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States, 2Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little
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Chemotherapy-induced cognitive impairment, also called “chemobrain”, has

been heavily researched as a major side effect of cancer treatment. Although

breast cancer has a 91% survival rate in the United States, this rate is significantly

lower in developing countries. Cancer survivors often experience chemobrain,

which can decrease their quality of life post-chemotherapy. The presented study

evaluates potential mechanisms for long-term symptoms in cyclophosphamide,

methotrexate, and 5-fluorouracil (CMF)-induced cognitive impairments and

implications of CMF on the microbiome. Twelve-week-old C57/B6J female

mice were treated with a combination of CMF once a week for 4 weeks.

Spatial memory was tested with the Morris water maze. Hippocampal tissues

were used to probe for immediate-early genes (IEGs) with Western blotting

techniques. Fecal matter was collected to assess microbial community

composition via 16S rRNA gene sequencing. In this study, we showed that

chemotherapy impaired spatial memory during the Morris water maze trials

and resulted in a significant decrease in IEGs c-Fos, Arc, and Zif286 expression.

Comparing alpha-diversity, there were no significant differences identified

among taxa within the CMF group compared to the saline group for Pielou’s

evenness. However, beta-diversity qualitative metrics, Jaccard and Unweighted

UniFrac, were significantly different. These results suggest that continual memory

deficits may be associated with alterations in synaptic plasticity and long-

term potentiation.
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1 Introduction

With an estimated 297,790 new cases in 2023, breast cancer is

the most commonly diagnosed cancer worldwide and in women to

date (Arnold et al., 2022). In the United States, the 5-year survival

rate of breast cancer is 91%; however, in low- and middle-income

countries (LMICs), as defined by the World Bank based on a

country’s gross national income bracket (Lencucha and Neupane,

2022), this rate is significantly lower. Countries such as Samoa,

Gambia, Fiji, and Brazil have survivorship rates ranging from as low

as 25% to 60% (Rivera-Franco and Leon-Rodriguez, 2018; Lei et al.,

2021). Nevertheless, the implementation of diagnostics, adjuvant

chemotherapy, and further technological advancements have

propagated the survival rates of breast cancer globally.

Patients with cancer frequently report cognitive problems that

can affect their quality of life. Studies have shown that patients

experience cognitive dysfunction during and up to 20 years after

treatment (Koppelmans et al., 2012). As breast cancer survivorship

rates increase, the need to investigate the short- and long-term

effects of breast cancer chemotherapy has become increasingly more

prevalent. Cognitive impairments are one of the most common side

effects of chemotherapy (Henderson et al., 2019). Also referred to as

“chemobrain,” chemotherapy-induced cognitive impairments pose

significant functionality challenges for breast cancer survivors.

Patients experiencing chemobrain report deficits in memory

retention, learning, executive function, and processing speed

(Yang et al., 2010; Koppelmans et al., 2012; Brown et al., 2021).

The first efficacious chemotherapy regimen for breast cancer was

developed in the 1970s: a polytherapy combining cyclophosphamide,

methotrexate, and 5-fluorouracil (CMF). Cyclophosphamide (CYP) is a

cytotoxic, alkylating antineoplastic drug that is commonly used as an

immunosuppressive (Yang et al., 2010). Synthesized in 1958, CYP was

the eighth cytotoxic anticancer drug approved by the Food and Drug

Administration (Li et al., 2022). The alkylating nature of CYP has been

found to create alkyl crosslinks between DNA, inducing apoptosis

(Matalon et al., 2004). CYP has been shown to permeate the blood–

brain barrier (BBB), although the underlying mechanisms remain

understudied [11]. Methotrexate (MTX), developed in 1949, is an

antifolate that inhibits antioxidant activity by binding to dihydrofolate

reductase (Skubisz and Tong, 2012; Taran et al., 2023). This

consequently hinders the amelioration of oxidative stress (Hess and

Khasawneh, 2015), leading to high levels of cytotoxicity in clinical

applications (Sekeres et al., 2021). Only at high doses (i.e., 1–3 g/m2) has

MTX been shown to cross the BBB (Angelov et al., 2009; Prodduturi

and Bierman, 2012). 5-Fluorouracil (5-FU) is an anti-metabolite that

interferes with thymidine synthesis and DNA replication. Discovered in

1957 (Heidelberger et al., 1957), 5-FU is part of the first class of

thymidylate synthase inhibitors used in clinical application (Chu et al.,

2003). Designed as an analog of RNA nucleotide base uracil, 5-FU

inhibits thymidylate synthase, which consequently disrupts proper

DNA formation and instigates cytotoxicity (Wigmore et al., 2010).

Similar to CYP, 5-FU has also been shown to penetrate the BBB via

passive diffusion (Wigmore et al., 2010). The combination of CYP,

MTX, and 5-FUmodeled in 1973 by Bonadonna et al (Bonadonna et al.,

1995). created a regimen that was instrumental for implementing
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chemotherapeutic treatments and developing safer surgical procedures

for patients with breast cancer (Verrill, 2009).

As the use of CMF chemotherapy to treat breast cancer became

more pervasive, the need to study its long-term effects became more

pressing. Wieneke and Dienst found that women treated with

adjuvant chemotherapy, primarily CMF, displayed mild cognitive

impairment compared to test norms (Wieneke and Dienst, 1995).

Later work by Schagen et al. revealed that patients treated with CMF

and tamoxifen reported significant impairments in concentration,

memory, and locomotion compared to control (Schagen et al.,

1999). During this time, however, the use of taxanes in combination

with anthracyclines (ACs) became the standard for breast cancer

polytherapy in the United States (Brown et al., 2021). The

introduction of AC regimens denoted a shift away from using

CMF moving into the 21st century.

