shown by elevated

corticosterone and adrenocorticotropic hormone in germ-free mouse

studies (Ackerman et al., 1978). Stress-induced inflammation can

exacerbate psychiatric disorders like depression and anxiety, further

disrupting gut microbiota composition and creating a vicious cycle of

stress and dysbiosis (Li et al., 2019). This cycle is associated with

increased intestinal permeability, often referred to as “leaky gut,” and

increased BBB permeability, which we observed in our study. This
FIGURE 2

Alterations of microbiota in diversity and abundance following probiotic supplementation. (A) Chao1 analysis of Alpha Diversity levels between
control diet and probiotic-fed groups. (B) Ordination plot of Beta Diversity index between diet groups, using Bray-Curtis index distance method. (C)
A heat tree demonstrating bacterial abundance differences between diet groups. Labeled branches represent a significant abundance level between
groups. N: Control diet: 11F; Probiotic diet: 8F. *p < 0.05, **p < 0.01.
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barrier weakening can lead to systemic inflammation and contribute to

various health issues (Chatzaki et al., 2003; Dodiya et al., 2020;

Welcome and Mastorakis, 2020).

Probiotics, beneficial live microorganisms, can positively influence

the gut microbiota and, by extension, the gut-brain axis (Arseneault-

Bréard et al., 2012; Moya-Pérez et al., 2017). They help restore the
Frontiers in Microbiomes 08
balance of gut microbiota disrupted by stress by outcompeting

pathogenic bacteria and promoting the growth of beneficial

microbes, thereby improving overall microbiota composition (Dimidi

et al., 2017). This restoration can reduce inflammation and enhance

both gut and mental health (Arseneault-Bréard et al., 2012; O’Sullivan

et al., 2011; Bravo et al., 2011). Notably, our study demonstrates that
FIGURE 3

The effects of stress, EE and diet manipulation on microglia and albumin levels in the locus coeruleus (LC). (A1) Example images of Iba-1 staining in
the LC. Arrows indicate positively stained cells. (A2) Number of Iba1 cells per mm2 in the LC. N: STR: 5F/4M; STR + P/P Diet: 5F/5M; EE: 4F/5M; EE +
P/P Diet: 5F/4M. (B1) Example images of albumin staining in the LC. White circles indicated the LC region. (B2) Mean intensity of albumin staining in
the LC. N: STR: 5F/5M; STR + P/P Diet: 4F/5M; EE: 5F/4M; ER + P/P Diet: 5F/4M. STR, stress; EE, environmental enrichment; P/P, probiotic +
prebiotic. Scale bars: 50 µm. *p < 0.05, **p < 0.01.
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prior probiotic supplementation can increase animals’ resistance to

chronic stress. Probiotics have also been shown to boost the production

of anti-inflammatory cytokines while reducing pro-inflammatory

cytokines, thereby modulating immune responses and reducing

chronic inflammation (Virk et al., 2024). Additionally, probiotics can

increase the expression of tight junction proteins, reducing intestinal

permeability and preventing systemic inflammation (Gou et al., 2022).

Certain probiotic strains produce neurotransmitters like serotonin and

GABA, which can improve mood and reduce anxiety (Duranti et al.,

2020; Akram et al., 2024). Importantly, probiotic feeding has been

associated with increased levels of short-chain fatty acid (SCFA)-

producing bacteria, which can further promote anti-inflammatory
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cytokine release and enhance tight junction integrity (Markowiak-

Kopeć and Śliżewska, 2020). In our study, levels of beneficial

Bifidobacterium species were found to be increased through

probiotic feeding. Levels of SCFA-producing genera, such as

Ruminococcaceae (Grabinger et al., 2019), were found to be

increased following feeding, while levels of Lachnoclostridium could

influence immune system responses (Yu et al., 2024).

Dietary interventions involving probiotics have shown promise in

clinical settings, particularly as adjunctive treatments for managing

chronic stress, improving mental health, and enhancing overall

immune function (Den et al., 2020; Mazziotta et al., 2023). This

approach is especially beneficial for conditions characterized by both
FIGURE 4

The effects of stress, EE and diet manipulation on hippocampal markers. (A) Representative blot and quantity of glucocorticoid receptor (GR) normalized to
beta-actin levels in the hippocampus. N: STR: 4F/4M; STR + P/P Diet: 5F/5M; EE: 5F/5M; ER + P/P Diet: 4F/4M. (B) Representative blot and quantity of
Tumour Necrosis Factor aloha (TNFa) normalized to beta-actin levels in the hippocampus. N: STR: 5F/5M; STR + P/P Diet: 5F/5M; EE: 5F/5M; ER + P/P Diet:
5F/5M. (C) Representative blot and quantity of tyrosine hydroxylase (TH) normalized to beta-actin levels in the hippocampus. N: STR: 5F/4M; STR + P/P Diet:
5F/5M; EE: 5F/5M; ER + P/P Diet: 5F/4M. STR, stress; EE, environmental enrichment; P/P, probiotic + prebiotic. **p < 0.01.
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psychological and gastrointestinal symptoms. In our study, animals

were fed probiotics prior to significant environmental manipulation.

Prolonged probiotic supplementation prevented stress-induced

learning deficiencies and neuroinflammation, suggesting that

probiotic supplementation could serve as a preventive strategy

against stress-induced physiological and psychological disorders.

In summary, the relationship between the gut microbiome and

stress can be modulated through immune responses and reduced

inflammation via probiotic supplementation. Incorporating

probiotics into the diet is a viable strategy to mitigate the adverse

effects of chronic stress on the immune system, thereby supporting

better mental and physical health. One limitation of our study is the

small sample size for sex-dependent analysis. Additionally, further

research is needed to characterize the gut microbiome in male

animals. Another limitation of our study is the lack of separate

control groups for probiotics or prebiotics alone. We opted to

include a single group receiving both probiotics and prebiotics, as

previous research has shown that the combination, referred to as

‘synbiotics,’ provides optimal effects (Chunchai et al., 2018;

Morshedi et al., 2020). In contrast, prebiotics alone have yielded

mixed results, with some studies showing no effect (Kazemi et al.,

2019; Alli et al., 2022) while others reported some benefits (Alli

et al., 2022). Despite these limitations, our study underscores the

importance of the gut-brain-immune axis in developing therapeutic

interventions, offering a holistic approach to health management.
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