In low- and middle-income countries (LMICs), access to

chemotherapeutic treatments for breast cancer remains limited

(Sandelin et al., 2002). Newer taxane and AC agents are not

widely available in these countries; therefore, the use of CMF

remains highly prevalent globally (Tfayli et al., 2010).

Furthermore, most chemobrain studies involving patients are

conducted in the United States, Europe, Canada, and Australia—

all high-income countries (Ribi, 2012). LMICs, particularly those in

Africa, such as Uganda, South Africa, and Tanzania, still use the

CMF to treat breast cancer (Serra et al., 2020; Menon et al., 2021;

Keetile et al., 2023). The urgency to understand the cytotoxic effects

of this regimen persists. A study in Gauteng, South Africa

conducted in 2021 found that 33% of Black African women

(n=10) treated with CMF reported significant cognitive

impairment (Keetile et al., 2021). Another South African study in

2023 revealed that 77.4% of Black African women (n=53) diagnosed

with stage II or III breast cancer treated with CMF displayed

significant cognitive impairment (Keetile et al., 2023). These

studies demonstrate the necessity of continual investigation of

how CMF dysregulates brain functionality and how to mitigate

the physiological symptoms harming patients with breast cancer

and survivors.

Chemotherapy is also known to affect the microbiome–gut–

brain (MGB) axis. The gut microbiota–immune–brain axis is

becoming increasingly important for the treatment of a myriad of

neurological and cognitive disorders (O’Riordan et al., 2025).

Studies have found that chemotherapy alters microbiota

populations, activates neuroimmune responses, and promotes

glial dysregulation (Song and Bai, 2021; Rowaiye et al., 2024). For

example, it is well known that the gut microbiome can enhance or

mitigate the effectiveness of therapeutic treatments of patients with

cancer (Viaud et al., 2013; Alexander et al., 2017). For example, a

variety of microbial taxa are important mediators of immune

checkpoint inhibitors, while others promote increased toxicity of

anticancer drugs, as reviewed by Huange et al (Huang et al., 2022).

Furthermore, several studies have shown various levels of responses

by the gut microbiota in patients with breast cancer (Wu et al., 2020;

Aarnoutse et al., 2022). While the underlying connection between

the MGB and chemobrain is poorly understood, some studies have

suggested that gut microbiota assists in regulating hippocampal-
frontiersin.org

https://doi.org/10.3389/frmbi.2025.1486757
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Corley et al. 10.3389/frmbi.2025.1486757
dependent cognition (Kuijer and Steenbergen, 2023). Furthermore,

it is also possible that the MGB contributes to the development of

chemobrain, overall fatigue, and other chemotherapy-induced

symptoms (Grant et al., 2021; Xiao et al., 2021). For example,

MTX influences MGB composition and can engender both gut

dysbiosis (Chen et al., 2024; Rowaiye et al., 2024) and proteomic

alterations (Letertre et al., 2020).

This study aims to investigate how combination CMF

chemotherapy affects hippocampal-dependent behavior and gut-

microbiome diversity. This work may provide further insight into

possible underlying mechanisms of long-term deficits in

hippocampal-dependent functioning due to CMF and the role of

the MGB in chemobrain.
2 Materials and methods

2.1 Animals

After adaptive feeding for 1 week, 12-week-old C57/B6J female

mice (The Jackson Laboratory) were randomly assigned to one of

the two groups: control (administered saline) or CMF-treated

group, with 12 mice per group. The mice were housed (4/cage) in

a climate-controlled environment with a constant 12-h light:12-h

dark cycle for 30 days. The humidity was maintained between 30%

and 60%, with a temperature set point of 72°F, a 12-h light–dark

cycle, and ventilation providing 10–15 air changes per hour. Food

and water were provided ad libitum. Food consumption and weight

were recorded throughout the study. Animals were weighed weekly

throughout the study to monitor health status and track potential

treatment-related changes in body weight. This study was approved

by the Institutional Animal Care and Use Committee at the

University of Arkansas for Medical Sciences.
2.2 Drug paradigm

The treated group was administered a combination of CYP (60

mg/kg), MTX (4 mg/kg), and 5-FU (60 mg/kg) purchased from the

UAMS Inpatient Pharmacy (Corley et al., 2023). The control group
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was administered saline (0.9% sodium chloride). CMF and saline

were administered intraperitoneally weekly over 4 weeks, for a total

of four injections (days 1, 8, 15, and 22). These dosages were

determined by normalizing mouse body surface area. Drugs were

diluted with sterile saline and then stored per the manufacturer’s

instructions. Drugs were mixed immediately prior to injections.

Behavioral testing was performed 30 days after the last injection.

The mice were euthanized 30 min after the last probe trial, the

hippocampal tissue was harvested, and fecal matter was collected,

flash frozen in liquid nitrogen, and stored for analysis. The

experimental timeline is presented in Figure 1.
2.3 Morris water maze

The Morris water maze, developed by Richard G. Morris in

1984, is considered a gold standard test in neuroscience and is used

to test spatial learning and memory in murine models. In the test,

the animal must rely on cues to learn the location of a submerged

platform and escape the water. The maze consists of a circular pool

(140 cm in diameter) filled with opaque water (24°C). Mice were

trained to locate a visible platform. The testing schedule consisted of

three phases: visible platform (days 1 and 2), hidden platform (days

3–5), and probe trials (end of days 3–5). The EthoVision XT video

tracking system and software (Noldus Information Technology)

was used to record the distance moved, the latency, and the average

velocity of the animals in the visible platform, hidden platform, and

probe trials. During the visible platform training, we measured the

ability of the animal to learn a task. Each group was run through

two of these sessions (spaced 2 h apart) per day for a total of four

sessions. Each session consisted of three trials, with the start

location and platform location moving to different quadrants with

each trial. Each animal was released into a quadrant and trained to

locate the platform with visual cues positioned around the pool.

During the hidden platform training, we measured the acquisition

of spatial learning. This trial was performed on days 3–5 in a

manner consistent with the visible platform trial; however, the

platform was submerged 1.5 cm below the water line. For both the

visible and hidden platform trials, the test was terminated once the

mouse found the platform. If the mouse was unable to find the
FIGURE 1

Study timeline. C57BL/6J mice, 12 weeks of age, were injected with CMF or saline. Behavior testing was initiated at 30 days following the final
chemotherapy injection.
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platform, the technician would place their finger in the maze to

guide the mouse to the platform. The mouse remained on the

platform for 10 s. The probe trial was conducted 1 h after the last

run on each day of the hidden platform trial. The mice were released

in the quadrant opposite the target quadrant and were allowed to

swim around the maze for 60 s. The amount of time spent in the

quadrants was recorded and compared.
2.4 Proteomics

Total protein from each hippocampal tissue sample was

reduced, alkylated, and purified by chloroform/methanol

extraction prior to digestion with sequencing grade modified

porcine trypsin (Promega). Tryptic peptides were labeled with

tandem mass tag isobaric labeling reagents (Thermo Fisher

Scientific) according to the manufacturer’s instructions and

combined into one 16-plex TMTpro sample group. The labeled

peptide multiplex was separated into 46 fractions on a 100 × 1.0 mm

Acquity BEH C18 column (Waters) with an UltiMate 3000 UHPLC

system (Thermo Fisher Scientific) with a 50-min gradient from 99:1

to 60:40 buffer A:B ratio under basic pH conditions (buffer A=0.1%

formic acid, 0.5% acetonitrile; buffer B=0.1% formic acid, 99.9%

acetonitrile; both buffers adjusted to pH 10 with ammonium

hydroxide for offline separation) and then consolidated into 18

super-fractions. Each super-fraction was then further separated by

reverse-phase XSelect CSH C18 2.5 mm resin (Waters) on an in-line

150 × 0.075 mm column with an UltiMate 3000 RSLCnano system

(Thermo Fisher Scientific). Peptides were eluted with a 70-min

gradient from 98:2 to 60:40 buffer A:B ratio. Eluted peptides were

ionized by electrospray (2.4 kV) followed by mass spectrometric

(MS) analysis on an Orbitrap Eclipse Tribrid mass spectrometer

(Thermo Fisher Scientific) with multi-notch MS3 parameters. MS

data were acquired with the Fourier transform mass spectrometry

(FTMS) analyzer in top-speed profile mode at a resolution of

120,000 over a range of 375 to 1,500 m/z. Following collision-

induced dissociation activation with a normalized collision energy

of 35.0, MS/MS data were acquired with the ion trap analyzer in

centroid mode and normal mass range. With synchronous

precursor selection, up to 10 MS/MS precursors were selected for

higher-energy collisional dissociation activation with a normalized

collision energy of 65.0, followed by the acquisition of MS3 reporter

ion data with the FTMS analyzer in profile mode at a resolution of

50,000 over a range of 100–500 m/z. Methods were performed by

the UAMS Proteomic Core.
2.5 Western blotting

Samples of the frozen hippocampal tissues were homogenized

with a Potter–Elvehjem mechanical compact stirrer, model number

BDC2002 (Caframo LabSolutions), in a 1% Triton X-100

radioimmunoprecipitation assay (RIPA) buffer containing

protease inhibitors (Sigma-Aldrich). The protein concentration
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was determined with a bicinchoninic acid (BCA) protein assay

(Bio-Rad), and 30 µg of protein was added to a 2× Laemmli buffer

containing b-mercaptoethanol (5%). Gel electrophoresis was

performed, and the proteins were transferred to a nitrocellulose

membrane. The membranes were incubated in rabbit anti-c-Fos

(Abcam), mouse anti-Zif268 (Santa Cruz Biotechnology), mouse

anti-Arc (Santa Cruz Biotechnology), or mouse anti-glyceraldehyde

3-phosphate dehydrogenase (GAPDH) (Santa Cruz Biotechnology)

in TBS containing 0.1% Tween-20 and 5% nonfat dry milk at 4°C

overnight. After incubating with horseradish peroxidase-conjugated

goat anti-mouse or anti-rabbit IgG (Jackson Immunoresearch), the

membranes were covered in enhanced chemiluminescence Plus

Western Blotting Detection Reagent (GE Healthcare Life

Sciences) and placed on a CL-Xposure Film (Thermo Fisher

Scientific). The films were developed and imaged with an

AlphaImager gel documentation system (ProteinSimple).

Densitometry was performed with ImageJ software v.1.53

(National Institutes of Health). Antibodies were normalized to the

loading control GAPDH and calculated relative to the expression of

each target antibody in the saline controls.
2.6 Microbiome

Mouse fecal pellets were sent to RTL Genomics for DNA

extraction, amplification, and sequencing of the V3–V4 small

ribosomal subunit (16S rRNA) hypervariable region with the

following primers: 5′-CCTACGGGNGGCWGCAG-3′ and 5′-
GACTACHVGGGTATCTAATCC-3′ (Klindworth et al., 2013).

MIMARKS (Yilmaz et al., 2011)-compliant sequencing data are

available via the GenBank SRA under BioProject PRJNA1141459.

Microbiome analyses were performed with QIIME2 (version

2021.11) and demultiplexed, and primers were trimmed. FASTQ

files were imported in QIIME2 as QIIME Zipped Artifacts (qza)

with q2-import and visualized with q2-demux summarize via

QIIME2. q2-cutadapt (CITE cutadapt) was used to trim primers

from the paired-end reads (Martin, 2011). Amplicon sequence

variants (ASVs)/exact sequence variants (ESVs) (Callahan et al.,

2016) were generated from forward reads with DADA2 (Callahan

et al., 2017) via q2-DADA2 plugin.

We used the q2-feature-classifier classify-sklearn plugin

(Bokulich et al., 2018) and RESCRIPt (Robeson et al., 2021) to

curate the SILVA NR99 v138.1 reference database for the V3–V4

hypervariable region. Taxonomy was assigned to ASVs with Naïve

Bayes classifier trained on the SSU SILVA NR99 reference database

(Pruesse et al., 2007; Quast et al., 2013). ASVs that were categorized

as “Unclassified” , “Mitochondria” , “Chloroplast” , and

“Eukaryotes”, and those not having at least phylum level

classification were removed. The quality of the sequences was

evaluated with q2-quality-control evaluate-seqs plugin by

comparing the feature sequences to the curated SILVA reference;

any sequences that did not have at least either a 90% identity or

query coverage were removed. ASVs present with 10 reads or less

and that appeared in less than two samples were removed. Data
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were rarefied at 8,500 reads per sample. Alpha-diversity metrics

were estimated for observed taxa, Shannon Index, and Faith’s

Phylogenetic Diversity (PD). Beta-diversity was estimated with

UniFrac (weighted and unweighted) and Bray–Curtis dissimilarity

and Jaccard with q2-diversity.
2.7 Villus height and crypt depth

We assessed the villus height and the crypt depth. Segments of

proximal jejunum were obtained, fixed, and embedded so that four

transverse sections were obtained per specimen, cut at 5 mm, and

stained with hematoxylin and eosin (H&E). H&E-stained slides

were used for villi length and crypt depth determination. Each

stained section was examined for histopathological abnormalities

on a microscope supported with a digital camera. Images were

captured at 4× magnification for villus measurements and 10×

magnification for crypt measurements. An average of 12 villi were

analyzed for villous height and 12 crypts were analyzed for crypt

depth measurements per animal at 20× magnification. The villus

height was measured from the tip to the villus–crypt junction and

the crypt depth from the base of the villus to the mucosa with

ImageJ software v.1.53, n=5 per treatment group.
2.8 Statistical analysis

Data were expressed as means ± SD. Comparisons between

means were carried out with mixed-effects repeated-measures

analysis of variance (ANOVA) when analyzing the Morris water

maze. Unpaired t-tests were performed for Western blot analysis.

Statistical analysis was performed with Prism software version 9

(GraphPad); a probability level of less than 0.05 (p < 0.05) was

accepted as statistically significant. Kruskal–Wallis and post-hoc

tests were used for QIIME2 statistical analysis.
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3 Results

3.1 Morris water maze

We assessed spatial learning and memory retention using the

hidden/visual 5-day Morris water maze task. Mean velocity to the

platform was assessed using a repeated-measures, mixed-model

ANOVA. Results from this statistical analysis revealed that saline-

treated mice swam significantly faster than CMF-treated mice in

treatment-by-day interactions in the mean velocity [F (4, 92)=3.702,

p=0.0077, Figure 2A]. Latency is characterized by the amount of

time it takes the animal to reach the platform. Assessment of latency

found that mice injected with saline exhibited significant decreases

in mean latency in treatment-by-day interactions [F (4, 230)=9.015,

p ≤ 0.0001, Figure 2B]. Another metric measured was distance

moved. Both treatment groups swam similar distances to the

platform and demonstrated significant treatment-by-day

interactions [F (4, 230), p=0.0049] during visible platform

training. Furthermore, saline- and CMF-treated mice displayed

daily improvements in their ability to locate the targeted quadrant

during hidden platform training (days 3–5).

To assess spatial memory retention, probe trials were conducted

on days 3–5 of the Morris water maze following the hidden

platform trials, via removal of the platform. Every day of the

probe trials, saline-treated mice exhibited significant preference

for the target quadrant: day 3 [F(2.353, 72.15), p < 0.0001;

Figure 3A], day 4 [F(2.565, 78.67)=28.35, p < 0.0001; Figure 3B], and

day 5 [F(2.086, 63.97), p < 0.0001; Figure 3C]. Conversely, CMF-treated

mice showed nearly no preference for the quadrants, only spending

significantly less time in the left quadrant on day 3 [F(2.307, 67.66),

p=0.0012; Figure 3D]. On days 4 and 5, CMF-treated mice spent

significantly less time in the left and right quadrants, although

displaying no significant discrimination between the target

quadrant and its opposing quadrant [F(2.023, 59.33), p ≤ 0.0001

(Figure 3E) and F(2.627, 80.57), p < 0.0001 (Figure 3F), respectively].
FIGURE 2

Velocity and latency measurements via the Morris water maze. (A) Visible (day 1 and 2) and hidden (days 3–5) platform analysis revealed on day 1,
mice in the saline group swam significantly faster than the mice in the CMF group, but both groups showed a similar velocity throughout the
reminder of testing. (B) During the visible-platform training, the CMF group latency was initially significantly greater than the saline group, but both
groups decreased to similar values by day 2. When the platform was hidden, the saline group had a latency that was significantly less than the CMF
group. Error bars represent the standard error of the mean (SEM). ‡p=0.0001; †p < 0.0001; *p=0.0142; **p=0.0098; *p=0.0227.
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3.2 Proteomics

Parameters were set for a 1.5-fold change and a p-value < 0.05. The

complete dataset contained 5,468; only 7 proteins fell within criteria. In

network 1, only one protein, Attractin like-1 (ATRNL1, a type 1

transmembrane protein), was predicted to be downregulated (Figure 4).
3.3 Western blotting analysis

Western blots are shown in Figure 5A. In this analysis, there was

a significant decrease in the expression of c-Fos (t=2.925, p=0.0118;

Figure 5B), Arc (t=3.502, p=0.0039; Figure 5C), and Erg1 (t=4.197,

p=0.0010; Figure 5D) in the CMF group when compared to the

saline group on a t-test.
3.4 Microbiome

Each alpha-diversity metric was measured for significance using

the pairwise Kruskal–Wallis test, comparing the saline group to the

CMF group. There were no significant differences identified among
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taxa within the CMF group compared to the saline group for

Pielou’s evenness (Figure 6A; p=0.0758), Faith’s phylodiversity

(Figure 6B; p=0.1172), Shannon entropy (Figure 6C; p ≥ 0.1172),

and observed features (Figure 6D; p=0.1172).

Beta-diversity was estimated with Jaccard distance (Figure 7A; p

< 0.009), Bray–Curtis dissimilarity matrix (Figure 7B; p=0.12),

Unweighted UniFrac distance (Figure 7C; p < 0.009), and

Weighted UniFrac distance (Figure 7D; p =0.319) measurements.

The quantitative-based metrics, i.e., Bray–Curtis and Weighted

UniFrac, were not significant, whereas the qualitative metrics,

Jaccard and Unweighted UniFrac, were significant.
3.5 Villus height and crypt depth

The intestinal derangement was not observed 30 days after

CMF treatment. When the CMF group (348.8 mm) was compared

to the saline group (367.6 mm), significance in average villi length

was not observed (t=1.773, p=0.0785; Figure 8A). Crypt depth

(Figure 8B) was not significantly shifted either (t=1.514,

p=0.1324). Histological images show saline villi, CMF villi, saline

crypts, and CMF.
FIGURE 3

Spatial memory retention was tested during probe trials on days 3–5 of the Morris water maze. (A–C) Mice in the saline group spent significantly
more time in the target quadrant than in the other quadrants. (D–F) Mice in the CMF group did not discriminate between the target, right, and left
quadrant on days 3–5. Each bar represents the mean of 24 mice; error bars represent the SEM. ‡p < 0.0001; **p=0.0036; ***p=0.0002; *p=0.0181;
†p=0.003; NS, not significant.
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4 Discussion

Our prior work has found that 2 weeks post-chemotherapy, 6-

month-old female mice treated with CMF showed significant long-

termmemory impairments in the Morris water maze and a decrease

in hippocampal arborization (Anderson et al., 2020). We have also

shown that 24 h post-chemotherapy, 12-week-old female mice

treated with CMF displayed depressive-like behaviors with deficits

in social novelty in the Forced Swim and Three Chamber Sociability

tests, respectively (Corley et al., 2023). Both studies use the same

drug doses and injection paradigm as presented herein. This study

was designed to establish if cognitive impairments still occur 30

days post-CMF. We tested spatial memory using the Morris water

maze task and found that CMF-treated mice exhibited an inability

to retain memory in the probe trials. Our proteomics analysis

identified the protein Attractin-like 1 (ATRNL-1), which was

found to have an undefined connection with three proteins

related to cognitive impairments, spatial learning, and memory

deficits. When probing for immediate-early genes (IEGs) via

Western blots, a significant decrease in c-Fos, Zif268, and Arc

expression was observed in the CMF treatment group. Lastly, there

were no notable changes in gut morphology between treatment

groups, mirroring the lack of detectable differences in microbial

diversity between the treatment groups.

The Morris water maze is a spatial learning task that is

hippocampal-dependent (Morris et al., 1982). The hippocampus

has been vastly studied and shown to be critical for long-term

episodic memory (Bird and Burgess, 2008; Lisman et al., 2017).
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Further research has shown that the anatomical formation of the

hippocampus supports its role in mediating spatial cognition and

memory (Chiba et al., 1994; Fortin et al., 2002; Bird and Burgess,

2008; Hartley et al., 2014; Lisman et al., 2017). Both CMF- and

saline-treated groups demonstrated the ability to learn during the

Morris water maze. Notably, however, the saline group on day 1

swam significantly faster to the platform than the CMF group

measured via mean velocity. Days 3–5 of testing revealed that CMF-

treated mice were unable to distinguish between the target and non-

target quadrant, conveying a lack of memory retention. This

observation follows similar findings to that of several studies. A

study conducted by Kinra et al. reported that mice administered

CMF once a week for 3 weeks displayed significantly lower

retention time and higher latency to platform in the Morris water

maze (Kinra et al., 2021). Anderson et al. showed in the Morris

water maze that CMF-treated mice could not distinguish between

the target and non-target quadrants on days 3 and 4 (Anderson

et al., 2020). As monotherapies or doublets, CYP, MTX, and 5-FU

have been shown to affect spatial cognition as well. Mishra et al.

found that mice treated with a single dose of CYP were highly

immobile and had higher latency to platform during the Morris

water maze compared to control mice (Mishra et al., 2022). Mice

given MTX (250 mg/kg) showed longer latency time to the platform

during probe trials compared to control mice, despite showing the

ability to learn (Seigers et al., 2008). A combination of 5-FU and

MTX was administered to 2-month-old female BALB/C mice and

were then tested in the water maze 1 week after treatment. 5-FU

+MTX-treated mice were more latent to the platform and made
FIGURE 4

Ingenuity pathway analysis-generated network for hippocampal proteins. Parameters were set for a 1.5-fold change and a p-value < 0.05. The
complete dataset contained 5,468 proteins; only 7 proteins fell within the criteria. In this diagram, green represents downregulated expression, and
gray is either undefined or there is not enough information to be confident in determining its regulatory characteristics. Fx represents the function
(N=6 per treatment).
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more errors in an attempt to find the target than control mice on

days 1 and 2, showing that learning was initially impaired (Winocur

et al., 2006). Interestingly, on day 5, our study shows that CMF-

treated mice indicated improved memory retention by spending

significantly more time in the target quadrant than in non-target

quadrants than on previous days.

Using QIAGEN Ingenuity Pathway Analysis (IPA), a network

of proteins was rendered to depict the relationship between

dysregulated proteins found within our study. The network

compared the CMF group to the saline group. ATRNL 1 is a

transmembrane protein that is thought to be integral to membrane

integrity (Walker et al., 2007) and was the only protein predicted to

be downregulated. This protein was shown to have an ambiguous

relationship with proteins c-Fos, TAFA2, and HNRNPU. c-Fos, a

proto-oncogene and one of the most extensively studied IEGs

(Herrera and Robertson, 1996), encodes a protein rapidly

upregulated in response to membrane depolarization and voltage-

gated calcium influx, enabling neural action potentials. Beyond its

role as a marker of neuronal activation, c-Fos has been implicated in

learning, memory consolidation, and synaptic plasticity,

particularly in spatial memory circuits. For example, female rats

trained in acrobatic conditioning displayed a significant increase in

c-Fos-positive cells within the motor cortex compared to control

and inactive animals, underscoring its role in motor learning (Kleim

et al., 1996). Méndez-Couz et al. found an increase in c-Fos protein

expression in the amygdala following spatial memory extinction

from the Morris water maze (Mendez-Couz et al., 2014). c-Fos
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knockout mice have been shown to exhibit impairment in

hippocampal-dependent spatial memory and long-term

potentiation (LTP). Fleischmann et al. showed that c-Fos

knockout mice could not discriminate between target and non-

target quadrants during the probe trial of the Morris water maze.

Moreover, there was a decrease in LTP in hippocampal synapses in

the CA3–CA1 subregions (Fleischmann et al., 2003).

HNRNPU encodes for the heterogeneous nuclear

ribonucleoprotein U and is critical for RNA splicing as well as

chromatin organization (Sapir et al., 2022). HNRNPU has been

found to be important for development. For example, an HNRNPU

mutation within mice resulted in embryonic growth retardation and

early mortality (Roshon and Ruley, 2005). Sapir et al. investigated

the role of HNRNPU in brain development. Their work revealed

that deletions to HNRNPU resulted in the splicing of genes involved

in neuronal survival and synaptic formation. This study also

supported the findings of Roshon and Ruley, discovering that the

developing mouse brain expresses high levels of HNRNPU in the

cortical plate and mitotic cells (Sapir et al., 2022). TAFA2 is a

central nervous system (CNS)-specific cytokine that aids in CNS

regulation (Liang et al., 2023). Wang et al. found that TAFA2

knockout mice showed increased anxiety-like behaviors in the open

field test and elevated plus maze. The study also used the Morris

water maze and novel object recognition paradigm to assess spatial,

short- and long-term memory—finding significant deficits in each

(Wang et al., 2018). Another study has suggested that TAFA2 is

vital for neuronal cell survival via binding to the ADGRL1 protein
FIGURE 5

Immediate-early gene expression in the hippocampus. IEG expression was measured using Western blot analysis (A). Protein expression was
normalized to GAPDH (B–D). Mice in the CMF group showed a significant reduction in IEG expression in the hippocampus. Average ± SEM, N=7–8.
Bars represent SEM. *Denotes significant difference between saline- and CMF-treated mice. *p=0.0118; **p=0.0039; **p=0.0010.
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to activate the cAMP-PKA-CREB-BCL2 signaling pathway and

prevent apoptosis (Liang et al., 2023). Consequently, we thought

it important to probe similar IEGs in hopes of deepening our

mechanistic understanding of the behavioral results from the

hippocampal-dependent, spatial learning task of the Morris water

maze on a neuronal level. Arc and Zif268 were ideal candidates to

do so.

Brain IEGs are a class of genes that are rapidly and transiently

activated by neuronal activity (Abraham et al., 1991). IEGs can be

further divided into two functional classes: regulatory or effector.

Regulatory IEGs encode proteins that indirectly affect neural

physiology by increasing or decreasing “downstream” gene
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expression. Conversely, effector IEGs encode proteins that have a

more defined role at the synapse (Guzowski et al., 2001; Davis et al.,

2003). Both classes of IEGs are necessary in supporting the

mechanisms that underlie neuronal plasticity such as LTP,

kindling, cellular regeneration, and learning. In particular, Arc is

an effector IEG. Arc, activity-regulated cytoskeleton-associated

protein, is thought to be essential for memory consolidation and

contributes to synaptic plasticity via a-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic receptor (AMPAR) regulation. AMPARs are

dynamic ionotropic glutamate receptors that mediate most of the

excitatory synaptic transmission in the brain (Diering and Huganir,

2018). As an effector IEG, the mRNA of Arc can be localized to
FIGURE 6

Alpha-diversity metrics. (A) Pielou’s metric measures evenness of the number of different species in each treatment group. (B) Faith’s phylodiversity
measures the biodiversity that incorporates phylogenetic difference between species. (C) Shannon’s entropy is a measurement of the uncertainty of
occurrence of certain events. (D) Observed features measure the number of observed events (e.g., species, variants, and genes) found within the
group. The Kruskal–Wallis test was used to determine significance (N=5 per treatment).
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post-synaptic dendrites via cytoplasm permeation after action

potential prompted by behavior (Minatohara et al., 2015). It is a

plasticity protein. Zif268, like c-Fos, is a regulatory IEG. Part of the

early growth response (Egr) family, Zif268 is a transcription factor

that controls gene expression—aiding in cell development and

function (Veyrac et al., 2014). Furthermore, it is believed that the

Egr genes serve to connect neurotransmitter action with altered

gene expression. Zif268 is highly expressed in the hippocampus,

particularly in the CA1 region. Robert et al. found that there was a

significant increase in Zif268 levels in the hippocampal CA1

following the induction of LTP in rats compared to control

animals (Roberts et al., 1996). In another study, rats were

conditioned using the Avoidance Shuttle Box training paradigm.

An increase in Zif268 mRNA was subsequently observed (Nikolaev

et al., 1992). A couple of studies have presented congruent results.

Briones and Woods showed that CMF had deleterious effects on

hippocampal cell proliferation as well as spatial and long-term

memory in the Morris water maze task (Briones and Woods, 2011).

Anderson et al. observed long-term memory deficits in CMF-

treated mice. Further investigation revealed that CMF reduced

hippocampal dentate gyrus dendritic length and mushroom
Frontiers in Microbiomes 10
spines. Importantly, mushroom spines are considered “memory”

spines (Bourne and Harris, 2007). These studies provide context to

our findings. Our results are consistent with prior and current

research, supporting the notion that CMF deteriorates cognition as

well as learning and memory function on the neural level.

Emerging research over the last decade has identified the

microbiome as a contributing factor to outcomes for neurological

changes (Luczynski et al., 2016; Jordan et al., 2018; Grant et al.,

2021). Gastrointestinal mucositis (GIM), an inflammation of the

intestinal mucosa, is an adverse side effect that can be induced by

chemotherapy. GIM has been shown to decrease quality of life,

decrease survivorship, and increase the commodity rate of patients

with cancer (Sougiannis et al., 2021). Women are at higher risk for

developing GIM, as well as patients treated with 5-FU mono- or

polytherapy (Basile et al., 2019). MTX can also induce GIM

(Higuchi et al., 2020). In fact, one of the most common adverse

effects of MTX is gastrointestinal toxicity (Zhou et al., 2018). To

further characterize CMF chemotherapy, we evaluated the alpha-

and beta-diversity of the microbiome 30 days post-treatment.

Differences in alpha-diversity between the CMF and saline groups

were not observed (Figures 7, 8). We analyzed beta-diversity
FIGURE 7

Beta-diversity metrics. (A) Jaccard and (B) Bray-Curtis, non-phylogenetic measures of richness and evenness, respectively. (C) Unweighted UniFrac
and (D) Weighed UniFrac, phylogenetic measures of richness and evenness, respectively. Each dot represents a sample, blue represents saline-
treated, and orange represents CMF-treated N=5 per treatment).
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quantitatively (Bray–Curtis and Weighted UniFrac) and

qualitatively (Jaccard and Unweighted UniFrac) (Lozupone et al.,

2007). Quantitative analyses revealed no distinct separation or

clustering between CMF and the saline treatment group, meaning

that the two treatment groups share many of the same

phylogenetically related and abundant taxa. Qualitative beta-

diversity analysis revealed that the two treatment groups were

significantly different, indicating that the microbial communities

of these two treatment groups still share many low abundant taxa

after 1 month. The reduction of altered microbial communities

presented here after 1 month is in stark contrast to that observed

after 24 h, in which the CMF and saline-treated mice differed

significantly in both alpha- and beta-diversity (Corley et al., 2023).

These vastly different results may suggest that the microbiome, in

the absence of CMF, displayed resilience and was able to return to a

presumed “near-healthy” state after 1 month. Notably, the study at

present only evaluated microbiome alpha- and beta-diversity 30

days following chemotherapeutic treatment. A limitation of this

study is the absence of reagent blanks and Zymo/ATCC mock

communities as positive controls, which may limit the ability to
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distinguish true biological signals from potential contamination or

sequencing artifacts. Future studies will address this by including an

aliquot of mock community DNA and either a reagent solution

blank or PCR template blank as a negative control for sequencing,

with all controls processed in triplicate.

Comparable studies have used shorter timelines—typically

ranging from 1 to 2 weeks post-treatment. Lu et al. showed that

following five daily doses of 5-FU, 5-FU GIM-induced mice had

lower ACE, Chao, and Shannon indices than control (Lu et al.,

2022). A similar result was presented by Li et al., such that rats

injected with 5-FU for 3 days displayed a decrease in alpha- and

beta-diversity as measured by Unweighted UniFrac principal

coordinates analysis (PCoA) as well as Chao and Shannon indices

(Li et al., 2017). Another study using MTX found that rats treated

with MTX every 3 days for 7 or 14 days showed a significant

decrease in alpha-diversity compared to control (Zhou et al., 2018).

Chao1, ACE, Observed species, and Shannon indices were used for

analysis. Recently, Chen et al. showed rats that initially received

MTX via intrathecal injection and then via intraperitoneal injection

once a week for 2 weeks had a significant decrease in beta gut
FIGURE 8

Changes seen 30 days after treatment. (A, B) Average villi length and crypt depth are not affected 30 days after treatment (N=5 per treatment).
Histological images show a representative of (C) saline group villi, (D) CMF group villi, (E) saline group crypts, and (F) CMF group crypts (N=8 per
treatment).
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microbiota diversity as measured by Unweighted UniFrac (Chen

et al., 2024). Interesting, Chao1 and Shannon indices did not reveal

any significant difference in alpha-diversity. A study conducted by

Chen, Sun et al. administered 80 mg/kg of CYP to saline-treated

mice after 10 days. After receiving CYP on days 10, 12, and 14,

animals were sacrificed and tissues were collected; Chao1 and ACE

indices showed that CYP-treated mice had lower alpha-diversity

than control in the cecum (Chen et al., 2021). Additional research

using multiple time points of analysis may prove useful in

unraveling the complex underpinnings of the microbiome brain

axis in tandem with the tight interactions of host gut morphology

and microbial communities. Research on the long-term effects of

chemotherapy on the MGB remains limited. Growing interest in

this realm of cancer research is promising and is essential to

identifying how the microbiome may facilitate long-term

chemobrain and the amelioration of its side effects.

Notably, taxanes and alkylating agents, such as the adjuvants

that compose CMF, are well known to induce chemotherapeutic-

GIM (Akbarali et al., 2022). Various studies have shown that

administration of CTX, MTX, and 5-FU poly- and monotherapies

yields an increase in interleukin-1b (IL-1b) expression in response

to chemotherapeutic-induced GIM (Wu et al., 2011; Xiang et al.,

2011; Yucel et al., 2016). IL-1b is a pro-inflammatory cytokine that

is critical to immune system regulation. Evidence has also suggested

that IL-1b is a neuromodulator required for healthy brain activity

(Schneider et al., 1998). Interestingly, some research proposes that

sustained expression of IL-1bmay have an antagonistic relationship

with hippocampal neurons. Utilizing the transgenic mouse model

IL-1bXAT (Shaftel et al. , 2007) for hippocampal IL-1b
overexpression, work by Moore et al. has shown that IL-1bXAT

mice displayed spatial memory retention deficits in the Morris

water maze task following 2 weeks of IL overexpression (Moore

et al., 2009). Both male and female IL-1bXAT mice exhibited

significantly longer path lengths to the platform than control

mice. Using the same time frame, Hein et al. demonstrated

similar results and found that male and female IL-1bXAT mice

spent significantly more time in non-target quadrants during probe

trials of the Morris water maze (Hein et al., 2010). Hein et al. also

showed that in unconditioned IL-1bXAT mice, there was a

significant decrease in basal Arc mRNA expression compared to

control. Surprisingly, contextual conditioning did not significantly

increase basal Arc mRNA expression in IL-1bXAT mice, regardless

of gender. These studies may provide a different lens of interpreting

our results. It could be that IL-1b expression was upregulated and

potentially overexpressed due to the CMF chemotherapeutic

regimen, which was shown to be possible by previous studies

(Briones and Woods, 2014). The increase in IL-1b expression

may also explain the difference in beta-diversity, such that Wu

et al. have shown that IL-1b can impact commensal microbiota in

mice (Wu et al., 2022). Moreover, the possibility of IL-1b
overexpression may have persisted during the Morris water maze

task, which may provide an ancillary reason for the observed

cognitive deficits. Subsequent studies could aim to elucidate the

mechanistic relationship between the MGB and pro-inflammatory
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cytokines, with particular emphasis on IL-1b and its antagonist

IL-1Ra.
5 Conclusion

This research provides novel insights into what deficits occur after

an extended time frame post-treatment with combination CYP, MTX,

and 5-FU chemotherapy. The present study shows that treatment with

CMF induced impairments in spatial memory and reduced c-Fos, Arc,

and Zif268 expression without producing many protein changes in the

hippocampus. Our study emphasizes the capability of CMF to engender

persistent hippocampal-dependent cognitive dysfunction, represented

by lack of memory retention in the Morris water maze probe trials 30

days post-treatment. These findings are novel and have not been

demonstrated in previous CMF studies because of their shorter

timelines. Additionally, our results suggest that c-Fos, Arc, and Zif268

may play a significant role in these observed cognitive deficits.

Modulation in IEG expression in a female mice chemobrain model in

the future could provide novel insights to further investigate the

relationship between chemotherapy, IEGs, and cognition. An

abundance of research has shown that our targeted IEGs contribute,

directly or indirectly, to synaptic plasticity and stabilization of excitatory

synapses at major information hubs in the brain. The reduction of these

IEGs may explain the continual cognitive impairments seen in this

study. Finally, we observed no changes in alpha-diversity and limited

significant changes qualitative beta-diversity. Given the lack of

differences in gut morphology between the treatment groups, it is not

surprising that there were limited differences observed in overall

microbial community structure between the treatment groups,

indicating that the microbial community structure is following

improvements in gut health and morphology. One limitation of our

study is that we only examine one time point, which only provides a

snapshot into the cognitive changes. Future studies should consider

utilizing multiple time points of analysis. Given the varying results of

similar studies, investigating the short- and long-term effects of

chemotherapy in parallel is perhaps paramount in uncovering the

underlying mechanistic relationships within the MGB axis. In

addition, future studies incorporating immunostaining for tight

junction markers or cytokine profiling could more precisely assess gut

barrier integrity and its relationship to the observed behavioral and

molecular outcomes. This is particularly true for women in LMICs who

do not have the same access to modern breast cancer chemotherapeutic

treatments as their Western counterparts. Continued research on CMF

chemotherapy is imperative for improving the knowledge, survivorship,

and quality of life for breast cancer survivors across the globe.
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